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Chapter 1

Introduction

Photography—literally, ‘drawing with light’—is the process of making pictures with
a camera by recording the visually meaningful changes in the light reflected by a
scene. This goal was envisioned and realized for plate and film photography over
150 years ago by pioneers Nicéphore Niépce,1 Louis-Jacques-Mandé Daguerre, and
William Henry Fox Talbot (Figure 1.1). Niépce is widely credited for making the
first photograph in 1826. Daguerre, with limited materials, captured exquisitely
detailed landscapes and portraits with great subtleties of expression. Fox Talbot
made the important discovery that a latent photographic image on paper could
be chemically developed into a negative, which was then used to produce multiple
photographic images.2

The art and technology of traditional film-and-chemistry-based photography
developed rapidly in the nineteenth century. Over time, cameras and lenses be-
came better and lighter, and film became faster and easier to use. As a result
photography became a powerful medium of visual communication throughout the
twentieth century. The world of photography changed profoundly, however, when
digital photography arrived at the end of the century. In less than a decade, the
well-established techniques of traditional film photography and film processing be-
came obsolete. Photography today is now an all-digital workflow from camera to
computer to print.

Modern digital photography is truly revolutionary, but limited in many ways.
For most purposes it is an electronically implemented duplication of the style and
function of film photography, with an electronic sensor replacing the film. The
imaging goals of a film camera—enabled and limited by chemistry, optics, and me-
chanical shutters—are highly similar to the imaging goals of a digital camera. Both
cameras copy an image formed by a lens, without imposing judgment, understand-
ing, or interpretive manipulations. In effect, film cameras and digital cameras are
both faithful but mindless copiers of the scene in front of the lens.

1A description of the important role of Nicéphore Niépce in the history of photography and
a summary of his many experiments that led to the first photograph in 1826 are found at the
website www.hrc.utexas.edu/exhibitions/permanent/wfp/.

2William Henry Fox Talbot’s 1844 book The Pencil of Nature is considered to be the first
published book on photography.

1
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(a) (b)

(c)

Figure 1.1: (a) View from the Window at Le Gras, Saint-Loup de Varennes, France
(1826) by Nicéphore Niépce. This camera obscura photograph, which took over
eight hours to expose, is widely considered the first permanent photograph ever
made. (b) Boulevard du Temple, Paris (1838) by Louis-Jacques-Mandé Daguerre.
The sensitivity of photographic materials increased greatly in the decade following
Niépce’s photographs, allowing shorter exposure times and much more realistic
detail in the imagery. (c) London Street, Reading (1845) by William Henry Fox
Talbot. Fox Talbot introduced the photographic negative, which was used to make
reproducible prints.
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For the sake of simplicity and clarity, let’s use the term “film-like” to describe
photography accomplished with traditional film cameras and with current digital
cameras. Both work by recording an image, as seen by a lens, on film or on a digital
sensor. Both presume (and often require) artful human judgment, intervention,
and interpretation at every stage to choose viewpoint, framing, timing, lenses, film
properties, lighting, developing, printing, display, search, index, and labeling.

Film-like digital photography is convenient and powerful, but it currently ig-
nores a great new promise inherent in the digital representation of visual infor-
mation. Even though current digital methods eliminate or simplify much of the
variability of traditional methods (e.g., processing chemistry), the shift to digital
has far more profound consequences than merely streamlining the imaging process.
Digital methods do not just replace negative emulsions with solid-state sensors,
they replace one-of-a-kind fragile negatives with numerical grids and mathematical
abstractions, and they replace chemical baths that act uniformly on the entire emul-
sion with user-defined instructions applied to each value in the numerical grid. The
emerging methods of computational photography greatly expand the potential of
digital photography. They allow us to create, measure, construct, and manipulate
visual information, and then make that information amenable to any computable
algorithm, interaction, or image-related task.

The ideal possibilities of photography—showing what we want to capture rather
than what we can capture—were perhaps clearest to its pioneers, who were both
artists and scientists. They saw that photography could be more than just a picture
of a scene. For example, Edgar Degas wanted to capture the emotional atmosphere
induced by closeness and lighting. “Daylight is too easy,” Degas said in 1895.
“What I want is difficult—the atmosphere of lamps and moonlight.” Others ex-
panded our visual capabilities as well. Edweard Muybridge studied fleeting motion
phenomena, James Clerk Maxwell captured the full visual spectrum of light, and
William Conrad Röentgen used X-rays to see bones in living flesh (Figure 1.2).

The possibilities of computational photography are not readily apparent at first.
Those of us who grew up with film photography are like zoo animals released after
years of confinement; we are wandering in a new world, astonished at the changes
we see around us. By habit, we comply with old constraints. We tend to stay within
the familiar limitations and tradeoffs we learned from our work in film, even though
these constraints are now gone or easily surmountable. The vast new landscape of
photography is difficult to comprehend at first, and we slowly familiarize ourselves
with all that is different.

The transformation to digital photography comes with a cultural price. Digital
methods nullified much photographic expertise that had accumulated since the 19th
century. We lost exquisitely perfected varieties of thin-film emulsions with subtle
mutable responses to light, including magnificent Kodachrome slide film, which
finally disappeared from stores in 2009. We lost darkrooms and enlargers and
archival printing skills. Vast collections of classic cameras with perfectly matched
lenses, meters, and shutters became useless in the digital age. And the subtle
processing skills and well-honed expert judgments of dedicated photographers and
darkroom technicians are no longer important. So much magnificent engineering
and so much film expertise is now marginalized or even gone forever. Despite our
regrets for these losses, we lose even more if we are satisfied with digital photography
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Figure 1.2: (a) Danseuse (1895), a photograph by French painter Edgar Degas. (b)
X-ray photograph of the hand of Albert von Kölliker (1896), by Willhelm Conrad
Röentgen.
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Figure 1.3: Why do we like photographs? Traditional two-dimensional photographs
show us basic—but often partial—information about boundaries, shape, occlusion,
lighting, shadows and texture in a scene. Even though these images are often limited
by compromises on dynamic range, resolution, noise, and lighting, traditional pho-
tography can still provide—whether through film or pixels—a tangible connection
between the physical world and perceived sensation. Research in computational
photography has targeted novel capture and manipulation methods that can en-
hance this connection. [THIS FIGURE NEEDS TO BE ”EXPLAINED” MORE
THOROUGHLY, AND THE CAPTION EXPANDED. ALTERNATIVELY, THIS
FIGURE AND AN EXPANDED CAPTION COULD BE FORMATTED AS AN
INDEPENDENT SIDEBAR.]

as little more than the reconstruction of film-like photography.

The changeover to truly new and innovative digital cameras has come slowly.
Many commercial digital cameras today still include tiny viewfinders and the com-
forting sounds of a mechanical shutter release, which helps photographers imitate
the old ways of shooting. These film-like features keep our attention and our skills
focused on the creative traditions of the past, far away from new and exciting op-
portunities inherent in digital imaging. [NOTE: THE INTRODUCTION COULD
USE ONE OR MORE INTRODUCTORY EXAMPLES OF COMPUTATIONAL
PHOTOGRAPHY WORK HERE.]

Where is the new horizon? Which directions promise the most breathtaking
new ways to capture a better record of the visually important content of a scene?
What can computational photography do to help us make strong images, retain
fond memories, keep a personal record of our lives, and extend both the archival
and the artistic possibilities of photography? Let’s look away from film-like photog-
raphy and march outward to explore the digital world. Much is there to discover
(Figure 1.3). Let’s survey new possibilities, and outline a more comprehensive
technology that exploits plentiful low-cost computing with new kinds of digitally
enabled sensors, optics, probes, smart lighting, and communication.
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1.1 What is Computational Photography?

[Dan Raviv comment. ”I would write Section 1.1 entirely different. A. concepts:
where information is not just pixels. B. practical: photography and computation,
etc.”]

Computational photography captures a machine-readable representation of our
world, allowing us to hyper-realistically synthesize the essence of our visual expe-
rience. It is an emerging field of research, with many paths, and we do not fully
know where the paths will lead. By capturing a machine-readable representation
of a scene, we can use modern computational photography techniques to go be-
yond the limitations of traditional cameras and two-dimensional imagery. These
techniques employ unusual optics, modern sensors, programmable illumination and
sophisticated processing to record the scene.

With this idea of what computational photography can do, we can broadly
classify major new themes in digital capture and image synthesis. Three important
themes in digital capture are summarized here.

(i) Computational photography exploits computing, memory, interaction and
communications to overcome the inherent limitations of photographic film and cam-
era mechanics that have persisted in film-like digital photography. These limitations
include constraints on dynamic range, image resolution, depth of field, and field of
view.

(ii) Computational photography attempts to record a rich multilayered visual
experience by capturing more information than just a simple set of pixels. It
delivers the recorded representation of the scene as an abstract data type in far
more machine-accessible form, containing much more than a simple visual grid of
pixel values. The new metadata may include scene depth or its precursors such as
corresponding-feature candidates shared among multiple viewpoints, fused photo-
video representations, or multispectral imagery. The representation may also in-
clude compensating information, generated by the camera itself, which might aid in
post-processing, such as modulation patterns, global positioning system (GPS) posi-
tion and orientation records, and specialized lighting information. This information
can be gathered wirelessly from the scene, or from local photo-assistance devices,
the user’s own external metering devices, or even other cooperating nearby cam-
eras. [A FIGURE ILLUSTRATING AN EXAMPLE OF DIGITAL CAPTURE,
SUCH AS AN HDR IMAGE, COULD BE INCLUDED HERE]

(iii) Computational photography enables the recording of new classes of visual
signal and provides decomposition of the visual signal into perceptually critical com-
ponents. New visual signals include the ‘moment,’ [86] shape boundaries for non-
photorealistic depiction [330], estimates of three-dimensional structure [e.g., [430]]3

and portions of multiview light fields. Decomposable signals include foreground
versus background mattes [84]4, direct versus indirect illumination [292], specular
versus diffuse components5 and reflection versus transmission layers [39]. With
modest additional information, the list of additional photographic capabilities can
grow dramatically. For example, why can’t our cameras remove unwanted reflec-

3graphics.stanford.edu/workshops/ibr98/Talks/Lance/silhouettes.html
4grail.cs.washington.edu/projects/digital-matting/image-matting/
5Debevec team [SPECIFIC DEBEVEC REFERENCES NEEDED HERE]
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tions when we photograph through a window or a display case? [ADD OTHER
EXAMPLES OF ADDITIONAL CAPABILITIES HERE]

In addition to improving the description of a scene beyond a two-dimensional
set of pixels, the methods of computational photography might selectively empha-
size visually important features. Such hyper-realistic synthesis departs from strict
recording of the scene’s light intensities, which imposes simplistic forms of inter-
pretation on the contents of the recorded scene. By conflating measurement and
rendering, the final display of the scene is visually accurate, but not necessarily
photometrically accurate. The idea is to utilize additional, often subtle, pictorial
elements to depict what cannot be seen by the human eye, such as a single view-
point or a single lighting situation, and to create a plausible illusion of a reality
that is most informative but might be physically unrealizeable. [THE IDEAS IN
THIS PARAGRAPH WORK WELL HERE, BUT THEY ALSO COULD BE IN-
CLUDED IN ITEM 2 ABOVE.]

Computational photography also gives us many important opportunities for
meaningful image synthesis, as summarized in the following three broad categories.

(i) Computational photography enables unprecedented post-capture control for
synthesis including relightable photos [254]6, and interactive displays that permit
users to change lighting [295]7, viewpoint8, and focus [300]9.

(ii) Computational photography enables synthesis of “impossible” photos that
could not have been captured with a single exposure in a traditional camera. It also
enables the synthesis of “plausible” but non-existent scenes. Such impossible photos
include wrap-around views that use multiple-center-of-projection10, fusion of time-
lapsed events [330], the motion microscope (motion magnification [250]), and video
textures and panoramas [36]. It supports seemly impossible camera movements
such as the bullet-time sequences in the 1999 movie The Matrix , which were made
with multiple cameras using staggered exposure times, and free-viewpoint television
(FTV) recordings [e.g., [253]11. Plausible photographs also include images created
from a mosaic of non-local scenes to replace or insert new scene parts12 and for
believable but generally unfilmable special effects.

(iii) Computational photography provides easy access to previously exotic forms
of imaging and data-gathering techniques in astronomy13, microscopy [239]14, to-
mography [403]15, and other scientific fields. These methods create images by
inventive and previously impractical computation to reveal what cannot be seen
by human observations. [A FIGURE OF COMPUTED IMAGERY COULD BE
INCLUDED HERE, SUCH AS AN IMAGE FROM THE HUBBLE TELESCOPE.]

Computational photography is closely related to computer vision, machine learn-
ing, applied optics and visual aesthetics. Figure 1.4 illustrates how computational

6www.hpl.hp.com/research/ptm/
7portal.acm.org/citation.cfm?id=1027414
8www.cs.washington.edu/homes/seitz/vmorph/vmorph.htm;phototourism
9graphics.stanford.edu/papers/lfcamera/

10Unwrap Mosaics, Sig08; Rademacher and Bishop 1998
11graphics.tu-bs.de/people/magnor/publications/sig03.pdf
12scene completion, Hayes and Efros REFERENCE?
13www.paulcarlisle.net/old/codedaperture.html
14see Wikipedia entry on confocal microscopy; also graphics.stanford.edu/papers/confocal
15www.cs.ubc.ca/∼heidrich/Projects/Tomography/
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Figure 1.4: Computational photography extends the processing that can be done by
optics and sensors before an image is captured, and it prepares imagery for further
processing by techniques in computer vision and machine learning.

photography uses the pre-capture techniques of optics and sensors, and the post-
capture techniques of computer vision and machine learning, but is distinct from
these fields of research. For the purpose of this book we will mainly examine tech-
niques of digital capture and image synthesis. Our goals are the synthesis of a visual
experience rather than the judgment of a scene. Thus goals of scene measurement
and analysis, such as counting people, determining range to a point, or planning
collision avoidance, among others, will not be covered here.

1.2 Elements of Computational Photography

Traditional film-like digital photography involves (a) a lens, (b) a two-dimensional
planar sensor and (c) a processor that converts sensed values into an image. In ad-
dition, such photography may include (d) external illumination from point sources
(e.g., flash units) and area sources (e.g., studio lights).

In accordance with Shree Nayar’s insightful overview of computational pho-
tography in 2005 [288], we can consolidate recent advances into four broad areas:
generalized optics; generalized sensors; computational illumination methods; and
generalized processing, reconstruction, and display. As Figure 1.5 illustrates, these
categories encapsulate the entire scene-recording and scene-reproduction process.

Unlike camera-centered models that describe photography as a record of the
two-dimensional image formed behind a lens, Nayar’s model is dominated by rays.
We regard rays (or more precisely, changes in bundles of rays) as the most sensible
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Figure 1.5: Elements of computational photography: generalized optics; generalized
sensors; computational illumination; and generalized processing, reconstruction and
display. [WE CAN DO A LOT TO CLARIFY AND VISUALLY IMPROVE THIS
FIGURE.]

way to describe all the signal-producing mechanisms of photography. By using
rays we can trace all the possible paths from any point on a light source to any
point in the scene, all the paths from any point in the scene to any point on the
camera’s optics, all the paths through the optics to the sensor, all the possible ways
an advanced sensor might measure the energy transferred by those rays, and finally
all the possible ways to generate rays from the display to the eyes of the audience.
This last step includes all the possible processing, storage, and transmission stages
that can be used to deliver imagery to a viewer.

In traditional film-like digital photography, each camera image records one view
of the scene as a two-dimensional array of pixels. Computational photography at-
tempts to understand and analyze a higher-dimensional representation of the scene
by using rays as the fundamental primitives. Thus the light transport via rays can
be conceptualized at any plane in the optical path. The rays incident on this plane
can be parameterized by using a four-dimensional position-angle representation:
two dimensions for position on the plane and two dimensions for the incident angle.
This 4D ray space is alternately called the plenoptic function, the 4D light field or
the Lumigraph. In this book we will use the term light field. In addition to the
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four geometric dimensions, we can include other dimensions such as wavelength (or
color), time and polarization.

1.2.1 Generalized Optics

In computational photography, each optical element in the lens is treated as a
4D ray-transformer that modifies a light field between a scene and the sensor.
The incident 4D light field for a given wavelength is transformed by the optical
element into a new 4D light field. Generalized optics, which are discussed further
in Chapter 4, can be classified in three general ways, based on where and how the
optical element impacts the light propagation.

Each optical element spreads, rearranges and re-bins the incident rays. Depend-
ing on where the element changes the rays, the structure of rays emerging from a
scene point can ultimately impact the sensor in different ways. When the optical el-
ement spreads rays from a scene element to a large section of the sensor, we consider
the optics to be a transform first element. These can include camera arrays and
other optical elements in place before the traditional lens optics. When the optical
element affects most of the scene in a similar fashion, we call it a transform middle
element. Examples include conventional thin lenses, coded amplitude masks, coded
phase masks, and gratings in the aperture. When the optical element affects the
sensor locally, close to the sensor surface, we call it a transform last element. These
include lenslet arrays and Bayer mosaics.

Computational methods have already expanded the usable set of lenses in mod-
ern imaging systems. Traditional lenses form a single-point perspective by orderly
refraction of incident rays, combined with suppression of all other changes. Gen-
eralized optics, on the other hand, can intentionally include refraction, reflection,
attenuation, scattering and even intentional diffraction. Refractive elements such
as those in traditional lenses are primarily ray-benders; they map one incoming
direction to one outgoing direction. As a result, traditional lenses have a quadratic
thickness profile to bend all rays from the same direction toward a single focused
point on the sensor.

But no single refractive lens element can achieve the high optical standards
of modern lens designs. Instead optics designers combine multiple materials and
refracting elements with linear profiles (prisms), cubic profiles (wavefront coding),
convex and concave profiles, aspheric and astigmatic profiles, and other polynomial
profiles to form an adjustable optical assembly with superb image-forming abilities.
In particular, prisms induce additional optical axis [154], and depth of field is
extended computationally by wavefront coded optics [100].

The refractive index of any lens depends strongly on wavelength, making wide-
spectrum traditional optics challenging or impossible to build. Computational
methods can help by adding reflective elements to decode or rearrange rays and
form more coherent images. In addition, reflection plays an important role in
dichroic filters that selectively pass light of a small range of colors while reflecting
other colors. Dichroic materials use the principle of interference to pass or reduce
light at different frequencies, which leads to optical coatings that enhance or sup-
press controlled reflection. Similarly, mirrors [296] outside the camera can be used
to adjust the linear combinations of ray bundles reaching the sensor pixel, and



1.2. Elements of Computational Photography 11

adapt the sensor to the imaged scene.

Apertures, aperture stops and coded masks block or attenuate light. In some
imaging methods [445], and in coded-aperture imaging [192] used for gamma-ray
and X-ray astronomy, the traditional lens is absent entirely. In modern coded aper-
ture photography, lenses are combined with coded apertures [413] to achieve invert-
ible blur in out-of-focus regions. Elements that diffuse and scatter light are rarely
used because they induce a blur in ray-space, although naturally occurring scat-
tering mediums sometimes form part of the optical path. Diffraction gratings and
holograms with physical features comparable to the wavelength of light can achieve
controllable scattering of light. Combinations of diffractive and refractive elements
can create useful programmable spectrum cameras [279] or reduce chromatic aber-
ration by using diffractive optics lenses [74]. Volume holograms can create images
in which out-of-focus parts are not only blurred but also darkened [54].

1.2.2 Generalized Sensors

All light sensors can measure the projection of a 4D light field along with the
additional dimensions of wavelength, time and polarization. Traditional sensors
capture only a discrete two-dimensional projection of this light field by integrating
along angle and time dimensions to create a two-dimensional photograph. Video
cameras sample the time dimension as well. Computational photography attempts
to capture a richer, higher-dimensional representation by using planar, non-planar
or even volumetric sensor assemblies. Traditional sensors trade spatial resolution
for wavelength measurement (i.e., color) by using a Bayer grid of red, green and blue
filters on individual pixels. Another modern sensor design, from Foveon, determines
photon wavelength by sensor penetration, permitting several spectral estimates at
a single pixel location [138] (Figure 1.6).

Generalized sensors can extend dynamic range by using a gradient processor
that measures differential intensity between neighboring pixels [406]. High-speed
detectors achieve precise time-gating to measure time-of-flight of light transport for
depth detection. The ZCam cameras from 3DV Systems were early commercial ex-
amples. In computational photography, such depth-sensing cameras are being used
for powerful post-capture control [89]. Careful time-integration sequences can deal
with motion blur by preserving information about high spatial frequencies [331].
They can compute sharp images of a fast moving object from a single image taken
by a camera with a ‘fluttering’ shutter. Within a single exposure, controlled sensor
motion in or out of plane can be used to preserve image spatial frequencies [235]
or create shallower depth of field [278]. In the future, optics and sensing will fuse
into hybrid elements. We already see this in modern wafer level cameras where
the optical components are fabricated on glass wafers in a manner similar to that
of fabricating integrated-circuit chips on silicon wafers. More detailed information
about sensors is found in Chapter 6.

[Dan Raviv comment. ”There are many 3D equation methods. Why just focus
on TOL?”]
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Figure 1.6: (a) The Bayer mosaic applies a pattern of red, green, and blue filters to
adjoining sensor pixels. The RGB image pixel is formed by combining red, green,
and blue intensities from neighboring sensor pixels. (b) The Foveon sensor uses
stacked red, green, and blue layers to record the separate color frequencies for each
sensor pixel. The RGB image pixel is formed by combining the red, green, and blue
intensities from each corresponding sensor pixel in the stack.

1.2.3 Computational Illumination

Photographic lighting devices have changed considerably in the past century, but
the nature of the light they produce has changed hardly at all. Increasingly so-
phisticated studio lighting continues to be an important tool for the professional
photographer confined to a studio space. The introduction of flash bulbs in the
1930s and electronic flash units in the 1950s gave photographers much greater flex-
ibility in adding light to photographs made outside the studio. These lights are
limited, however, in the structure of the light they add to a scene. Today, with
digital video projectors, servos, and device-to-device communication, we have so-
phisticated new opportunities for controlling the sources of light. We don’t need to
be confined to bursts of light at uniform intensities. We can ask the question: What
spatio-temporal modulations of lighting might better reveal the visually important
contents of a scene?

In his pioneering research work, Harold Edgerton showed that high-speed strobe
lighting offers tremendous new capabilities for capturing appearance (Figure 1.7).
How many new advantages can we gain by replacing dumb flash units, static spot
lights and passive reflectors with actively controlled spatio-temporal modulators
and optics? Much research on structured lighting has already been done. For ex-
ample, we can capture occluding edges with multiple flashes [329], exchange cam-
eras and projectors by Helmholz reciprocity [362], gather relightable actor’s per-
formances with light stages [416] and see through muddy water with coded-mask
illumination [238]. In every case, better control of lighting during image capture
allows for richer representations of photographed scenes. More information about
computational illumination is found in Chapter 5.
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Figure 1.7: Harold Edgerton multiflash photograph. [WE COULD ADD A
MORE RECENT EXAMPLE OF COMPUTATIONAL ILLUMINATION, SUCH
AS RAMESH’S OCCLUDING EDGES WITH MULTIPLE FLASHES.]

1.2.4 Generalized Processing, Reconstruction and Display

Existing digital camera processors do a series of steps to overcome sensor limita-
tions and improve the resulting photographs. For example, they perform demosaic-
ing (i.e., interpolating the Bayer grid), remove fixed-pattern noise, and hide dead
sensor pixels. While these steps improve a digital picture, recent work in compu-
tational photography shows that the conversion of raw sensor outputs into picture
values can be much more sophisticated. The main approach is a co-design of optics
and processing for optimal capture and post-capture resynthesis. This co-design a
common theme in what is called coded photography.

In some cases, the outputs of current camera sensors can be manipulated by
incorporating recent advances in image processing and computer vision. For exam-
ple, modern filtering methods can reduce the impact of noise. Similar methods can
also detect and recognize important image features, such as faces, as well as catego-
rize and automatically assign higher-level labels. Recent advanced algorithms can
remove blur due to defocus or motion by solving the ill-posed blind deconvolution
problem and enforcing certain natural image statistics on the solution. In addition,
advances in geometric operations on large sets of photographs allow anyone to ex-
plore their image content in 3D [376]. In such a data-rich environment, in which
millions of photos on any object can be archived and retrieved at little cost, auto-
matic processing must be a central feature of computational photography. These
topics are discussed further in Chapter 7.

The statistical ‘priors’ exploit common observations that there are large gradi-
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Figure 1.8: The progression of four different stages of computational photography,
starting with the methods of conventional film-like digital photography, and ex-
tending onward to epsilon photography and then to coded photography, and finally
stretching toward a horizon we call essence photography.

ents at sparse image locations or that the histogram of gradients of natural scenes
is sharply peaked at zero. The even-increasing online photo collections are allowing
rapid progress in data-driven, probabilistic and inferential methods. Cartoon ren-
dering from photos is redefining what it means to be photorealistic. [THIS SHORT
PARAGRAPH IS A FRAGMENT THAT DOESN’T CONNECT TO THE TWO
PREVIOUS PARAGRAPHS. IT NEEDS TO BE REVISED OR DELETED.]

1.3 Sampling the Dimensions of Imaging

Computational photography is a multidisciplinary field emerging at the intersection
of optics, signal processing, computer graphics, computer vision, electronic hard-
ware, art, and online sharing in social networks. We can visualize the extent of
computational photography along two axes: capture process versus synthesis goals
(Figure 1.8). One axis represents the process of higher-dimensional capture and
manipulation, which provides a greater degree of freedom in a machine-readable
representation of the scene. The other axis represents the goal of synthesizing
visual experience.
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Here is a summary of the four stages of computational photography, as illus-
trated in Figure 1.8.

(i) Film-like photography. The first stage describes today’s consumer-level dig-
ital cameras and basic processing techniques that mimic film photography. The
capture is two-dimensional raw images [USE OF ’RAW’ HERE IS CONFUSING,
SINCE ’RAW’ IS AN IMAGE OUTPUT FORMAT. DO YOU MEAN ’TRADI-
TIONAL’ OR ’UNPROCESSED’ INSTEAD?].

(ii) Epsilon Photography. The second stage describes methods to expand cam-
era capabilities by manipulating data from a conventional digital camera. It cor-
responds to low-level visual processing of pixels and localized scene features. The
goal is enhanced performance in the traditional parameters of photography, such
as dynamic range, field of view, or depth of field. Because of the tradeoffs in-
herent in existing cameras, the process typically involves sampling the scene via
multiple photographs, each captured by a small, or epsilon, variation of the camera
parameters.

(iii) Coded Photography. The third stage describes new tools that go beyond the
capabilities of the highest-quality conventional digital camera. It corresponds to
mid-level visual processing techniques, including segmentation, organization, and
the inference of shapes, materials, and edges. These methods perform reversible
encoding of information about the scene in a single photograph (or a very few
photographs) so that the corresponding decoding can recover light fields, motion-
deblurred images, global- and direct-illumination components, or distinctions be-
tween geometric versus material discontinuities.

(iv) Essence Photography. The fourth stage describes machine-assisted efforts
to determine image semantics and the visual content of the scene. Essence pho-
tography goes beyond a simple record of the scene’s radiometric quantities and
challenges the notion that a camera should mimic a grid of light meters. It aims at
understanding the contents of the scene as a cognitive aid to human vision. Instead
of relying solely on recovering physical parameters, the process exploits non-visual
metadata and other priors. The goal is to capture the visual essence of the scene and
analyze the perceptually critical components; its results may loosely resemble de-
piction of the world after high-level visual processing. The goal is a hyper-realistic
synthesis that holds promise for spawning new forms of artistic expression and
communication.

These four stages of computational photography are described in greater detail
in the subsections below.

1.3.1 Film-Like Digital Photography

Even though photographic equipment has undergone continual refinement in the
past century, the basic approach to making photographs remains unchanged. A lens
admits light into an otherwise dark box, and forms an image on a surface inside
the box. (Figure 1.9) This early concept of the camera, known as camera obscura,
has been understood and explored for over a thousand years,16 but became known
as photography only in the 19th century, when the imaging system was combined

16R. L. Verma (1969). “Al-Hazen: Father of Modern Optics.”
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Figure 1.9: Lens-based camera obscura in 1526.

with light-sensitive materials to record the incident light for later reproduction.

Early lenses, boxes, and photosensitive materials were crude in every way. In
1826, with a simple lens, Niépce needed an eight-hour exposure to capture the image
of a sunlit farmhouse onto chemically altered asphalt-like bitumen, resulting in a
coarse and barely discernible image. Within two decades, other capture strategies
based on the light-sensitive properties of various silver salts had reduced the typical
exposure time to minutes. By the 1850s these various strategies were displaced by
wet-plate collodion emulsions prepared on a glass plate just prior to exposure.
(Figure 1.10)

Early photographic history is full of fiercely contested battles over patents and
precedence between overlapping processes with different names. William Henry
Fox Talbot published a detailed description of his calotype method in 1842, well
after Daguerre’s huge commercial success with less sophisticated methods that were
closely held trade secrets. Talbot made his earliest successful photos in 1835 (but
they weren’t shown until 1839, in response to Daguerre’s claims), and devised the
first photographic negatives. Higher sensitivity, better tone reproduction, and the
new ability to reproduce photos from negatives caused wet-plate methods to rapidly
displace more limited non-reproducible methods based on Daguerre’s work. Even
though wet plates were messy, complex and noxious to prepare, they produced
photos that were larger and more subtly shaded. The materials were also fast
enough to record human portraits in shorter sitting intervals, which brought to an
end the fixed stony stares that resulted from trying to remain perfectly motionless
while squinting into direct sunlight.

George Eastman, annoyed with the expense and complexity of the wet-plate
processes of the time, introduced a flexible gelatin film stock in 1874. By the late
1870s, pre-manufactured gelatin dry plates largely replaced the cumbersome collo-
dion wet plates of Talbot and others. Unfortunately, these early film stocks were
dangerous. They used a nitrate-cellulose base sheet that would burn ferociously if
ignited. Plus, if the film stocks were improperly stored, the chemical byproducts
of film degradation resembled dynamite and gun-cotton. In the world of cinema,
early large-theatre movie projectors employed arc-lamp illumination, which some-
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Figure 1.10: Film-like photography uses a lens to form and record an image on a
surface with light-sensitive materials. Practical limits such as lens light-gathering
efficiency, sensitivity, and exposure time necessitate tradeoffs. [THIS FIGURE,
WHICH INCLUDES RAYS, BRDF, AND A MONITOR SCREEN, IS OUT OF
PLACE HERE IN A SECTION ON EARLY METHODS OF PHOTOGRAPHY.
WE SHOULD FIND A SUBSTITUTE IMAGE ]

times ignited reels of nitrate film, causing many deadly movie-theatre fires. It
wasn’t until 1951 when acetate-based safety films finally replaced nitrocellulose for
all photographic purposes.

The emulsions on these films continued to rely on sensitized silver-halide salts,
but they advanced from crude single coatings to multilayer thin-film emulsions.
The extra layers maximized light absorption, resolution, and sensitivity. Monopack
color films, introduced in the 1930s, further complicated emulsions by inserting
color filters between multiple light-sensitive layers.

Rapid advances in the design of cameras, lenses, and lighting complemented
these advances in thin-film chemistry. Camera manufacturers developed high-speed
shutter designs and accurate aperture mechanisms. Lens manufacturers produced
complex multi-element lens systems. Portable lighting devices advanced from the
crude ignition of magnesium flash powder to synchronized sets of Xenon flash units.
Studio lights advanced from simple ceiling louvers that controlled sunlight, as in
Thomas Edison’s rotating Black Maria film studio, to multi-kilowatt color-balanced
lamps with directional reflectors, focusing lenses, removable scrims, motorized go-
bos, and barn doors, all of which shaped the direction and intensity of light.17

With each set of technical improvements, photographers expanded the creative
choices that affected the appearance of the captured image. We recall that the ear-

17For an authoritative technical review of early photography, see “The Theory of The Photo-
graphic Process,” 4th edition (1977), edited by T.H. James, New York: Macmillan. [NOTE: THIS
BOOK IS CURRENTLY NOT IN PRINT]
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liest cameras had neither shutters nor aperture mechanisms. Photographers chose
a lens (or the camera attached to it), adjusted focus on a ground-glass viewer, re-
placed the ground glass with a light-sensitive plate, uncapped the lens and waited
for the camera to gather enough light to record the image. As light-sensing ma-
terials improved, exposure time dropped from minutes to seconds to milliseconds.
Adjustable shutters made exposure times more precise, and adjustable lens aper-
tures regulated the amount of light passing through the lens during exposure. By
the 1880s, the basic camera settings used for photographic exposure were well de-
fined. Digital cameras continue to use these basic settings, and have improved and
extended them only slightly.

The basic components of digital photography and their associated settings are
(1) the lens, which controls aperture, focusing distance, and focal length; (2) the
shutter, which controls exposure time; (3) the sensor, which controls light sensitivity
(i.e., the ISO value), latitude (i.e., tonal range or dynamic range), and color-sensing
properties; (4) the camera, which controls location, orientation, and the moment
of exposure; and (5) the auxilliary lighting, which controls the position, intensity,
and timing of the illumination. Most film-like digital cameras can automatically
determine the focus, aperture, shutter speed, sensor sensitivity, and lighting settings
at the moment a picture is made. Once the user trips the shutter release, these
settings are fixed, and the resultant image is one among many photographs.

At the instant the shutter clicks and an exposure is made, the following camera
settings have also been determined:

Field of view. The focal length of the lens determines the angular extent of the
picture. A short (wide) focal length gives a wide-angle perspective on the scene; a
long (telephoto) focal length gives a narrow perspective. For a fixed sensor reso-
lution, the field of view dictates the angular resolution of the scene. Although the
image can be cropped to reduce perspective (at a corresponding loss of resolution),
it cannot be made wider.

Exposure and dynamic range. The chosen lens aperture, exposure time, sensor
ISO sensitivity, and sensor latitude contribute to how the light in the scene maps
to individual pixel tonal values. Larger aperture settings, longer exposure times,
and higher sensitivities map dimly lit scenes into acceptable pictures, while smaller
apertures, shorter exposure times, and lower sensitivities map brightly lit scenes
into acceptable pictures. Poor choices in these settings may result in the loss of
visible image details in brightly lit areas or in dimly lit areas, or both. Within the
sensitometric response curve of any sensor (the intensity ratio between the darkest
and lightest details), the latitude of the dynamic range of the sensor is not usually
adjustable, and falls typically between 200:1 to 1000:1.

Depth of field. The lens aperture, the lens focal length, and the size of the
sensor together determine the range of distances that will appear acceptably in
focus at any given focus distance. A small aperture and a short (wide) focal length
gives the greatest depth of field, while a large aperture and a long (telephoto) focal
length gives the smallest depth of field. Note that increased depth of field normally
requires a smaller aperture, which may entail increased exposure time or higher
sensor sensitivity (which in turn increases digital noise in the image).

Spatial resolution. For a well-focused image, the sensor itself sets the spatial
resolution. The image can be artificially blurred to diminish resolution, but no
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sharpening can recover more detail than that already recorded by the sensor. Note
that increased spatial resolution reduces depth of focus and often increases visible
noise due to the reduced size of the sensor pixel. In addition, increased spatial
resolution correspondingly increases the required data storage and bandwidth re-
quirements.

Temporal resolution. A chosen exposure time interval determines how long the
camera will collect light for each point in the image. If the exposure is too long,
moving objects will appear blurred; if the exposure is too short, the camera may
not gather enough light for a proper image.

Wavelength resolution. Color-balance and saturation settings on the camera set
sensitivity to color. Current film-like digital cameras sense color by measuring three
color primaries (usually in the RGB color space) with fixed, overlapping spectral
response curves. Different sensors offer varying spectral curves, but none of these
curves for a given sensor are adjustable.

Film-like digital photography forces us (or the camera) to choose the camera
settings, to make tradeoffs among interdependent parameters, and to lock in those
choices in a single photo at the moment we click the shutter. The fundamental
nature of film-like photography, which all photographers understand, forces these
tradeoffs. They are inescapable because of the hard limits of simple image formation
and the measurement of light. But photographers would like more capabilities with
fewer tradeoffs! We would like to capture any viewed scene, no matter how transient
and fast-moving, in an infinitesimally short time period. We would like to have the
ability to choose any aperture setting, even a very tiny one in dim light, to control
the depth of focus. And we would like unbounded resolution that would allow
capture of a very wide field of view.18

New methods of computational photography offer a steadily growing number of
capabilities to escape the restrictions of these tradeoffs. Even though existing film-
like digital cameras are already excellent imaging devices, and they offer a range of
adjustment for each of these imaging parameters, we can be increasingly confident
of finding computational strategies to expand these parameters. The next section,
on epsilon photography, describes some of the strategies that have been discovered.

1.3.2 Epsilon Photography

We can think of cameras at their best as defining a box in the multidimensional
space of imaging parameters such as dynamic range, field of view or depth of field.
The first and most obvious thing we can do to improve digital cameras is to expand
this box in every parameter dimension. The goal is to build a super camera with
enhanced performance in each of the traditional parameters. We call this expanded
performance epsilon photography. In general, a single scene is recorded by making
multiple images that vary one or more of the camera parameters by some small
amount (i.e., epsilon). This is similar to the concept of epsilon geometry [350],
which computes an exact solution for any perturbed version of the input within a
small epsilon neighborhood. The goal of epsilon photography is to make a robust

18Obviously, in the limit, an infinitesimally small aperture and zero exposure interval would
gather no photons at all!
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estimation of an image from samples in a epsilon neighborhood of its film-like
photographic parameters.

For example, normalized pixel intensity (intensity value divided by exposure
time) may be difficult to estimate because of saturation or underexposure. While
the exposure time can vary from a few femtoseconds to a year,19 in practice we can
take a series of photographs by making minor changes around the exposure time
within an epsilon interval, a technique widely known as exposure bracketing. From
these few measurements, we can robustly estimate the normalized pixel intensity
in the presence of serious sensor response non-linearities and clamping. Similarly,
increasing an image field of view by creating a panorama involves changing the
camera’s pose, and altering two of its six position-setting coordinates [position (x,
y, z) and orientation (roll, pitch, yaw)] within a modest neighborhood of values. In
another example, successive images (or even neighboring pixels) may have different
settings for parameters such as exposure, focus, aperture, view, illumination, or
timing of the instant of capture. Each epsilon setting allows partial information
about the scene to be recorded, and the final image is reconstructed by combining
all the useful parts of these multiple observations.

Epsilon photography is thus the concatenation of many such boxes in parameter
space, where multiple film-style photographs are computationally merged to make a
more accurate photographic description. While the merged photograph is superior,
each of the individual photographs is still useful and independently comprehensi-
ble. The merged photograph contains the best features from each photograph in the
group. Thus epsilon photography corresponds to low-level vision; the process esti-
mates and merges pixels and pixel features from multiple observations and selects
those with the best signal-to-noise ratio.

Here are descriptions of how epsilon photography can improve the six parameters
settings we described earlier in the section on film-like photography.

Field of view. A wide field-of-view panorama is achieved by stitching and mo-
saicing images taken by rotating a camera around a common center of projection
or by translating a camera across a planar scene.

Exposure and dynamic range. A high dynamic range (HDR) image can be
formed by accurately merging photographs taken at a selected series of exposure
values.20

Depth of field. A photograph that is entirely in focus, foreground to background,
is constructed from a series of images taken by successively changing the plane of
focus [39].

Spatial resolution. Higher resolution is achieved by tiling multiple cameras and
assembling a spatially varying mosaic from individual images [425], or by jittering
the position of a single camera [225].

Temporal resolution. High-speed imaging is achieved by staggering the exposure
time of multiple low-frame-rate cameras. The exposure durations of individual
cameras can be overlapping [367] or non-overlapping [425].

Wavelength resolution. Conventional digital cameras sample only three basic

19Welsley long exposure photos
20Mann and Picard 1993, “Compositing Multiple Pictures of the Same Scene,” by Steve Mann,

in IS&T 46th Annual Conference, Cambridge, Massachusetts, May 9–14, 1993; Debevec and Malik
1997; Kang et al. 2003.
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RGB color primaries. Multispectral imaging (using multiple color frequencies in the
visible spectrum) or hyperspectral imaging (using wavelengths beyond the visible
spectrum) can expand wavelength resolution by successively changing color filters
in front of the camera during exposure, or by using tunable wavelength filters or
diffraction gratings [279].21

Photographing multiple images while varying camera parameters can be done
in several ways. Images can be taken with a single camera over time. Or images
can be captured simultaneously by using the technique of assorted pixels, where
each pixel is attuned to a different value for a given parameter [286]. Just as some
early digital cameras captured a sequence of scan lines, including those that moved
a single linear detector array across the image plane, we can imagine detectors
that intentionally randomize each pixel’s exposure time to form a tradeoff between
motion blur and resolution. This technique was previously explored for interactive
computer graphics rendering [90].22 Simultaneous capture of multiple samples can
also be achieved by using multiple cameras, each camera having different values
for a given parameter. Two designs are currently being employed for multi-camera
solutions: a camera array [425] and single-axis multiple parameter (co-axial) cam-
eras [281].

The techniques of epsilon photography have evolved significantly, and the field
remains an active area of research with rich potential. Some camera manufacturers
have already implemented aspects of epsilon photography in their consumer prod-
ucts. Burst-mode features with optional change of parameters between successive
photographs (e.g., Casio Exilim EX-F1 [THIS CAMERA IS 4 YEARS OLD NOW.
WE NEED A BETTER EXAMPLE!]) are examples of how epsilon photography
will make a significant impact. We believe that panoramas, mosaics, extended depth
of field, superresolution and HDR capture methods are only the beginning of what
can be achieved with epsilon photography (see Figure 1.12).23 Many of the tra-
ditional photographic parameters and tradeoffs are enticing targets for clever new
computational exploits. Table 1 shows some of these promising new directions. (A
temporary jpeg version of Table 1 is shown here as Figure 1.11)

1.3.3 Coded Photography

By combining the best features of multiple conventional photographs we can ex-
tend the capabilities of any existing camera, and produce what could be called the
best possible super camera. But we wish to go far beyond this idea. Instead of
high-quality pixels, our goal is to capture and convey the mid-level cues, includ-
ing the shapes, boundaries, materials and organization in a scene. In a traditional
camera, the light incident at a pixel is integrated along angular, temporal and wave-
length dimensions during the exposure interval to record a single intensity value.
Distinctly different scenes may result in identical projections (images) and hence
identical pixel values. Thus we are challenged to estimate scene properties that are
not directly observable. These properties are critical for post-capture manipula-

21www.blackwell-synergy.com/doi/abs/10.1111/j.1467-8659.2008.01169.x
22www.cs.virginia.edu/∼luebke/publications/pdf/afr.egsr.pdf and

www.cs.virginia.edu/∼luebke/
23scalarmotion.wordpress.com/2009/03/15/propeller-image-aliasing/



22 1. Introduction

Figure 1.11: This temporary figure is a jpeg version of Table 1.
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Figure 1.12: Photographs help us understand our world and how our world looks
and works, usually in ways our eyes can never see. (a) The multiple flash pulses in
stop-motion strobe photography, such as the classic work done by Harold Edger-
ton, is a form of epsilon photography with expanded illumination. (b) Surprising
slit-shutter images of propellor motion taken by a simple cell phone camera, show
us features of the world that are beyond our visual experience. [THESE PHOTOS
WOULD WORK BETTER EARLIER IN THE CHAPTER, AS EXAMPLES OF
HOW PHOTOGRAPHY CAN EXPAND OUR VISUAL UNDERSTANDING OF
THE WORLD. NEITHER OF THESE PHOTOS DEMONSTRATE EPSILON
PHOTOGRAPHY AS YOU DESCRIBE IT. DO YOU HAVE OTHER EXAM-
PLES USING CURRENT DIGITAL METHODS?]
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Figure 1.13: (a) What is a photograph? Does it always have to be an image of
a scene from a single point of view? (b) A virtual camera can capture images of
an object from multiple points of view, such as a ring of camera positions, and
construct a single “photograph” that contains only a small number of pixels from
each individual camera position. A coded image such as this can then be decoded
to reproduce a representation of the original scene.

tion and synthesis. Coded photography reversibly encodes information about the
scene in a single photograph (or a small number of photographs) so that the cor-
responding decoding allows powerful decomposition of the image into light fields,
motion-resolved images, global/direct illumination components or distinctions be-
tween geometric versus material discontinuities.

Here’s a simple example. Instead of increasing the field of view just by panning
a camera, can we also create a wrap-around view of an object? Panning a camera
allows us to concatenate and expand the box in the camera parameter space in
the dimension of field of view. But a wrap-around view spans multiple disjoint
pieces along this dimension. We can virtualize the notion of the camera itself if
we consider it as a device for collecting bundles of rays leaving a viewed object in
many directions, not just toward a single lens, and virtualize it further if we gather
each ray with its own wavelength spectrum.

Coded photography is an out-of-the-box photographic method in which individ-
ual (ray) samples or data sets may not be comprehensible as images without further
decoding, re-binning or reconstruction. For example, as shown in Figure 1.13, a
wrap-around view might be constructed from multiple images taken from a ring or
sphere of camera positions around the object, using only a few pixels from each
input image for the final result.24

Can we find a better, less wasteful way to gather information beyond pixel
intensities? We can start with a stereo pair of cameras that encode the depth of
a scene, or a camera array that captures a light field in a scene for novel view
synthesis. While estimating depth continues to be a challenging problem, we can
estimate boundaries and regions more robustly. By using multiple flashes and
analyzing the slivers of shadows created at depth discontinuities, we can distinguish
between geometric versus reflectance boundaries [329].

24research.famsi.org/kerrmaya.html. Rollout photograph c©Justin Kerr. Suggested by Steve
Seitz.



1.3. Sampling the Dimensions of Imaging 25

Capturing higher-dimensional signals on two-dimensional sensors requires some
jugglery in optics and sensing. A new strategy involves careful manipulation and
coding of the point spread function. In a coded exposure technique, the shutter
of a camera can be rapidly fluttered open and closed in a carefully chosen binary
sequence as it captures a single photograph. The fluttered shutter encodes the
motion that conventionally appears blurred, and this reversible encoding then al-
lows us to compute a moving but unblurred image [331]. Similarly, coded aperture
techniques, inspired by work in astronomical imaging, preserve the high spatial fre-
quencies of light that passes through the lens so that out-of-focus blurred images
can be digitally refocused [413] or resolved in depth [231].

An important aspect for post-capture manipulation is the ability to decompose
the scene into meaningful components. These decomposition problems are at the
heart of many new coding techniques. By coding illumination, it is possible to
decompose radiance in a scene into direct and global components [292]. We can also
segment foreground from background by using various matting techniques [84, 383].
Other examples include confocal synthetic aperture imaging [239] that let us see
through murky water, and techniques to recover glare [ED: do you mean ”veil glare”
or ”recover imagery from glare”?] by capturing selected rays through a calibrated
grid [389] or multiple lens sub-apertures [332]. Coding the sensor for differential
measurement, such as with a gradient camera [406], provides higher dynamic range.

In the emerging field of coded photography, we continue to look for other surpris-
ing capabilities that occur when we combine computation with new combinations
of sensing and scene appearance.

1.3.4 Essence Photography

The next phase of computational photography will go beyond radiometric quanti-
ties. It will challenge the notion that a synthesized photo should appear to come
from a device that mimics the information-gathering and comprehension of the hu-
man eye and visual system. Instead of recovering physical parameters, the goal
will be to capture the visual essence of a scene and scrutinize its perceptually criti-
cal components. This ‘essence’ photography may loosely resemble depiction of the
world after high-level vision processing. (Figure 1.14)

Essence photography does not limit a camera to photon sensing and light mea-
surements alone, nor does it rely on a single isolated recording device. A camera
may measure geographical location coordinates, identify scene contents, and rec-
ognize gestures by communicating with other probes, actuators, light sources, or
nearby wireless services. With sophisticated algorithms we will exploit priors based
on natural image statistics [133] and online community photo collections to explore
scenes in 3D [376] or to enhance our own photographs with information gathered
from those collections [178]. We will challenge physical notions of time and space by
capturing and synthesizing multilinear perspective [435], unwrapped mosaics [334]
and video texture panoramas [36].

Non-photorealistic synthesis will become a new artistic tool, for example to
exaggerate motion via a motion microscope [250] or to highlight subtle features via
illumination [131]. Beautification of photographs by directly manipulating scene
elements will become an option by using data-driven enhancement of visual features
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Figure 1.14: Essence photography recognizes that inference and perception are
important, as are the intent of the photographer and the purpose of the photograph.
Instead of a straightforward recording of light, perhaps what we really care about
is a form that captures a meaningful subset of the visual and emotional experience.

such as facial attractiveness [242]. Fusion and synthesis of non-visual data not
normally associated with imagery will be critical. Can we render the calories or
aroma of food? Can we synthesize the wind on a roller coaster ride? Can we
highlight irony? Essence photography, with a fresh field of discovery in front of
it, will spawn new and unexpected forms of visual and artistic expression and
communication. We are moving toward a much more capable box of parameters,
in ways we can’t yet fully recognize, with quite a bit of innovation yet to come!

1.4 Where Is Photography Going?

The first decade of this century has been an exciting period of dramatic change
for digital photography. Ten years ago only a few expensive digital cameras could
approach the quality of film, and software processing was limited. New consumer
digital cameras were fun to play with, but they were not much more than diversions.
Film was still king. Photographers knew how to work with film and they had a
well-defined workflow to process and print images. Few people thought film would
ever disappear.

Today everything has changed. Digital photography is now the dominant imag-
ing technology throughout the world, and digital cameras are ubiquitous. People
adapted to the new paradigm, and quickly became comfortable with new cameras
and necessary computer skills. We’ve seen astounding developments in cameras
and sensors, and the computational promise is enormous, as we’ve just begun to
describe.

But we have many questions. What will the future of photography look like?
How will the technology of photography continue to develop? What will a camera
look like in ten years? In twenty years? In fifty years? What will photojournalism
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look like? Will we all be photojournalists in a networked online world? How will
powerful new movie-making capabilities change the nature of photography? Will
photography as we know it disappear into a soup of unlimited media possibilities?
How will online photo collections transform visual social computing? How will a
billion portable networked cameras change the social culture?

All these questions will be answered as researchers explore new imaging pos-
sibilities. Computational photography, in which photographs of the future will
be computed rather than recorded, has already started to change the workflow of
imaging and give us new and expanded opportunities for seeing. It will continue
to transform the new world of digital photography just as dramatically as digital
photography transformed the traditional world of film.
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Chapter 2

Camera Fundamentals

Photographers who learned how to make images in the traditional world of film
already have a good qualitative grasp of the capabilities and limitations of film-like
digital photography. These well-known features have been understood and accepted
as tradeoffs for decades. Here is a list of some of them.

• A longer exposure time, additional scene lighting (such as flash), or greater
sensitivity makes brighter pictures. But a longer exposure time can increase
blur, additional lighting can disrupt scene appearance, and greater sensitivity
results in increased noise.

• Larger lens apertures gather more light, but reduce the depth of focus in the
image.

• Wide-angle (i.e., wide field-of-view) lenses shrink scene features and exag-
gerate foreshortening (depth-dependent size). Narrow-angle (i.e., telephoto)
lenses enlarge scene features and reduce foreshortening.

• Wide-angle lenses gather more light than narrow-angle lenses of the same
aperture.

• Wide-angle lenses offer very short minimum focus distances and have very
large depth of focus. Narrow-angle lenses require larger minimum focus dis-
tances and have shallower depth of focus.1

After more than a century of use and understanding, these and other so-called
limitations may seem to be inescapable and fundamental laws of photography, but
they’re not. Each of these limitations is a direct consequence of laws of physics,
image formation, and light transport, as applied to well-grounded assumptions of
film-like photography. We will challenge and transcend each of these conditions in
subsequent chapters.

1A tiny bit of dust on the front surface of extra-wide fisheye lenses at small aperture settings
can easily cast fiber-shaped shadows on the image sensor.

29
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To prepare, we first embark on a brief quantitative review of these limitations
and tradeoffs. We review light measurement, lenses, apertures, and image forma-
tion, and we reveal the reasons behind these underlying principles so that we can
address them with new computational photography techniques.

2.1 What is Light? Waves and Particles

Let’s start with a bit of history. In the 4th and 5th centuries BCE, the ancient
Greeks speculated extensively about the nature of light. Empedocles, Euclid, and
Plato thought that light is projected from the eye. Lucretius believed that the sun
sent out particles of light, while Pythagoras argued that objects emitted particles
of light. Aristotle even proposed a theory of wave propagation of light. Some of
these ideas had elements of truth, but they were not particularly useful. They did
not advance knowledge because they were not based on a consistent theoretical
framework, and they were not tested in experiments. Ultimately, these early ideas
provided only a set of possibilities.

Some observations and insights in the ancient world carried over into the scien-
tific study of light. For example, Euclid in the 4th and 3th centuries BCE noted
that light appears to travel in a straight line, and Hero in the 1st century BCE
concluded from the study of reflections that light follows the shortest path between
two points. These early concepts were useful, but not fruitful. Modern thinking
on the nature of light and optics didn’t originate until the 17th century, when two
ideas dominated theory and experiment: (1) light is a propagating wave and (2)
light consists of streams of particles, or corpuscles.

Sir Isaac Newton (1642–1727), shown in Figure 2.1, was perhaps the most in-
fluential scientist of that period. He carried out exquisite optical experiments to
determine the nature of color, and developed a valid foundational theory of color.
He concluded that light rays consist of particles rather than waves because light
travels in straight lines along ray-like paths. Anyone who has played with a laser
pointer might easily come to the same conclusion, but today we know that this
perception is incomplete. It does not include the deflection and decomposition that
occurs when light interacts with sharp edges of opaque objects, narrow slits, or
collections of narrow slits in gratings.

In 1663 James Gregory noticed that sunlight passing through a feather is diffracted
into spots of different colors. He wrote, “I would gladly hear Mr. Newton’s thoughts
of it.” Later, in 1665, Francesco Grimaldi published a book on the effects caused
when beams of light passed through small apertures. These effects indicated light
had wave-like properties. Apparently, Newton did not consider the possibility that
light might be a wave. He continued to see light as a particle that traveled in
straight lines, even though light when closely observed behaved as if it had a very
small wavelength.

The particle theory of light was, in fact, continually undermined by observa-
tions of diffraction. In 1678 Christiaan Huygens presented a wave theory of light
that explained such phenomena, although with certain unproven assumptions. Ac-
cording to wave theory, diffraction intensity patterns consisting of bright and dark
lines result from interference effects, or the addition of the amplitudes of waves.



2.1. What is Light? Waves and Particles 31

Figure 2.1: Sir Isaac Newton (1642–1727) dispersed light with a prism and devel-
oped a theory of color.

In constructive interference the positive and negative peaks add together to give
intensity maxima; in destructive interference the positive and negative peaks cancel
to produce dark lines, or intensity minima, as illustrated in Figure 2.2.

Several contemporany scientists confirmed the validity of the wave theory. Most
notably, Thomas Young in 1802 demonstrated the interference pattern produced
by diffraction by passing a light beam at a selected wavelength through two closely
spaced slits in an opaque sheet, causing a fine pattern of bright and dark lines to
form on a screen placed behind the slits. Joseph Fraunhofer and Augustine Fresnel
also investigated diffraction effects by passing light through small holes of different
shapes. They presented rigorous theories for calculating diffraction patterns, thus
advancing the wave hypothesis.

By the early 19th century the wave properties of light were well understood.
Scientists knew clearly how light rays behave and how perceived colors result from
the mixing of light beams. The diffraction of light from the surface of a compact
disc, with 625 tracks per millimeter, provides a beautiful illustration of this wave
effect, as shown in Figure 2.3.

There still was, however, an open question. “What is light?” An experiment
to measure the speed of light provided a solid line of evidence in the search for
an answer. To casual observers the speed of light appeared to be infinite, but
well-planned experiments showed that assumption was not accurate. In 1676 Olaf
Romer used observations of eclipses of the moons of Jupiter to determine an early
approximate value of the speed of light. In 1860 newer measurements of the speed
of light in air had been made by studying light pulses (Armand Fizeau) and rotating
mirrors (J.L. Foucault).
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Figure 2.2: (a) Constructive and (b) destructive interference of waves. (Source:
Charles Johnson book)

Figure 2.3: Diffraction of light from the surface of a compact disc. The pitch of the
data tracks is 1.6µm, and each angle of reflection selects a specific spectral color.
(Source: Charles Johnson book)
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Figure 2.4: James Clerk Maxwell (1831–1879) identified light as electromagnetic
radiation. (Higher resolution source image and permissions needed for this figure.)

James Clerk Maxwell’s monumental achievements in the 1860s provided a strik-
ing conclusion to this part of the search. Maxwell developed a set of partial differ-
ential equations to describe the interrelationship of electric and magnetic fields. He
concluded that oscillating electric fields are always accompanied by oscillating mag-
netic fields, and together they propagate through space as electromagnetic waves.
In 1862 he computed the velocity of electromagnetic waves and discovered that they
have the same velocity as light.

This revelation prompted Maxwell to write in an 1864 paper, “...we have rea-
son to believe that light itself (including radiant heat and other radiations) is an
electromagnetic disturbance in the form of waves propagated through the electro-
magnetic field according to electromagnetic laws.” The simple question “What is
light?” now had an answer—light is electromagnetic radiation.

But the story of light does not end with Maxwell’s equations. In 1905 Albert
Einstein showed that light is composed of quanta, or particles of energy, and every
experiment since that time has confirmed his conclusion. He discovered that light
quanta are necessary to explain the interaction of light with electrons in metals.
For this amazing conceptual breakthrough Einstein was awarded the Nobel Prize
in 1921.

Einstein showed that Newton was right about the particle nature of light, but
he was right for the wrong reasons. We always detect light quanta (now called
photons), but the wave theory permits us to compute the probability of finding
a photon at a certain location. Each photon carries an amount of energy that
depends on the frequency of the light, and the number of photons arriving each
second determines the intensity of the light. A few photons are required to activate
a nerve in the eye, and the creation of a latent image in photographic film requires
the absorption of photons by atoms in silver halide grains. Today we have many
instruments that can detect single photons.

So we have a beautiful and subtle story. Light is made of particles and light is
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Figure 2.5: Albert Einstein (1879–1955) discovered that light is quantized. (Higher
resolution source image and permissions needed for this figure.)

also a wave. Maxwell’s equations are sufficient when there are many photons, and
quantum theory is necessary when there are only a few photons. No wonder the
ancient thinkers had a hard time getting the story straight!

2.2 Measuring Light with Rays

The behavior and measurement of light is both obvious and elusive at the same
time, especially if we use rays to describe light, as we will do for most of this book.
Intuitively, a ray is a line-like path for light. It is the two-way tracing through
space that we imagine a single photon might leave behind as it flashes through a
scene, reflecting, bending, or scattering at the surface boundaries between different
materials. Figure 2.6 illustrates this concept, showing how rays travel from an
illuminating source to different surfaces and onto the image plane of a camera.

Rays provide us with a simple way to describe digital photography. We can
imagine that each pixel in a digital image copies the color of a single ray through a
single point or pinhole called the center of projection (COP) somewhere inside the
lens, as shown in Figure 2.6 [ADD THE COP TO THE FIGURE]. But rays are also
powerful decomposition tools. They let us explore complex optical systems locally,
just one path at a time, describing each coating and lens surface by how sets of rays
are affected, and decomposing each set of rays into simple individual ray-bending
events. Selective occlusion and bending in sets of rays allows us to illustrate the
causes of soft shadows and caustics, explore the effects of multi-element lenses,
and classify whole families of image formations beyond the familiar approach of a
single-point perspective.

These ray paths are also exactly reversible. The light attenuation along the
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Figure 2.6: Each ray specifies a reversible line-like path that a photon might take as
it travels through a scene, moving from an illuminating source to different surfaces
and into the camera. (Figure by Ann McNamara, 2000)

path of a single ray from source to destination is exactly the same if we reverse the
path, no matter how complicated that path might be. Ray-traced renderings rou-
tinely exploit this reversibility property (known as Helmholtz reciprocity) to create
beautiful computer graphics imagery. The reciprocity of rays has helped computer
vision researchers such as Zickler, Belhumeur, Kriegman and others neatly untan-
gle shape and complex reflectance properties in novel forms of stereo photography
[442, 443].

Quantitatively, however, one single isolated ray is problematic. It cannot exist
in isolation and it does not carry any measurable amount of light. A light ray is
not just a very narrow beam; it is infinitesimally narrow and it does not spread
out with distance. Its angular extent is zero. A light ray doesn’t emerge from (or
arrive at) a small area. It comes from a single point with zero area. Thus a ray is
doubly infinitesimal, which makes it impossible to measure individually, and which
makes its units maddeningly obtuse. As a result, we need to define rays clearly and
carefully.

First, let’s briefly review some fundamental theories of how light interacts with
matter. A century ago, physicists firmly established the astonishing duality of light
as both propagating electromagnetic waves and as streams of particles or photons.
This duality is also known as wave-particle complementarity . Both explanations
are necessary to describe how light interacts with matter.

2.2.1 Light as Waves

In physics, all electromagnetic radiation qualifies as light, and all wavelengths are
governed by Maxwell’s equations, from radio signals with kilometer-long wave-
lengths to cosmic rays and gamma rays with wavelengths shorter than the diame-
ter of a single atom. All these electromagnetic waves consist of coupled localized



36 2. Camera Fundamentals

changes in electric and magnetic fields, and these changes propagate rapidly through
space and time. If entirely unobstructed, all electromagnetic waves in a perfect vac-
uum propagate outward in all directions from their sources at the constant rate of
c = 299, 792, 458 meters/second, thus linking its temporal frequency in Hertz (Hz,
or cycles/second) to its wavelength λ by:

f = c/λ (2.1)

Light that is visible to humans falls within a narrow span of wavelengths be-
tween about 380 to 770 nm (1 nanometer = 10−9 meters), with our eye’s greatest
sensitivity around 555 nm or about 540 THz (1 terahertz = 1012 Hz). Rescaling
can help make these tiny distances a bit less abstract; exactly 2000 cycles of 500
nm waves, which look cyan/green, stretch across one millimeter, and we need about
50,000 cycles to span one inch.

At all visible wavelengths (and in many broad swaths of nonvisible wavelengths),
the propagation of light through air closely matches propogation in a perfect vac-
uum, especially if the air is calm, clear, dry, unobstructed, and uniform in tem-
perature. If we measure nearby wavelengths (λ), a margin of about 100λ around
the path of propagation is usually sufficient. For example, as we drive a car under-
neath a railway or highway overpass bridge, we can see the roadway at all times,
but music from the car’s AM radio receiver may fade or fall silent briefly as we pass
through the roadway opening into the steel-and-concrete structure of the overpass.
Why? At roughly 20× 20 meters, the roadway opening through the bridge is vast
when measured in visible wavelengths—about 40 million λ in each direction (2000
per mm × 1000 (mm/m) × 40 meters)—and thus does not obstruct the light that
passes through it. Broadcast AM radio signals, which are another form of light,
flickers to match the pressure variations of the sound signals it carries, but the light
has wavelengths much longer (about 1MHz or 300 meters) than visible light. The
bridge’s aperture is simply too small (approximately 0.07 λ) to admit much of that
light, and only a faint evanescent residue propagates far enough into the opening
to reach our radio receiver, reducing its output to nothing as we drive under the
bridge. 2

Electromagnetic waves, which are usually illustrated as pure, clean, and per-
fectly complementary orthogonal sine waves (Figure 2.7), are rarely so picture per-

2THIS FOOTNOTE ON THE EM SPECTRUM COULD BE REFORMATTED AS A SIDE-
BAR WITH FIGURE. The measurable electromagnetic spectrum is astonishingly vast, covering
at least 20 factors of ten, or 66 octaves (for details, see [1]). Visible light covers less than one octave
of that range. The electromagnetic spectrum begins with with magma disturbances, (2–8Hz) and
ELF radio waves (40–80Hz) for submarine communication (sent from 28-mile-long antennas [21])
that can resonate by circling the entire earth. Wavelengths shrink from kilometers to meters as
frequencies rise through broadcast radio and TV bands, up through centimeter lengths for mi-
crowaves with uses from home cooking to radar. As wavelengths shrink further to sub-millimeter
lengths, diffraction by man-made structures and multipath radio behaviors mix with more familiar
optical properties at larger scales. Continuing up the spectrum, even smaller millimeter-wave (or
terahertz frequency) signals are now under active investigation for use in security screening and
back-scatter imaging. As frequencies climb, only the tiniest structures diffract, from millimeters
for infrared and visible wavelengths to molecular structures for soft and hard ultraviolet wave-
lengths. Then begins the vast span reaching toward soft X rays, hard X rays, and gamma rays,
where wavelengths are less than 10 picometers (10−15 m), which is smaller than a single atom,
with frequencies above 10+19 Hz.
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Figure 2.7: A linearly polarized, single-wavelength propagating electromag-
netic wave, frozen at an instant in time. These sinusoids depict how elec-
tric and magnetic field strength and direction vary along a single ray-like
propagation path through space, and how the orientation of these electric
and magnetic field variations defines polarization. (Source: www.warren-
wilson.edu/physics/physics2/Formal2000/sstephens/elecmag.gif. NOTE: an
equally good source for a similar figure is jdsmith390.glogster.com/batescience-
energy-and-waves.

fect or uniform, especially as they rattle and bounce their way through complex
environments. Almost any electrical or magnetic disturbance will cause ragged and
time-varying electromagnetic emanations, including flipping a light switch, chewing
Wint-o-green flavored LifeSavers [this example needs an explanation!], firing
a car’s spark plugs, or moving a magnet, including a magnet spun in an electrical
generator, tossed at a refrigerator door, or dropped on the floor.

Just as sounds can be decomposed into a weighted sum of pure sinusoidal tones,
Fourier analysis permits us to decompose electromagnetic disturbances into a sum
of individual sinusoidal waves such as those shown in Figure 2.7, each with its own
distinct amplitude, frequency and phase. These decompositions let us describe the
effects of materials on light in more detail than is possible by using rays alone.
They form the essence of the methods used in Fourier optics to describe diffraction
effects (see the classic text by Goodman [161]).

2.2.2 Light as Particles

Ray-based methods work well when they describe light propagation for large struc-
tures such as mirrors, lenses, apertures, or masks whose smallest features are larger
than about 100λ. More complicated (and less intuitive) techniques of Fourier op-
tics can provide accurate predictions of the interactions of light with much smaller
structures, including holography, coherent laser light, interference effects produced
by lens coatings and diffraction gratings, and structures whose size is similar to the
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wavelength of the light itself. Unlike ray-based models of lenses that suggest any
lens could achieve unlimited resolution, Fourier-optics models of lenses accurately
predict resolution limits caused by diffraction through lenses, coatings and aper-
tures. These models also explain why larger lenses can achieve sharper images than
smaller lenses, and why smaller apertures reduce resolution as they approach zero
area.

Because the basic principles of computational photography are still being devel-
oped, current publications (including this book) use ray-based models to keep explo-
rations mathematically straightforward. These models are occasionally augmented
with simpler diffraction measures such as the Airy disk described in Section 2.3.6.
We expect methods of Fourier optics to eventually supersede the ray-based mod-
els [305].

Photon and ray models of light propagation appear at first much simpler than
electromagnetic waves. When entirely unobstructed, photons behave as individually
distinguishable particles with curious properties. These fastest-possible particles
have no rest mass, yet they transport energy as momentum in quantized packets,
enabling sunlight to push solar sails on spacecraft [377] and lasers to nudge super-
cooled atoms together into clumps to form Bose-Einstein condensates [320, 321]. In
the unobstructed vacuum of empty space or in uniform materials, photons follow
straight-line paths and seem to pass through each other without any interaction.
In confined spaces (e.g., pinhole apertures comparable to photon wavelengths) they
diffract and behave as waves distributed across space, waves that interfere and
combine to interact in ways impossible to describe by distinct particles. This wave
phenomena was illustrated by the double-slit experiments of Huygens, G. I. Taylor,
and others in 1909 [2].

In all cases the energy E transported by a photon is directly proportional to its
wavelength in free space

E = hc/λ (2.2)

where λ is the wavelength in meters, c is the speed of light in meters/sec, and h is
Planck’s constant (6.626× 10−34 joules/sec, where 1 joule = 1 kilogram × meter2/
sec2, or the work done by one watt of power applied for one second).

A single visible light photon transports a spectacularly tiny amount of energy:
(6.626× 34×3.0×108/500× 10−9) or about 0.4×10−18 joules. To get a better idea
of just how tiny this is, and of the vast numbers of photons that stream outward from
any visible object, consider the typical one-milliwatt output of an ‘eye-safe’ laser
pointer used for video-projector presentations. If we spread that beam with a lens
to cover an entire square meter on a diffuse-white sheet of poster board, the result
is so dim that blinking the light on and off is barely discernible even in a dark room.
But Planck’s constant, one of the smallest of all known physical constants, reveals
that this barely discernible illumination of 1 mW/m2 consists of no less than (0.001
watt/0.4× 10−18 joules) = 2.5× 1015 photons/sec. Every millisecond, each square
millimeter of that board (mm = inch/25.4) receives 2.5× 1015/(103× 103× 103) =
2.5 million photons!

As we will see, this seemingly enormous number of photons is not enough to
avoid photon-related noise and quantization errors in modern digital cameras, even
though these errors are not apparent in human vision, even in the most extreme
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low-light conditions. As Hecht, Schlaer and Pirenne discovered in their pioneering
experiments in 1942 [182], once our eyes are fully adapted to darkness we can
detect a point-like flash of 510 nm (green) light from as few as nine or ten photons
absorbed by rod cells. Our retina can almost count photons! Until recently, only
photomultiplier tubes could match this performance, but as we will discuss in the
chapter on sensors, even these quantum effects of light may be exploitable in future
cameras by building on recent progress in solid-state single-photon detectors, such
as the biologically inspired work by Memis and Mohseni et al. [269]

2.2.3 Rays of Visible Light

As light propagates into a camera or outward from a surface, its measurement is not
as simple as we might suppose. Ray-based measurements of the strength of light
that we can use for photographic purposes combine several factors: the amount of
power transferred, the radiated directions, the area of real or imaginary surfaces,
the wavelength of the light, and our ability to see those wavelengths. Let’s examine
each factor in turn.

Radiant Flux Φ Measures Power

The easiest-to-describe light source measurement is its radiant flux Φ, the total
power carried away from a source by electromagnetic radiation. It is measured
in SI units of watts, where 1 watt = 1 joule/sec. Radiant flux Φ includes all the
light energy at all wavelengths leaving the source in all possible directions from all
points on the surface of the light source. Don’t assume radiant flux Φ describes
the number of photons per second, because the energy carried by each photon is
proportional to its frequency, as shown in Equation 2.2.

Definition 2.1. Radiant flux Φ measures the power transferred by light propaga-
tion, expressed in SI units of watts (1 watt = 1 joule/sec).

As most light sources are already small compared to the objects they illuminate,
let’s replace each one with a simple idealized point-source light, an infinitesimally
small volume (a point) that radiates W watts of light power outward uniformly in
all directions. To measure that light by using rays, we create an imaginary sphere
of radius r meters centered at the source, and then apply a few intitive assertions,
as shown in Figure 2.8:

• First, each ray from the point-source light leaves radially outward from the
sphere’s center, and arrives exactly perpendicular to the sphere’s surface at
the one point where that ray passes through the imaginary sphere.

• Second, the sphere’s set of all surface points is interchangeable with the set
of all rays: every possible ray defines a unique point on the sphere, and every
point on the sphere defines a unique direction for a ray from the source.

• Third, the sphere’s surface (or any fraction of it) contains an uncountable 2D
infinity of points, and therefore the point-source light emits an uncountable
2D infinity of rays.
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Figure 2.8: caption and source needed for this figure

• Fourth, as the set of all rays carries W watts, each individual ray carries only
an infinitesimally small portion dW , which passes through the sphere at a
point with infinitesimal area dA. Any measurable amount of power trans-
ferred from the point-source light must form a beam made by an uncountable
2D infinity of rays that pierce a measurable fraction of the sphere’s surface
area to form a measurable 2D angular extent.

Irradiance E Measures Power versus Area

Countable or not, the rays carry power from the point source to the sphere’s surface,
spreading the W watts of radiant flux from the point source uniformly across the
sphere’s entire surface area of 4πr2 meters2. At the sphere’s surface, the arriving
light creates a spatial power density of W/4πr2 watts/meter2, a measurement of
incident light called the irradiance E (note: we use the mnemonic “Ear-radiance”
for E). Light leaving the imaginary sphere is measured in the same way, but is
called the radiant exitance M of the surface.

Definition 2.2. Irradiance E measures the spatial power density at a point dΦ/dA,
defined as the radiant flux per unit surface area, and given in SI units as watts/meter2.

Our sphere-and-point-source example is a special case that provides perfectly
constant irradiance of E = W/4πr2 watts/meter2 at every point on the sphere
surface. Clearly that irradiance will change by the square of distance: tripling r
to 3r reduces E to E/(3)2 = E/9. Thus point-source irradiance on a flat surface
varies with position. As irradiance includes all the incident light on a surface from
all sources and all directions, we also must add the contributions from any other
light sources to find irradiance E for a surface.
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Figure 2.9: A cone-shaped beam of one steradian from a point-source light at the
sphere’s center illuminates an area of exactly r2 meter2 on a sphere of radius r
meters. (Source: Jack Tumblin.)

Radiant Intensity I Measures Power versus Direction

Radiant intensity measures the angular power density of a light source, defined
as radiant flux per unit solid angle. Let’s suppose the point-source light at the
center of our sphere is directional. Like a lighthouse, it emits all its radiant flux
in a narrow beam of light that evenly illuminates a small circular spot on the
enclosing imaginary sphere, a spot that covers (for example) just 1/100th of the
sphere’s surface area. Of course that spot is two dimensional, but simple angular
measurements do not adequately describe its angular size. A searchlight beam that
appears rectangular, measuring 20◦ horizontally and 30◦ vertically, doesn’t cover
exactly 600◦ squared because such 2D angle-products are nonuniform, especially for
large beam angles. For example, what is the shape of a beam 240◦ wide and 260◦

high? The calculation of 240◦×260◦ measures many directions more than once! In
a similar example, what is the height and width of the nearly omnidirectional beam
from an idealized light bulb that radiates light outward uniformly in all directions
from a point at its center, but whose round, metal-capped base forms a cone-like
shadow of about ±18◦?

Measuring the area of a shadow or a beam on an enclosing sphere eliminates
the inconsistencies and irregularities of these naive products of angles. Instead of
measuring beam size by multiplying two 1D angles (e.g., 20◦ by 30◦), we measure
the area the beam illuminates on the surface of a sphere of radius r = 1, as shown in
Figure 2.9. The sphere’s curved surface complicates this calculation, but the result
provides a simple and uniform measurement of any fraction of sphere coverage.
This area measurement doesn’t really depend on the size of the sphere or the units
we use to measure its unit radius.
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Figure 2.9 illustrates how a 1-meter2 area on a 1-meter-radius sphere covers the
same 2D span of angles as a 1-inch2 area on a 1-inch-radius sphere. That coverage
defines one steradian (or squared radian) of solid angle in derived-SI units. Lights
that illuminate the entire sphere form the broadest possible beam, an omnidirec-
tional beam that spans 4π steradians of solid angle (about 12.566 steradians). For
the nominal one-steradian cone-shaped beam shown in Figure 2.9, the angle from
the beam centerline to its edge is arccos(1 − 1/2π) = 32.77◦. Steradian measure-
ments now allow us to describe the directional strength of the searchlight beam by
its radiant intensity I.

Definition 2.3. Radiant intensity I measures the angular power density in one
direction, (dΦ/dω), defined as the radiant flux per unit solid angle, and specified
in SI units of watts/steradian.

In our example of a narrow-beam searchlight, the W watts of radiant flux spread
evenly over 1/100th of the whole sphere’s 4π steradians yields a radiant intensity
I = W/(4π/100) = 25W/π = 7.96 watts/steradian. Like irradiance E, the radiant
intensity I measures power density and not power itself. Each and every ray in our
idealized uniform searchlight beam has radiant intensity I = 7.96 watts/steradian,
and zero watts/steradian for each and every other direction. (A more realistic
beam would probably have radiant intensity that falls smoothly from the center
ray to its outer edges, typically described by Gaussian beam profile functions.)
The omnidirectional beam we use to define irradiance spreads the same W watts
of radiant flux over the entire enclosing sphere, a full 4π steradians, trading beam
intensity for angular coverage to supply I = W/4π = 0.0796 watts/steradian in all
directions. As radiant intensity I measures only the directional strength of a light
source, it does not vary with distance, unlike the irradiance E.

Illumination Angle Causes Falloff in Cosine Theta

The same point-source light and imaginary sphere we use to define irradiance E
hides another measurable form of angular dependence. In addition to the sphere’s
constant distance r from the point source, the surface is exactly perpendicular to
every point-source ray that pierces it. At every point on the sphere, the point-source
light that illuminates it is always directly overhead.

In the same way that the sun heats the desert floor more vigorously at noon
than at dusk, any irradiance on a flat surface will shink as the illuminator’s angle
of incidence grows. To illustrate, suppose we aim an idealized laser pointer at a flat
surface, as shown in Figure 2.10. This fanciful idealized laser pointer emits exactly 1
mW of radiant flux as a bundle of perfectly uniform, perfectly parallel rays through
a square aperture measuring exactly 5 mm on each side. For maximum irradiance
E, we aim the laser perpendicular to a flat surface, where it will illuminate an area
of 5 mm × 5 mm with spatial power density of E = 10−3 watts / (5×10−3 meter)2

= 40 watts/meter2 at every illuminated surface point.
However, if we increase the laser pointer’s angle of incidence from directly over-

head (θi = 0) to mid-afternoon or dusk-like angles, the same radiant flux illuminates
a much larger surface area, namely 25 mm2/cos θi. As that area grows, the irra-
diance decreases at each point within it. Irradiance E falls to 20 watts/meter2 for
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Figure 2.10: As incident illumination angle θi increases, irradiance E on surface
area dA decreases by a factor of 1/ cos θi. (Source: Jack Tumblin.)

a late-afternoon angle of θi = 60◦, to 3.5 watts/meter2 for the dusk-like angle of
θi = 85◦, and to zero at the sunset angle of θi = 90◦ where all rays of light travel
parallel to the surface and none irradiate it.

Equivalently, when the laser pointer is directly overhead, each small patch on
the illuminated surface with area dA receives all the light that emerges from a dA-
sized portion of the laser pointer’s aperture. If we change the angle of incidence θi,
the same illuminated surface area dA receives light from only a cos θi × dA-sized
portion of the laser pointer’s aperture.

Equipped with this cos θi angular falloff and radiant intensity I, we now have
all we need to find the irradiance E at any point P from any combination of
point-source lights. Any point source that emits W watts of light uniformly in
all directions will have a radiant intensity of I = W/4π watts/steradian in all
directions, including the direction of point P . If the irradiance reaches point P
with incidence angle θi, then that source adds an irradiance of E = W cos θi/4πr

2

watts/meter2. This is written more simply as:

E = I cos θi/r
2. (2.3)

Thus the radiant flux W is nice to know, but it often isn’t necessary. All we
really need is the radiant intensity I in the direction of point P along with its
incidence angle θi, and from that we can find how much irradiance E the surface
will get from a point source.

Radiance L: How We Measure Extended Sources

Almost all everyday light sources—from sunlight to campfires to long fluorescent
tubes—are extended sources, with measurable shape and area, rather than point
light sources. How do we measure the irradiance E of these extended light sources?
If we wish, we could simplify the measurement of the emitted light by enclosing the
extended source within an imaginary sphere, and then measure the light that passes
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through this sphere, rather than work with the complicated shape of the extended
source. Unfortunately, with an extended source, the illumination of such a sphere is
not simple. Instead of receiving a single ray of light, each surface point is pierced by
its own varied bundle of rays that arrive from everywhere on the extended source’s
surface. Each bundle may have a different shape, and each ray in each bundle may
have a different strength.

We need a new measurement to describe light from extended sources. The imag-
inary sphere’s irradiance E at every point is not enough, because spatial power
density E does not distinguish between differing amounts of light arriving from
different directions. The radiant intensity I from the entire sphere is not enough,
because angular power density I may be different at different points on the sphere.
To describe those jointly directional and positional light strengths we must subdi-
vide the spatial power density E by the angular power density I, or equivalently,
we must subdivide the angular spatial power density by its positional power den-
sity. This power-density-density measurement is called radiance L, and it gives us
a quantitative measurement of the strength of a single ray of light.

For example, suppose we wish to measure the output of a glowing blue-green
night light, a simple 5-cm-diameter disk of electroluminescent materials. This uni-
form extended light source emits about 0.030 watts of radiant flux from its 0.001
meter2 area [FOR A 5-CM-DIAMETER DISK THIS AREA SHOULD BE 0.00196
meter2, OR ABOUT 0.002], and at every point on its surface the spatial power
density (irradiance E, or equivalently the radiant exitance M) is 0.030/10−3 = 30
watts/meter2 [WITH THE CORRECT AREA THIS VALUE OF M WOULD BE
ABOUT 15]. Its flat surface looks equally bright when viewed from any direction
above the surface, a span of 2π steradians. When photographed with a digital
camera, all pixel values in the night-light portion of the image are unchanged for
any viewing direction and any viewing distance. [WE NEED TO FIX THE TINY
MATH ERROR HERE TO BE CONSISTENT WITH NIGHT LIGHT COMPU-
TATIONS IN OTHER PARAGRAPHS]

Just how strong are the night-light’s emissions from just one point and in
just one direction? The radiant flux Φ must be infinitesimal (0.030 watts evenly
distributed among a 2D uncountable infinity of surface points), but irradiance
(E = 0.030 watts/0.001 meter2) gives us a finite measure of the light strength
sent out in all directions. If we could somehow measure the infinitesimal flux dΦ
leaving just one point, wouldn’t we find a uniform angular power density (radi-
ant flux I, where I = dΦ/dω) in all 2π directions? [DO YOU MEAN RADIANT
INTENSITY I RATHER THAN RADIANT FLUX I ?]

Surprisingly, the answer is no! Suppose we view the night-light’s emitting sur-
face through a powerful telescope from 100 kilometers away. The telescope gathers
light from every point on the surface as the light arrives from almost exactly the
same direction. In the telescope’s viewfinder we see an image of the night light,
and if we ask an assistant to tilt the night light away from perpendicular to the
telescope’s viewing direction the night light will appear narrower due to foreshort-
ening. Tilting the night light by θi = 60◦ does not obscure any of the night-light’s
surface points, but instead packs those points together into an area that decreases
by cos θi = 0.5. If each of the night-light’s surface points contributes the same
amount of light to the telescope image (constant angular density I), then the tilted
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Figure 2.11: A glowing blue-green night light that appears uniformly bright in
every direction does not have uniform angular power density I. Radiant intensity I
leaving each point on the light’s surface has a cos θi falloff. The night-light’s visually
uniform quantity is not radiant intensity I, but radiance L, which is uniform in all
directions. Radiance L describes the strength of the light ray, and radiant intensity
I does not.

night light packs the same energy into half the area in the viewfinder image, and it
must appear twice as bright, but obviously it does not.

Thus the radiant intensity I for each point on this extended source cannot be
constant. It must fall by cos θi, as shown in Figure 2.11, to prevent brightening in
the telescope image. Clearly the angular power density I alone does not describe
what we see or what a camera captures from this surface! For that we need radiance
L, which is constant in all directions from all points on the night-light’s surface.

Radiance L Measures One Ray at One Surface

Radiance defines precisely the “ray strength” we think we already know intuitively,
as it describes how much light leaves one point and arrives at another point along a
straight line, and does not fade with distance. More importantly, radiance describes
the physical quantity we try to measure with pixel values in an ideal camera with
perfect lenses in perfect focus. It also describes the physical quantity supplied to
us by a perfect pixel in a perfect digital display, whether printed on paper, viewed
on a back-lit flat panel, or projected on a wall.

As a single ray carries only infinitesimal power,3 radiance must instead measure

3We can illustrate every ray’s infinitesimal power (radiant flux dΦ) from either its destination
or its source. Destination: Even the tiniest illuminated area A contains an uncountable 2D
infinity of surface points. Distributing any finite Φ watts of radiant flux among those points
ensures each point receives only an infinitesimal amount of power. As each point acts as the
end of at least one ray from the light source, each ray can carry only an infinitesimal amount of
power. Source: Even the narrowest beam from the tiniest light source (e.g., a laser) will spread
apart with distance to span a finite solid angle. For example, most laser pointer beams are roughly
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the ray’s power density to provide nonzero values, and must measure that density
in two different ways at once, combining angular power density (radiant intensity
I in watts/steradian) with spatial power density (irradiance E in watts/meter2).

The spatial power density component causes trouble, because we cannot measure
it for a ray without defining a surface where we can measure area. Any surface will
do, either real or imaginary, but we must know the ray’s incidence angle θi at
the surface. The simplest choice, a surface perpendicular to the ray, with θi = 0,
gives the simplest definition of radiance: the angular power density of the ray
(I = dΦ/dω), in watts/steradian, divided by the infinitesimal surface area dA
where the ray delivers that radiant flux, or L = d2Φ/(dω · dA⊥).

If we tilt the surface dA by ωi, the same ray will cause a smaller spatial power
density (dΦ/dA) at the surface, as shown in Figure 2.10, even though the ray
strength itself did not change. To compensate for this unwanted change, the defini-
tion of radiance contains a division by cos θi to remove the surface-angle dependence.
This inverse cosine term increases as we tilt the surface. It is the inverse of the co-
sine falloff used to compute irradiance E on the surface, so that radiance measures
the ray’s total power-carrying capacity, and not any tilt-induced spreading across
the surface where the ray arrives. With this inverse term, the radiance from every
point on our night light is constant in all directions, while radiant intensity I is
not, as shown in Figure 2.11.

Definition 2.4. Radiance L measures ray strength. It measures combined an-
gular and spatial power density delivered along a ray to a perpendicular surface
(d2Φ/dA⊥ · dω), with SI units of watts/(meter2 steradian). Radiance for a ray
that meets a non-perpendicular surface does not change with surface incidence an-
gle θi because we cancel its reduction to spatial power density (dΦ/dA) by using
(d2Φ/dA⊥ · dω · cos θi).

For example, giant advertising searchlights that sweep the night sky create nar-
row rays of extremely high radiance. Larger units such as the USA Searchlights Inc.
Astro 7000 [3] can emit 7000 watts of radiant flux Φ perpendicularly through an
18-inch diameter aperture (0.164 meter2), and achieve a searing average irradiance
E (or radiant exitance M) of about (7000/0.164 = 42, 600 watts/meter2) through
the aperture’s front surface. Its narrow cone-shaped beam (about 1◦ half-angle)
spans only about 10−3 steradians, for an average radiant intensity I of 7000/10−3 or
7 million watts/steradian. The radiance for a single ray at the center of a uniform
beam is L = 7000 watts/(0.164 meter2 · 10−3 steradians), or about 42.6 million
watts/(meter2 steradian).

If we choose an imaginary measurement surface tilted across the beam at an
angle θi = 60◦, we would spread the same 7000-watt beam across an area twice
as large as the searchlight’s 0.164 meter2 aperture, but the cos θi term in our def-
inition of radiance would cancel this doubling, resulting in the same 42.6 million
watts/(meter2 steradian) radiance value for the same ray, even though we measured
the beam with a different imaginary surface.

cone-shaped with about 1 milliradian (0.06◦) half-angles. Even the smallest solid angle ω contains
an uncountable 2D infinity of ray directions. Evenly distributing any finite Φ watts among these
directions ensures that each ray carries only an infinitesimal amount of power.
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Finding radiance for our earlier example of a night light is only slightly more
complicated, but requires us to use this useful SI-units identity for any uniform
diffuse emitter or reflector [102]:

Φ = MA = LAπ (2.4)

The first portion is trivial. If we multiply irradiance E or radiant exitance M
(watts/meter2, or irradiance in reverse) by the area A we will, of course, find ra-
diant flux Φ (watts). The identity’s second portion solves the problem. Diffuse
sources such as a night light supply constant radiance L at all points in all direc-
tions. Integrate L over the hemisphere of directions ω to show that its value is
just M/π. For the night light, Φ/(Aπ) = 0.030 watts/(0.001 meter2 steradian)π =
9.55 watts/meter2 steradian. [THE PREVIOUS TINY MATH ERROR IN NIGHT
LIGHT AREA AFFECTS THIS CALCULATION]

For a simpler example, let’s find the sun’s radiance L along a ray of light from
the surface of the earth to the sun at noon. Near the earth’s equator with the
sun directly overhead on a clear day, the sun supplies approximately E = 1000
watts/meter2 irradiance. The sun forms a disk in the sky, and each point on the
ground receives its sunlight in a narrow cone-shaped beam with a half-angle of about
0.00465 radians (or 0.266◦). Assume the sun disk is uniform, and the beam covers

π(0.0465)
2

= 6.78×10−5 steradians [SHOULD THE AREA HERE BE 6.78 ×10−3

STERADIANS?]. Noonday sun radiance is then about L = 103 watts/(6.78×10−5

meter2 steradian) = 14.75 million watts/(meter2 steradian).

Now suppose clouds arrive and merge to form a solid uniform gray overcast that
hides the sun and looks the same in all directions, causing a noon-time irradiance
of E = 200 watts/meter2. What is the radiance for a vertical ray, one exactly
perpendicular to the ground? For a ray with an incidence angle of 60◦? For a ray
parallel to the ground?

The answer is trickier than you might expect, because these problems encourage
us to confuse the sky’s uniform radiance L with radiant intensity I for points on
the ground. As the sky looks equally bright in all directions, the assumption of
constant angular power density leads us to answers that are simple, straightforward,
and wrong. As a sanity check, remember eyes and cameras estimate radiance L
well and angular power density poorly or not at all. Just as every point on the
night light emits finite uniform radiance L in all directions, but an infinitesimal
cosine-weighted radiant intensity I, the radiant intensity I received by each point
on the ground is also infinitesimal and nonuniform. Both exhibit the cos θi falloff
illustrated in Figure 2.11.

Why? At first, you might choose to believe that a single point, one that is
isolated and entirely unobstructed, would receive uniform (yet infinitesimal) power
from all sky directions. Much like a point-source light run in reverse (absorbing
rather than emitting light), this single point receives infinitesimal flux, but with
seemingly uniform angular power density I. You might then surmise that points
within a surface must suffer from partial occlusion by their neighbors to reduce the
angular power density to the characteristic cos θi, but rigorous proof would force
you to grapple with several ugly infinitesimal conundrums at once. Just how much
occlusion does one point impose on another? How can we combine occlusions of
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multiple points? How can we extend that to an uncountable 2D infinity of points?

Ray measurements with radiance give us a better explanation of the cosine
falloff of the radiant intensity I at a surface. Instead of examining dubious cases
of infinitesimal occlusion at a point, the uniformity of the overcast sky should
convince you that each and every ray it sends to the ground around us has the
same strength, i.e., the same radiance value L. If that ray arrives perpendicular
to a surface, it delivers its infinitesimal amount of radiant flux dΦ concentrated
within the infinitesimal area dA. If it arrives at incidence angle θi that same
flux gets spread across a larger area dA/ cos θi. Now consider each point within
that larger (but still infinitesimal) area. The flux falls by cos θi for this ray. By
induction, this same cosine falloff applies to all other rays that supply the point
with flux from the sky. Despite constant radiance L for each ray, the received flux
of the point varies with angle for those rays, imposing a cosine falloff on the radiant
intensity I = dΦsky cos θi/dω. Thus constant radiance from all directions causes
cosine-weighted radiant intensity at each point on a surface.

But how can we find the constant radiance value L? We could integrate those
radiant flux contributions across the entire hemisphere of the sky to determine how
much radiance L is necessary to cause the given irradiance of E = 200 watts/meter2,
but we already have an easier way. As an overcast sky illuminates the ground
with constant radiance L over the entire hemisphere of directions, it is a reversed
version of our night light—a diffuse receiver instead of a diffuse emitter. The
handy diffuse identity in Equation 2.4 side steps the messy integration: EA = 200
watts/meter2 ·A = LAπ, and thus L = 200/π = 63.7 watts/(meter2 steradian) for
sky rays from overhead, from θi = 60◦, and from any other direction, even parallel
to the ground.

Extended light sources can dramatically reduce radiance without reducing the
power they supply to illuminated surfaces (irradiance E). Without the dazzling
sun disk, overcast skies reduce spatial power density (irradiance) on the ground
by a modest factor of only 5, but the radiance from the sun’s direction shrinks
from 14.75 million watt/(meter2 steradian) to 63.7—a factor of about 231, 000 : 1!
This change isn’t a simple result of the increased angular extent of our light source
either. The light source grows from a tiny 6.78×10−5 steradian [AGAIN, SHOULD
THIS BE 6.78 ×10−3 STERADIAN?] sun disk to the entire sky covering 4π [THIS
NUMBER SHOULD BE 2π FOR A HEMISPHERE] steradian, a growth of about
185,000:1. [SHOULD THIS COMPUTATION BE 2π / 6.78 ×10−3, OR ABOUT
1000:1 ?] Both the strength and the direction of arriving light affects the power
received at a surface, and their aggregate requires us to integrate radiance values.4

4Angular power density measurements I also reveal why the idealized 1 mW laser pointer of
Figure 2.10 cannot exist. If each one of its perfectly parallel rays arrives perpendicular to a surface
to create a uniform 5 mm × 5 mm illuminated spot, what is the radiant intensity I arriving at each
illuminated point? What is the radiance for each ray? Answer: Every surface point receives just
one ray, a beam of light that covers zero steradians. Thus the angular power density (I = dΦ/dω)
and the radiance (L = dΦ/(dA dω)) of an idealized laser pointer both reach infinity! Real laser
beams actually spread slightly with distance. Suppose we replace each parallel ray arriving at the
5 mm × 5 mm illuminated surface spot with an extremely narrow, uniform, cone-shaped beam of
rays, with a half-angle of 0.8 milliradians (0.8×10−3 radians, a typical beam divergence). What is
the radiant intensity I and the radiance L for the rays at the surface? Answer: each cone-shaped
beam covers π· (0.8 ×10−3)2 steradians, so L = 0.5 watts/ (25 × 10−3 meter2 · π · 0.64 × 10−6
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Figure 2.12: Visible light wavelengths straddle the peak of the mid-day sun’s spec-
tral distribution, but typical household incandescent bulbs emit most of their power
at invisible infrared wavelengths around 1000 nm. Less than 2% of a bulb’s light
output is visible to humans. [THIS 2% FACT SHOULD BE EXPLAINED AND
JUSTIFIED IN THE TEXT AS WELL AS GIVEN IN THE CAPTION. ALSO,
THE VERTICAL AXIS LABEL IN THE FIGURE NEEDS TO BE CHANGED
TO SPECTRAL RADIANT FLUX.]

2.2.4 Light Bulb Ratings and Photometry

Now that we have these four descriptors of light sources and destinations (radiant
flux Φ, radiant intensity I, irradiance E and radiance L), you might think that at
last we are fully equipped to describe the behavior of an ordinary light bulb. Sur-
prisingly, even simple radiant flux measurements are often difficult to find because
most lamps are labeled by their electrical power consumption or other ratings, and
not by these four descriptors.

For example, an ordinary household 60-watt incandescent light bulb expends
about 15 watts on heat conducted through its screw-socket base, and emits most
of its 45-watt radiant flux at near-infrared wavelengths. Only about 2 watts leave
the bulb at visible wavelengths. Nearly all incandescent bulbs, even halogens, emit
light from their electrically heated tungsten filaments with a spectrum close to a
black-body radiator between 2600 and 2800◦. Wein’s displacement law [4] shows
that emissions peak at invisible infrared wavelengths around 1000 nm. A plot of
relative power versus wavelength for an incandescent bulb shows a steeply tilted
spectrum that expends most of its power in the longer (reddish) wavelengths (as
shown in Figure 2.12). It is well known that the sensitivity of the human eye to
light varies with wavelength, as shown in Figure 2.13, so we cannot see light in these
longer wavelengths. If this same 2-watt [DO YOU MEAN 45-WATT?] radiant flux

steradian) = 0.5 watts/ (25π ·0.64×10−9 meter2 steradian) = 9.94×106 watts/(meter2 steradian)
radiance—a giant power density from a 1 mW light source! )
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Figure 2.13: The sensitivity of the human eye to light varies with wavelength. The
1924 CIE photopic luminous efficiency curve (included in the 1931 CIE color stan-
dards) approximates how the light-sensing abilities of the eye vary with wavelength.
Metering devices multiply spectral radiant flux by this curve (often achieved by an
optical filter atop a silicon detector) and integrate the result to find the photometric
intensity.
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was uniformly distributed across all visible wavelengths, the light would appear
much brighter.

Spectral Distributions

Spectral curves such as Figure 2.12 intuitively make good sense, but their mea-
surement units can be confusing or misleading. Formally, the vertical axis shows
spectral radiant flux, given by dΦ/dλ, versus wavelength λ on the horizontal axis.
Ian Ashdown described spectral radiant flux units concisely as “radiant flux per
unit wavelength interval, at wavelength λ” [45]. Figure 2.12 does indeed show how
the 45-watt radiant flux of a light bulb is spread smoothly across a wide band of
wavelengths, with large amounts of power at wavelengths around 1000 nm and less
power at shorter or longer wavelengths. We can find the radiant flux emitted within
any chosen range of wavelengths by finding the area under the curve in that range.
This integration confirms that the spectral radiant flux is the derivative of radiant
flux with respect to wavelength, just as E and I are derivatives of radiant flux with
respect to area and solid angle, respectively.

Do not confuse the height of this spectral curve at a single wavelength λ with
the amount of power transmitted at that wavelength; that power is infinitesimal.
Similarly, the SI units for spectral radiant flux are dΦ/dλ = d(watts)/d(meter), and
not watts/meter. Like many other spectral plots, Figure 2.12 shows no absolute
units, but only the correctly shaped curve. We can find the scale factor that
converts this plot to units of absolute spectral radiant flux (e.g., differential units
of watts/nm) for our light bulb by dividing 45 watts of radiant flux by the area
under the curve.

Wavelength and Photometry

Radiometric measurements such as radiant flux Φ, radiant intensity I, and irradi-
ance E are still not enough to measure the apparent visual strength of light; we
must resort to photometric methods instead. If we measure the radiant flux only
within the narrow 380–780 nm span of wavelengths that includes all visible light, we
will still not get a reliable estimate of visual strength, because human sensitivity to
light varies strongly with wavelength, as Figure 2.13 shows for wavelengths from 400
to 700 nm. This figure clearly describes how human perception of light at different
wavelengths varies dramatically across the visible spectrum. Accordingly, to com-
pensate, photometric measurements must apply a wavelength-dependent weighting
function to radiant flux in order to create a more accurate estimate of the perceived
visual impact of light measurements.

The curve shown in Figure 2.13 was originally determined in 1924, and was later
incorporated into the 1931 color-measurement standard developed by the Commis-
sion Internationale d’Eclairage (CIE), or International Committee on Illumination.
As the simplest and most widely used weighting function, the CIE standard sta-
tistically summarizes a set of experiments on more than a hundred (very patient)
test subjects, who were asked to match the perceived brightness of light at different
wavelengths. The resulting daylight-vision luminous efficiency curve, or luminosity
curve, assigns a peak weight of 1.0 at the chosen standard for the most sensitive
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light frequency, which is 540× 1012 Hz (540 THz), or a wavelength of 555.555 nm.
At other wavelengths, the curve assigns lesser weights that fall toward zero in a
Gaussian-like curve fitted to assessments by subjects in the tests. Later measure-
ments have produced more refined results, since human spectral sensitivity varies
considerably between night vision (scotopic) and daylight vision (photopic) [5]. The
original 1931 CIE luminosity curve is still widely used to define photometric units
and calibrate metering devices.

Photometric quantities differ dramatically from radiometric quantities, even
when limited to visible light wavelengths. For example, a 1 mW green laser pointer
(532 nm) will create a spot on a white sheet of paper that appears much brighter
than that of an otherwise identical 1 mW red laser pointer (660 nm), despite their
identical radiant flux. The weights on the CIE luminous efficiency curve [6] indicate
that we must boost the output power (radiant flux) of the red laser pointer by a
factor of 0.883/0.061 = 14.48 to match the visual strength of the green laser pointer.

SI units provide a simple and orderly scheme for both radiometric and photo-
metric measurements, but these names and units evolved through a lengthy and
contentious historical muddle. [207] Since radiant flux Φ, in units of watts, is no
longer appropriate when we apply the photometric efficiency function of Figure 2.13,
we can measure these wavelength-weighted power units in lumens instead of mod-
ified existing power units (e.g.,“visible watts”). The SI standard-making body
retained lumen and candela units in part to honor diverse historic candle- and
gas-lantern-based light measurement systems5

A single-wavelength laser emits exactly one lumen of visible light if it provides
1/683 watts (1.464 mW) of radiant flux at the wavelength of perfect (100%) pho-
topic luminous efficiency, or 540 × 1012 Hertz (λ = 555.55 nm). To measure light
power in lumens, we weight the radiant flux in watts by the luminous efficiency
curve (Figure 2.13) and then multiply by 683. From our examples above, the 1
mW red laser pointer (660 nm) emits (0.001 watt radiant flux · 0.061 weight · 683
= 0.0417 lumens), while the green laser pointer (532 nm) emits 0.603 lumens. A
typical 60-watt incandescent bulb is advertised to emit 900 lumens, which indicates
that its radiant flux after weighting is only (900/683)= 1.32 “visible watts.”

The SI system of units neatly generalizes our four radiometric measurements
into four similarly named photometric measurements. In each measurement, it
replaces radiant flux (watts) with luminous flux (lumens), but otherwise keeps the
measurements unchanged, and assigns similar names as shown in Table 2.1.

Some published light-source specifications use either the term “efficiency” or the
term “efficacy” to summarize the spectral weighting necessary for conversion from
radiometric to photopic [PHOTOMETRIC ?] units. Values for luminous efficiency
are unitless, between 0% and 100%. They specify the fraction of radiant flux
included in the photometric flux, or luminous flux, measurement. Only a perfect
540 THz (555.555 nm) green source emits light with 100% luminous efficiency, and
we get reduced values of 88.3% and 6.1% for our 532 nm green and 660 nm red
laser pointers, respectively.albedo of

The most efficient light sources appear strongly colored. Light that appears

5SI units use candelas (1 cd = 1 lumen/steradian), instead of lumens, as one of its seven base
units, but we explain lumens first for simplicity.
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Table 2.1: Table of radiometry and photometry measurements (temporary version).

white is less efficient because it must include emissions at other less-efficient wave-
lengths within the 380–700 nm visible spectrum. The most efficient broadband
white-light sources reach just 32% (the white-light spectrum resembles the visible
portion of sunlight in the middle of the day). Artificial sources fall below that; up
to 22% for the best LEDs, about 10% for compact fluorescent bulbs, and only 1.8%
to 2.6% for incandescent bulbs.

The luminous efficacy gives the direct ratio between radiant flux (watts) and
luminous flux (lumens). Only a perfect 540.0 THz laser light source can reach
the absolute maximum luminous efficacy of 683 lumens/watt. Our green and red
laser pointers at 603 and 41.7 lumens/watt show the strong dependence of luminous
efficacy on wavelength. A white light whose spectrum exactly matches the luminous
efficiency curve has an efficacy of about 240 lumens/watt, while a high-output 60-
watt incandescent bulb achieves just 900/60 = 15 lumens/watt.

For an accessible but more thorough summary of light measurement, see Ian
Ashdown’s excellent online tutorial [7], adapted from his early book on radiosity
rendering [44] and his useful resource webpage [8]. You can also find a particularly
good summary of light measurement units, written by Steven Palmer, which is
posted online [9].

2.2.5 Surface Transmission and Reflectance: Albedo, BRDF
and Beyond

Now that we can measure the amounts of light leaving from a surface and arriving at
a surface, their ratios can define surface reflectance and transmission. The simplest
reflectance ratio, known as albedo ρ, has at least three definitions. Astronomers
use the ratio of reflected to incident radiant flux (1 ≥ Φr/Φi ≥ 0) as Bond Albedo
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to describe planetary bodies. Some examples are brilliant foggy Venus at 0.75,
midrange earth at 0.38, and our dusty-charcoal-like moon at 0.123. The more
refined term geometric albedo describes Φr/Φi for light traveling perpendicular to
the measured surface, or by incidence angles specified as phase. The diffuse albedo
in physics and computer graphics sometimes describes scattering phenomena found
in fog and smoke, but more commonly measures only the diffuse reflectance of a
surface, defined as its uniform non-directional component.

A purely diffuse surface reflects uniform radiance L in all directions for any illu-
mination, and the radiance is directly proportional to total irradiance E. Modifying
the diffuse rule of Equation 2.4 to include albedo ρ reveals how albedo connects
irradiance values E arriving at a surface to the radiance values L sent outward.

Φr = EiAρ = πLrAρ (2.5)

As you might expect, the unitless albedo ρ is a fraction between 0 (perfect
absorber) and 1 (lossless diffuse reflector). Converting incoming irradiance Ei to
outgoing radiance Lr includes the value π to account for distribution over the entire
hemisphere of outgoing directions.

Lr = ρEi/π (2.6)

in watts/(meter2 steradian). For visible light measurements, we simply replace
these radiometric units with photometric units. Albedo ρ remains unitless, radiance
Lr in watts/(meter2 steradian) becomes luminance Lrv in lumens/(meter2 stera-
dian) = candela/meter2, and irradiance Ei in watts/meter2 becomes illuminance
Eiv in lumens/meter2.

Albedo and its dependence on wavelength λ is a good first approximation for
the appearance of many surfaces, but it lacks precision; few materials are truly
diffuse and opaque. Commonplace materials such as paper, matte-finish plastics,
non-glossy paint, soil, cloth and skin are approximately diffuse reflectors, but their
reflectance changes for different illumination directions and different viewing direc-
tions. To measure reflectance for a single point x on a surface made of any material,
we must specify what fraction of every possible incoming ray will get reflected in
the direction of each and every possible outgoing ray. We cannot restrict ourselves
to the hemisphere of ray directions above the surface, because some fraction of the
incoming ray may emerge below the surface in a new direction, as in a lens (this is
Snell’s law, shown in Figure 2.16). For completeness, this new directional function
must specify the coupling fraction of outgoing versus incoming light for the entire
sphere of possible directions.

Definition 2.5. The Bidirectional Reflectance Distribution Function (BRDF),
measured at a single point x on a surface, is the ratio of outgoing radiance Li to
incoming irradiance Ei, where irradiance is received from just one direction θi, φi.
The BRDF is outgoing radiance Lr from surface point x toward a given direction
θr, φr, divided by incoming irradiance Ei at surface point x from a given direction
θi, φi,

BRDF = fr(x, λ, θi, φi, θr, φr) = dLr/dEi (2.7)
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Photometric BRDF measurements are identical except for weighting by the
luminosity function and replacement of watts by lumens. It is the ratio of outgoing
luminance Liv (cd/m2) to incoming illuminance Eiv received from just one direction
θi, φi.

BRDF, which describes what portion of the incident light from one direction
will leave in another given direction, holds a few surprises among its important
properties. First, incoming and outgoing directions (θi, φi) and (θr, φr) cover all
directions both above and below the surface, thus enabling BRDF to describe re-
flection and transmission combined. Second, the BRDF function is symmetric for
any and all materials. Its value is identical if we swap the incoming and outgoing
directions. This long-confirmed property is known as Helmholtz Reciprocity.

Third, the BRDF fr is a ratio of differential quantities that complicate intu-
ition. It is not simply the ratio of incoming and outgoing radiance for two chosen
rays, a ratio that would always fall between 0 and 1. It’s the ratio of the outgoing
ray’s radiance Lr to the irradiance E from only one direction. If that surface is
diffuse with albedo ρ, it spreads an incoming irradiance E from one direction (or
any direction!) uniformly over a 2D infinity of exitance directions, producing an
infinitesimal amount of radiant flux Φ along each ray. But radiance Lr describes
the density of that flux, for a (one-sided, opaque surface) radiance of L = ρEπ.
Thus a perfect diffuse reflector has a BRDF value of 1/π and not the value of
1.0 you might initially expect. Similarly, the BRDF of a perfect mirror irradiated
from just one direction (e.g., a point-source light infinitely far away) is zero for
all directions except for the mirror-reflection direction, where its value is infinite!
Typical light absorption by real-world mirrors (where 80% to 99% of light is re-
flected) won’t change this infinite BRDF, but their tiny surface imperfections (and
diffraction limits) spread reflected rays into narrow beams of nonzero solid-angle,
which produces BRDFs of finite values for even the best mirrors.

Fourth, the five input dimensions of the BRDF function (wavelength λ, illumi-
nation direction (θi, φi), and outgoing direction (θr, φr)) make empirical measure-
ments vast and tedious to collect. Fortunately some high-quality BRDF databases
are available online. To avoid the time and effort of gathering such measurements,
computer graphics renderings resort to simpler directional models such as Phong
shading (ambient, diffuse, and specular). They can also use a wealth of parameter-
ized BRDF functions; some of which mathematically model material physics, such
as He et al. [180] or LaFortune et al. [223], and others derived from or fitted to
BRDF measurements such as Matusik [263].6

Scattering and BSSRDF

Current BRDF-based models used in computer graphics can create convincing ren-
ditions of metallic, transparent, and opaque materials, but they don’t work well
for partially translucent surfaces and materials such as carved marble, milk, and
human skin. These materials fare poorly because the BRDF describes ray changes
only at the surface of the material and not within the material itself. The BRDF
model finds ray strengths leaving a point solely from the ray strengths that arrived

6For a brief survey of BRDF models, see [10].
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there, and nowhere else, as if the material were either opaque or transparent. How-
ever, nearly all non-metallic materials admit some light below the surface. For each
incident ray, some fraction of the light passes through, and chaotic scattering and
absorption spread the light throughout a local volume. At the surface, some of the
scattered and redirected light escapes from a small, glowing neighborhood around
the point x where the light ray entered. You can see this scattering and absorption
yourself with a laser pointer. In a dark room, aim the pointer at your hand; you
will see a bright spot surrounded by a broad, dimmer reddish region caused by light
scattering underneath the skin surface.

The aggregate of these ray paths largely determines the visual appearance of
any material, but this appearance is quite difficult to describe without statistical
models. Early models such as Kubelka-Munk’s 1931 mathematical model (see [190]
for details) provide convenient and predictive analysis tools for paints, lacquers and
thin coatings. A new class of dipole models introduced by Jensen et al. in 2001 [202]
describes subsurface scattering for semi-translucent materials such as marble and
human skin. The representation of this scattering is called the Bidirectional Sub-
Surface Reflectance Distribution Function (BSSRDF). While BRDF models of skin
appear chalky and rough, BSSRDF renderings show the spatial blending charac-
teristic of the translucency of skin.7 These models and their approximations have
greatly improved the accuracy and visual appearance of computer graphics render-
ings, and have been widely adopted for human characters in motion pictures and
video games. The contributions of Jensen and his team to the accurate rendering of
skin were formally recognized when they were awarded a 2004 Technical Academy
Award.8

Rays, whether synthetically generated by computer graphics or arriving from a
real scene with real lighting, need lenses to bend them into bundles and form them
into a focused image. The next section presents an adapted excerpt on lenses from
Charles S. Johnson’s book Science for the Curious Photographer, which describes
the fundamentals, limitations, and tradeoffs inherent in lenses. The complete book,
with more detail and historical context, can be found online.9

2.3 Ray Bending: Lenses, Apertures and Aberra-
tions

Lenses bend rays. In the broadest sense, any ray-bending device qualifies as a lens,
including mirrors, running water, and atmospheric anomalies. We can accurately

7Scattering may also help explain the surprisingly low contrasts of light reflected only from
diffuse materials in a scene. These contrasts rarely exceed 50:1, with maximum diffuse albedo ρ
no higher than about 0.92 for clean new snow and minimum diffuse albedo no lower than about
0.02 for finest-nap black velvet. The high-dynamic range captured in HDR photographs are the
result of visible light sources, specular highlights, or lighting differences, and not albedo. These
contrast limits changed recently when loosely packed synthetic carbon nanotube forests achieved
a “super-black” albedo of 0.045 [11].

8A Technical Achievement Award (Academy Award) by the Academy of Motion Picture Arts
and Sciences was given to Henrik Wann Jensen, Stephen R. Marschner, and Pat Hanrahan for
”their pioneering research in simulating subsurface scattering of light in translucent materials.”

9www.akpeters.com/product.asp?ProdCode=5817.
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Figure 2.14: Image formation. A camera lens bends rays from a scene into con-
verging bundles that form a focused image on the camera’s sensor plane.

describe nearly all optical devices and effects solely by the different ways they bend,
split, or scatter rays. As BRDF and BSSRDF demonstrate, a good map that tells
us how incoming rays get coupled to outgoing rays can describe the optical behav-
ior of nearly anything, from lens coatings, diffraction gratings, optical fibers and
LEDs to lasers, light sensors, meta-materials and even super-lattice or quantum-dot
semiconductors. Rays describe what different materials and devices do to light, but
explaining exactly how they do it may require anything from electromagnetic wave
propagation to quantum electrodynamics.

Rays are sufficient for this book. We want to simplify and expand the defini-
tion of a lens to mean any device that bends incoming rays into useful patterns
of outgoing rays. Later chapters in this book show how to combine computing
with modified or non-traditional lenses for different or better ways to capture the
appearance of a viewed scene.

To prepare for discussions to come, this section of the chapter briefly reviews
conventional lenses that form images on a plane for film-like photography. Assem-
bled from carefully shaped transparent discs mounted inside opaque tubes, these
lenses bend rays from a scene into converging bundles that form a focused image on
the camera’s sensor plane (or focal plane) behind the lens, as shown in Figure 2.14.
Rays reveal why the task of image formation is inherently difficult; the set of all
possible lenses is uncountable and astoundingly vast. Plus we have only two meth-
ods to bend rays. We can change the refractive index of the lens or change the
shape of the lens.

Rays define a dauntingly vast set of possible lenses, a continuum of at least nine
dimensions with a unique lens behavior at every point. Each point on the 2D entry
surface of the lens accepts rays from a 2D span (solid angle) of incoming directions,
and each point on the 2D exit surface of the lens emits rays in a 2D span of outgoing
directions. Plus the input-to-output coupling for each ray may (and usually does)
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vary with wavelength. As we learned from BRDF, the input-to-output transfer
function of any lens is linear and bidirectional. Each input ray couples some fixed
fraction of its power to each output ray, and that fraction does not change if we
swap the names for the input and output rays. Like BRDF, a ‘bidirectional lens
distribution function’ would describe the coupling between irradiance E and exiting
radiance L, but it would measure coupling from each ray in the set of 4D incident
rays to each ray in the set of 4D exiting rays. With wavelength included, this
complete lens-describing function is 9-dimensional, and the set of all such functions
fills a 9-dimensional space. Each point in this space defines one lens behavior,
regardless how the lens was made.

Any change in the lens changes its describing function. It moves us to a different
point within the 9-dimensional space, whether that change is caused by adjusting
focus and zoom, a lens-surface scratch, a bent lens mount, or a water droplet
from condensation. Inside this exceedingly vast set of behaviors, the set of lenses
that form accurate, well-focused images all fall on a 3D manifold, as shown by
Levin et al. [229] Most of these ideal lens designs cannot be manufactured because
conventional lens-making techniques require many tradeoffs. What we can choose
is lens size, the radius of curvature for each surface (almost all lenses have spherical
surfaces), the materials and coatings for the lens, and the number, spacing, and
sequence of lens elements.

Instead of measuring errors in a 9-dimensional space of ray mapping functions,
traditional methods assess the image-forming abilities of a lens more directly—from
the images they form. Common assessments of lens quality determine at least five
competing image-formation errors, or aberrations, by measuring specific distances
in the scene, the lens, and the image it forms. We summarize these terms below, and
briefly explore how they guide high-quality multi-element lens designs for existing
cameras.

2.3.1 Ray Bending: Snell’s Law

All the basic rules for ray bending arise from general laws of physics. These rules
are consistent with Maxwell’s theory of electromagnetism as well as the quan-
tum theory of photons and electrons. Richard Feynman’s beautifully concise book
QED [135] [391] [170] provides a wholly intuitive introduction to these deeper topics
for interested readers.

Light rays bend at the boundaries between materials. As unobstructed light
enters transparent materials such as air, water or glass, we approximate its behavior
by claiming its propagation slows by the refractive index η, from c to c/η.10 11

10More precisely, it is the phase velocity that changes by η, not the wave’s propagation velocity.
For some materials at X-ray wavelengths η < 1.0 but still do not violate relativity’s ‘speed limit’
of c.

11According to the Theory of Relativity the speed of light is a constant in the universe, so how
can light have a reduced speed in matter such as water or glass? It turns out that the index of
refraction can be less than one and even less than zero. In Richard Feynman’s interpretation, the
speed of light always has the value c, but when traveling through matter its electric field isn’t
isolated. It disturbs all the electrons and protons in all the atoms, and each of them contributes
to the electric field of the propagating light. The field we measure is the aggregate of all these
uncountably numerous light-speed interactions. Their constructive and destructive combination
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Figure 2.15: The angle of incidence equals the angle of reflection.

This apparent slowing causes propagating electromagnetic waves to change their
local aggregate phase and direction at smooth boundaries, where some of their
energy is reflected and some of their energy is transmitted into the new material
in a new direction. In materials with smoothly varying refractive indices, light
propagation can even follow curved paths. For example, practical graded-index
materials have recently found widespread use in optical fibers and in seam-free
replacements for bifocal eyeglasses. Such changes in direction are easy to describe
by using rays. These descriptions are quite accurate for smooth surfaces, where
features and variations are much larger than the light’s wavelengths.

The refractive index of a material is a unit-free scale factor, defined as η = 1.0
for a perfect vacuum. It grows larger for denser materials that, in effect, slow down
the light. At visible light wavelengths η is about 1.00029 for air. This value varies
slightly with atmospheric temperature and pressure.12 It’s about 1.3 for water,
1.4 to 1.6 for various kinds of glass, 2.4 for diamond, and 4.0 for silicon, the raw
material of CMOS detectors. The refractive index isn’t constant either; it usually
depends strongly on wavelength, temperature, pressure and other changes in ma-
terial properties. For example, water at 25◦C has a refractive index of 1.33, which
slows the apparent speed of light in water to c/η = 2.253× 108 meter/sec. Refrac-
tive index measurements for almost any optically interesting material are readily
available online. These mathematical models or measurement tables describe how η
varies with wavelength, temperature, pressure and nearly any kind of disturbance.

matches well with the phase of waves described by seemingly ‘slower’ or ‘faster’ light given by
c/η. The approximation is a good one for optics, because only the phase of these waves affects
lens design, and not the time it takes for light to pass through the glass.

12The changes in refractive index in air and water vapor explain mirages, rainbows, and a
wide range of atmospheric optical wonders. For a fascinating in-depth exploration see Marcel
Minnaert’s classic book entitled Light and Color in the Outdoors (1974, translated, republished
in 1993).
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Figure 2.16: Snell’s Law.

The value of the refractive index depends greatly on materials and conditions,
while the rules for ray optics arise from fundamental laws of physics. Four of these
laws are listed here.

1. In a material with a uniform index of refraction η, light rays travel in a
straight line.

2. When rays reflect from a surface, the angle of incidence θi equals the angle
of reflection θr, as shown in Figure 2.15.

3. Rays bend as they pass through a smooth boundary surface between two
different materials, such as air and glass. Snell’s Law, formulated in 1621, describes
how much bending occurs at every point on every surface of a lens.13 Light rays
that arrive perpendicular to a surface enter the new material without bending; light
rays that arrive at angles away from perpendicular bend as they enter the material.
Higher-index materials weaken the angle and lower-index materials exaggerate the
angle. If this exaggeration exceeds 90◦, no light enters the new material. Instead,
total internal reflection at the surface bounces away the incident light ray like a
mirror. For lesser angles, Snell’s law links together ray direction θ1 through the
first material with index η1 to ray direction θ2 through the second material with
index η2, as illustrated in Figure 2.16:

η1 sin θ1 = η2 sin θ2 (2.8)

Rays and refraction governed by Snell’s law give us a sufficient description of
light transport to characterize ordinary lenses and traditional cameras that are

13Snell (or Snellius, born Willebrord Snel van Royen) was Professor of Mathematics at the
University of Leiden when he described the law of refraction in 1621. For some reason he never
published the law, and it didn’t become widely known until 1703 when Christiaan Huygens re-
vealed the equation in his Dioptrica.
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Figure 2.17: The image resolution of a pinhole camera decreases as the pinhole
size approaches zero because of periodic fringing artifacts caused by the diffraction
limits of light.

not diffraction limited—where resolution is not appreciably affected by the wave
nature of light.

4. Nearby obstructions can also bend light rays. These diffraction effects limit
the resolution and accuracy of any ray-based lens design. Diffraction modifies
the paths of rays that pass through openings small enough to measure in single
wavelengths (typically < 10λ). This is not really a rule, but rather a warning that
rays cannot give the whole story of light propagation. Pinhole cameras demonstrate
that light travels in a straight line, but as the pinhole size shrinks toward zero, the
image resolution of the pinhole camera falls, degraded by periodic fringing artifacts,
as shown in Figure 2.17

2.3.2 Ray Bending to Form Images

In an ideal perspective camera, as shown in Figure 2.14, a well-focused lens copies
light from points in the scene (point P in the figure) to points on the sensor (point
Q in the figure) to form an image [NOTE: POINT Q ON THE SENSOR PLANE IS
MISSING FROM THE FIGURE]. The ray from each scene point P to each image
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point Q forms a straight line through a single point within the lens. This point in
the lens is defined as the center of projection (COP). If we replace the ideal lens
with an ideal (infinitesimal) pinhole at the COP, the camera captures the same
image, but with the infinitesimal irradiance of only a single ray through the pinhole
to the sensor plane.14

Any sensible lens will collect far more light and form far sharper pictures than
any pinhole. All the rays that leave scene point P and pass through the camera’s
aperture define a cone-shaped beam or bundle of rays that spans a measurable solid
angle. The lens bends each ray in the cone-shaped beam differently, causing all the
rays to converge and to deliver all their light power to the sensor plane at image
point Q. But just how much light do we get? Recall that a scene point P emits
only infinitesimal radiant flux Φ, and point Q receives a small but finite fraction of
that flux. Image points adjacent to Q receive similar fractions from scene points
adjacent to P, each through their own bundle of rays. Through these ray bundles,
some finite fraction of the radiant exitance M from the scene at point P becomes the
irradiance E on the sensor at point Q. If the scene surface is diffuse (for example,
if we photograph a blue-green electroluminescent night light), all those ray-bundles
are uniform, and each ray in each bundle has the same radiance L. With a few
size measurements for the ray bundles on either side of the lens, we could compute
the sensor irradiance E that results from a (diffuse) surface that sends radiance L
toward the camera.

Measuring the light in ray bundles gathered by lenses reveals why photographed
objects (i.e., resolved objects—those with an image area that depends on distance,
and not those that appear as a single point, such as a star) do not get brighter or
dimmer with distance. If we double the distance from camera to object, each of
these cone-shaped ray bundles gets narrower. Their angular radius falls by half,
their solid angle (measured from scene point P) falls to 1/4 of their original value
in steradians, and thus they deliver only 1/4 of the radiant flux to sensor point P .
However, the ray bundles leaving each of scene point P’s neighbors now converge at
different locations around sensor point Q. Their distance to Q on the sensor plane
is also cut in half, both vertically and horizontally. The irradiance E around sensor
point Q increases by a factor of four, exactly cancelling the 1/4 reduction in the
radiant flux from each scene point.

Put another way, as the camera moves away from an object, the camera gathers
a narrower, less-powerful ray bundle from each point on that object. But inside
the camera, these bundles converge to form an image that gets smaller and smaller,
and these points pack together more tightly to keep the sensor irradiance constant.

14Pinhole cameras impose severely unfavorable tradeoffs. In a hobbyist’s pinhole camera [12, 13]
or a digital pinhole camera [14], the small size of the pinhole, the sensitivity of the paper, and the
brightness of the outdoor scene are all necessary to raise the irradiance of the sensor plane high
enough to form a usable image. Enlarging the pinhole even slightly to admit more light produces
a disastrous boost in blurring, especially for nearby objects. From each scene point, the enlarged
pinhole admits a larger cone-shaped bundle of rays, which blurs the image by spreading the light
across the circular area of the sensor, instead of focusing the light onto a point.
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2.3.3 Ideal Thin-Lens Parameters

Instead of integrating cones of rays, we can use easier and more conventional meth-
ods to describe simple image-forming lenses like the one shown in Figure 2.14. Plus
we can tie these methods directly to our ray-based measurements of light. As il-
lustrated in the figure, every ray gets bent only once, as it passes through the lens
plane at the center of projection. Even though the diagram ignores the thickness of
the lens and the front and back surfaces that actually perform the ray bending, for
many lenses the image-forming results are the same. This simple approximation of
the lens as a single ray-bending plane, known as the paraxial or thin lens model, is
the actual design goal and the ideal result for many complex multi-element lenses.
Three parameters describe an ideal thin lens completely: the focal length f (in mil-
limeters), the aperture diameter δ (in millimeters), and the lens speed (unitless).
Here are the definitions of focal length and aperture diameter.

Definition 2.6. The focal length f of a thin lens is the distance behind the lens
where parallel incoming rays meet, forming an image focused at infinity. The inverse
of focal length in meters (1/f) describes the focusing power of the lens in “diopters”
(1 diopter = 1/f meters).

Definition 2.7. The aperture diameter δ measures the distance across each cone-
shaped ray bundle that passes through the thin lens. It is the diameter of the
circular aperture shown in Figure 2.14.

Thin lens focusing is sensible and intuitive. To focus at infinity, cameras move
the COP of the lens to a distance f from the sensor plane. To focus on closer
objects, lenses move the COP farther away, as shown in Figure 2.18. For an object
at distance S1 in front of the lens, and for a lens at a distance S2 from the film
plane, we have the thin lens formula:

1

S1
+

1

S2
=

1

f
(2.9)

The focal length f of the lens also determines the size of the image on the
sensor plane. Therefore, larger cameras require lenses with greater focal lengths,
and a so-called normal lens for a camera has a focal length that is approximately
equal to the diagonal dimension of the image sensor. For example, popular 35-mm
film cameras captured images in frames 24 mm tall × 36 mm wide; their 43.3 mm
diagonal closely matches the normal 50 mm focal length lens supplied with new
cameras. A normal lens assures that prints viewed from a convenient distance will
match the field of view of the camera that took the picture.

The speed of a lens is a unitless ratio that describes the ability of that lens to
transmit light; it is not a velocity of any kind. This lens parameter is a measure
of the exposure time T required for the lens to collect a good image on film (hence
the reason for the term). Fast lenses, as they are called, transmit enough light to
capture a good image in a short time, while slower lenses take longer to capture
the same light.

More formally, exposure in photography is the product of sensor irradiance E
and the amount of time T that the camera shutter permits light to impinge on
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Figure 2.18: Focal length.

SIDEBAR ON LENS DESIGN

The theory of lens design was developed before the advent of photography, and a few well-
designed lenses were available well before Nicéphore Niépce’s first camera experiments in the
1820s. The Wollaston Landscape lens of 1812, probably the earliest well-designed lens, was
a successful lens for many decades and was still being mass-produced for low-cost cameras
in the middle of the 20th century. Improvements in camera lenses were slow in the decades
after 1840 because opticians typically worked by trial and error rather than by the systematic
application of optical principles.

Lens design is actually a difficult process that involves many compromises. Light rays must
be bent and directed to exactly the correct point on the image, and rays of all desirable wave-
lengths need to focus at the same point. Current high-quality lens designs correct for seven
independent aberrations, and include features to minimize reflections between the glass sur-
faces of the lens elements and the mounting barrels. Computer software now greatly enhances
efficient lens design by quickly tracing the possible paths of light rays through combinations
of mounted lenses. Acceptable results can then be scaled up or down in size. Of course, the
actual construction of high-quality lenses is still a demanding task, and the required materials
such as low dispersion glass (glass whose focusing abilities show only small variations with
wavelength λ) can be very expensive.

The University of Central Florida’s OSE 6265 course “Optical Systems Design,” by James
Harvey, offers excellent overviews and online course materials on the topic of lens design.
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the sensor plane. In SI units, we measure exposure in Joules/meter2 on the film.
The unitless lens speed describes only the rate of delivery of that light energy.
For example, if we focus the camera on a diffuse surface with radiant exitance M
(or luminous exitance Mv), the speed of the lens describes the fraction of surface
exitance M that arrives as sensor irradiance E. A faster lens on the same camera
delivers a larger irradiance fraction E/M , and requires less time to capture the
same image.

However, photographic conventions long ago settled on a different unitless ratio
to describe lens speed. This number uses the focal length f and the size of the lens
aperture δ to define speed. It has several different common names, including the
f-number, the f-stop, or N .

Definition 2.8. The speed of a lens N is defined by the unitless ratio of focal length
f divided by the aperture diameter δ, both usually given in millimeters (mm):

N = f/δ (2.10)

A lens speed of N = 8 is often denoted as an f-number of f/8 instead, or
described as an f/8 stop. It is important to note that the lens speed N grows larger
as the lens aperture becomes smaller and admits less light. In other words, faster
lenses have smaller values of N .

In the world of general commercial photography, the speed of an adjustable-
aperture lens typically represents the maximum aperture of that lens. (e.g., a lens
with aperture settings from f/2.8 to f/16 has a speed of 2.8). For example, if the
focal length f is 20 mm and the maximum aperture δ is 5 mm, then the lens speed
N is equal to (20 mm)/(5 mm) = 4.0 . We would say this is an f/4.0 lens, and the
lens barrel might be labeled (20 mm 1:4.0). Notice that the larger the maximum
aperture, the smaller the value of N for any specific lens. Dividing by aperture
diameter δ ensures that the f-number does not vary as we change lenses of different
focal lengths. By matching the f-numbers among lenses we ensure the same radiant
exitance M from a scene will cause the same irradiance E on the sensor. 15

Lens speeds expressed as f-numbers represent the traditional (and rather cryp-
tic) labeling of aperture settings found on most adjustable lenses. These aperture
settings are typically the values 2.8, 4, 5.6, 8, 11, 16, and 22. The exposure (or
sensor irradiance E) that reaches the sensor is proportional to the area of the lens

aperture (where area = π(δ/2)
2
), instead of the aperture diameter δ. Hence, the

aperture adjustment that doubles the admitted light increases the aperture diam-
eter by a factor of

√
2 = 1.414. This is the reason why the typical f-numbers listed

on lenses increase by successive factors of 1.414, but cause exposure to change by
a factor of two, with each doubling step called a stop. Fast lenses with small val-
ues of N have larger apertures, tend to be more difficult to make, and are usually
more expensive (and heavier because of the additional glass needed). The larger
apertures enable proper exposures with higher shutter speeds (shorter shutter open
times), but introduce other tradeoffs.

15In the special case of closeup photography, the speed or brightness of the lens is diminished
because the image plane is farther from the lens than one focal length. Effective speed N for these
lenses must compensate for image magnification.
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To explore lens, ray, and sensor behaviors interactively, we suggest the online
optical-bench simulator [19]. This simulator is part of a growing family of Physlets,
which are applets written in Java and designed to help teach physics.

2.3.4 Thin Lens Tradeoffs

As we described previously, three parameters are sufficient to specify thin lens per-
formance for an ideal lens: the focal length f , lens speed N and aperture diameter δ.
Different parameter choices will create different images in different cameras. Some
choices yield photographic images that seem to have a natural appearance while
other choices yield images that seem distorted. Nearby objects may appear too
large, or distant objects may look flattened. Buildings may stand tall and straight,
or their sides may tilt inwards as we aim our camera to capture their topmost floors.
Why? Each effect is a consequence of the perspective projection used to capture 3D
scenes as 2D images. These visual effects can result from pivoting the lens about its
center of projection, sliding the sensor away from its centered position over the sen-
sor plane, pivoting the sensor plane about the lens centerline, or some combination
of these moves. In addition to these desirable planar-perspective effects, unwanted
aberrations in lenses can impose non-linear distortions that map straight lines in
the scene to curved lines in the image, as discussed in later sections.

Focal-length adjustments on a camera lens determine which portion of a scene
we will capture in a single photograph, but they do not change how that 2D image
was constructed from the 3D scene. As Figure 2.19 shows, the longer 135 mm focal-
length lens captures a smaller but more detailed portion of exactly the same image
captured by the 40 mm, 20 mm, and 10 mm focal-length lenses, taken from the
same camera position. If we shrink the full-size 135 mm image enough, it exactly
matches the central portion of the 10 mm image. Note that the ratio of focal lengths
(135 mm/10 mm) doesn’t exactly match the image scaling ratio, but it is often a
reasonable approximation for scaling ratios between long focal lengths. No lens
adjustments can change image contents; only moving the camera will change the
relative sizes of viewed objects, the way one object occludes another, or the image
perspective.

A normal or natural perspective depends on the angle of view of a photograph
relative to that of the original scene. According to Kingslake’s analysis,16 the region
of sharp vision of the human eye has an angular width of about 20◦ or a half angle
of 10◦, and motion is detected over a range of about 50◦. To obtain a ‘normal’
view of a printed image, for example, a viewer should look at the print from a
distance that causes the printed image to span the same field of view captured by
the camera. In that way the angles between objects in the print match the angles
between objects in the scene from the camera’s viewpoint.17

Suppose, for example, that a 35 mm film camera with a 50 mm (approximately
2 inch) focal length lens produces a film negative (1 in × 1.5 in) that is used to

16Rudolf Kingslake, Lenses in Photography (Case-Hoyt, Corp., Rochester, N.Y., 1951). An
updated version of this classic book on lens design is Lens Design Fundamentals, 2nd edition, by
Rudolf Kingslake and R. Barry Johnson (Academic Press, 2009).

17The handy online calculator at www.canon.com/bctv/calculator/index.html finds the angular
field of view versus focal length for most cameras.
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Figure 2.19: The effect created by changing the lens focal length while maintaining
the same visual perspective. The Canon XTi digital camera used to make this
image has a APS-C 22.2 mm by 14.8 mm sensor. (Source: Charles Johnson book.)

make an 8 in × 12 in printed photograph. The enlargement factor from negative to
print is approximately 8 in/1 in = 8, so the proper viewing distance is 2 in × 8 =
16 in for ‘normal’ viewing. But for a wide-angle 17 mm (0.67 inch) focal length lens
on the same camera, the ‘normal’ viewing distance for an 8 in × 12 in print shrinks
to just 0.67 in × 8.0 = 5.36 in . Unfortunately, most 8 in × 12 in prints are viewed
from approximately the same distance regardless of the point of perspective, and
thus the apparent perspective suffers.

So what is a normal lens? By definition, a normal lens has a focal length
approximately equal to the diagonal dimension of the film or the digital sensor.
This choice insures that the camera’s angle of view forms a good approximate
match to the angle of view of the human eye. For a 35 mm film camera, the normal
lens has a focal length of about 43 mm, and a simple computation shows that the
angular (diagonal) field of view has a half-angle of 26.5◦(θ = arctan (0.5)), or a full
angle of 53◦. This is somewhat larger than the eye can view at a glance, but it is an
acceptable compromise, as most photographic images are viewed from well behind
their perspective point.

Wide angle lenses, of course, have shorter focal lengths than normal lenses. A
typical wide angle lens has a diagonal field of view of about 75◦ or a focal length of
28 mm (full frame 35 mm equivalent). Ultra wide angle lenses have fields of view
from about 90◦ to 100◦ and focal lengths of about 17 mm to 20 mm (full frame
35 mm equivalent). These lenses are often used for visually strange and distorted-
looking photographs because any suitable normal viewing distance is inconveniently
close to the image. This effect can be alleviated by making larger prints or murals.
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Figure 2.20: A set of stairs photographed with a 10 mm wide angle lens (left) and
a 190 mm telephoto lens (right). The position of the camera was close to the stairs
in the wide angle image and far from the stairs in the telephoto image. (Source:
Charles Johnson book.)

Figure 2.20 illustrates the change in perspective when the same set of stairs was
photographed at close range with a wide angle lens and from a considerable distance
with a telephoto lens.

With a digital camera and panorama-making software such as the free Hugin
Panotools project [15], anyone can stitch together images taken in many directions
from a single viewpoint to obtain a single image with an extremely large field of
view. Each image in the resulting panorama shares the same center of projection,
and users can create the appearance of a “normal” image by printing or projecting
a large picture for viewing.

Our final point about perspective involves camera tilt. It is common knowledge
that when a camera is tilted up, the image will be distorted so that vertical lines
converge and buildings appear distorted, as if they are leaning backward. This
effect is often considered undesirable, and methods are available to correct for it.
Holding the camera perfectly level removes the distortion, but the perspective can
clip the tops of tall objects and may miss points of interest. Professional view
cameras get around the tilt problem by allowing the photographer to raise the lens
while keeping the lens plane parallel to the film plane. In 35 mm film photography
or digital photography, special-purpose tilt/shift lenses are used to minimize this
type of distortion.

Tilt corrections for existing film negatives can be made in a darkroom by tilting
the paper holder under the photographic enlarger, or these negatives can be scanned
into digital files and corrected with powerful software tools. Image processing soft-
ware such as Adobe Photoshop can transform (distort) an image to correct for the
convergence of vertical lines, as well as correct for lens aberrations and distortions,
or even convert images taken with fisheye lenses to rectilinear form.

Curiously, these perspective effects are not always considered problems. Ex-
treme camera tilt, for example, is often considered pleasing. Also, sideways tilt
that makes horizontal lines converge at the horizon is not considered a defect. This
effect is so common and accepted that artists often use geometric projections to
build this kind of perspective into their images. In this and all the other cases men-
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tioned, a natural view is obtained by using one eye at the perspective point. The
use of two eyes (binocular vision) gives an unnatural appearance for small images.
We don’t notice this problem with natural scenes, and we can avoid it by making
large images. One last note about perspective; our perspective point is determined
when we select a seat in a movie theater, but that position is seldom the perspective
point of the movie photographer [378].

2.3.5 The Simple Thin Lens and What It Does

The task in this section is to show how points in the object space (in front of a
lens) are related to points in the image space (behind a lens) for ideal lenses. With
modern equipment it is relatively easy to grind and polish the surface of a circular
glass plate into a spherical shape; that is to say, having the shape of a portion of the
surface of a sphere. In a plane that contains the optical axis (axis of symmetry),
a spherical surface appears as a segment of a circle. To this day most camera lens
elements are spherical in shape. We will show that aspheric surfaces are sometime
desirable, but they are much more difficult to fabricate. The next step is to show
how a lens can be shaped so that it will have a certain focal length. This is, in fact,
the starting point for understanding the design of all lenses, even the compound,
multi-element types.

Optical surfaces

No matter how complicated, lenses still consist of a collection of smooth boundaries
between transparent materials with different indices of refraction. In principle, all
we need is Snell’s law of refraction to be able to trace the path of a ray of light
through a lens, as shown in Figure 2.21. Here a ray of light (the red line in the
figure) from an object arrives at a spherical surface at a distance h from the optical
axis. This convex surface exhibits a positive radius of curvature R, with its center
of curvature on the right side. (Note that this sign convention must be applied
carefully and consistently; a negative radius R would form a concave surface with
its center of curvature on the left.) The effect of the surface is to change the
direction of a ray if the refractive indices on the two sides (η1 and η2) are different.
The calculation of the change in angle from θ1 to θ2 relative to the surface normal
requires the application of Snell’s law.

Snell’s law tells us that η1 sin θ1 = η2 sin θ2. From this it is easy to compute
the angle of refraction for a single ray passing through the surface. The calculation
must, of course, be repeated for each surface of a simple lens and many surfaces in a
compound lens. Furthermore, we must compute its effects for cone-shaped bundles
of rays from points on the object side in order to characterize the lens completely.
This tedious task, nowadays assigned to a computer, can predict the performance
of a particular lens design, but does not give much guidance about how to design a
new lens. For that we need simple equations and rules of thumb to get us started.

Here, as in many areas of science, simplifying our assumptions can lead to
useful approximate equations. For example, suppose that the rays remain close
to the optical axis and that all of the angles are small. This means small enough
that the sin θ and tan θ functions can be replaced with θ itself, where of course the
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Figure 2.21: A spherical surface with radius R. The dotted line from the center of
curvature is normal to the surface. (Source: Charles Johnson book, p. 37.)

SIDEBAR ON THE DEVELOPMENT OF LENSES

The earliest lenses were made of polished crystals, and it was not until the Middle Ages that
glass lenses were produced. By the 13th century glass lenses were good enough to be used
in spectacles for the correction of presbyopia, or farsightedness. Curiously, the development
of lenses is credited to craftsmen, not scientists. Early philosophers dismissed lenses since
their operation was not consistent with existing (European) theories of vision based on the
ray emissions from the eye. They concluded that spectacles could only be a disturbing factor,
and that one should not trust things seen through lenses. In fact, the emission theory of vision
had been disproved by Ibn al-Haytham in the 11th century, by considering afterimages in the
eye and the pain that results from looking at the sun.

More complicated optical instruments such as telescopes required lenses of sufficient uni-
formity to be used in pairs to obtain magnification. Hans Lippershey, the master spectacle
maker of Middelburg, improved lens grinding techniques and in 1608 was able to present a
telescope to Prince Maurits in The Hague. Others claimed priority in inventing the telescope,
but the first record we have of an actual instrument appears in Lippershey’s patent applica-
tion. Everything changed in 1610 when Galileo made a telescope for himself and turned it on
the heavens. He quickly discovered the moons of Jupiter and published his results. That same
year Kepler used a telescope made by Galileo and worked out a new theory of optics based on
two ideas: (1) light rays travel in all directions from every point in an object, and (2) a cone
of light rays enters the pupil of the eye and is focused onto the retina. The revolution of 1610
opened a new world for scientific observations of objects both near (by the microscope) and
far (by the telescope). Ironically, Lippershey never got his patent, but he was well paid for his
services, and he now has a lunar crater and a minor planet named for him.
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Figure 2.22: A simple convex-convex spherical lens.

angles are measured in radians (2π radians equals 360◦). This is called the paraxial
approximation, and Snell’s law becomes η1θ1 = η2θ2.

With the paraxial approximation we can easily derive equations for a thin lens.
In Figure 2.22, the radius R1 for the first (entrance) surface is greater than zero,
as it is in Figure 2.21, because the center of curvature is on the extreme right hand
side, and the radius R2 of the second (exit) surface is less than zero because its
center of curvature is on the extreme left hand side. We first apply Snell’s law to
derive an equation for the focusing power of surface 1. From Figure 2.22 we find
that θ1 = α1+γ and θ2 = γ−α2, where γ, α1, and α2 are shown in Figure 2.21. The
paraxial approximation permits us to use the following expressions for the angles:
α1 = h/p1, α2 = h/q1, and λ = h/R1. When these quantities are substituted into
Snell’s law, we obtain the following equation for the focusing power of surface 1:

Ps =
η2 − η1
R1

=
η1
p1

+
η2
q1

(2.11)

Equations that describe the thin lens require that the powers of the two surfaces
be combined [205]. These derivations yield

(
η2
η1
− 1

)(
1

R1
− 1

R2

)
=

1

p
+

1

q
(2.12)

If the space before the lens is occupied by air, so that η1 is close to unity, the
focusing power depends only the refractive index of the lens material and the radii
of curvature. If the entrance surface of the lens is in contact with water, which has
a refractive index of approximately 1.3, then the effective power will be reduced.
It can, of course, be compensated by decreasing the radius of curvature. For our
purposes, we assume refractive indices in the object space and image space are both
unity.

Now suppose that the object is moved very far to the left so that 1/p approaches
zero. In this limit q becomes equal to the focal length f , and Equation 2.12 becomes
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the well-known Lens Maker’s Equation:

1

f
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R2

)
(2.13)

Another useful equation is obtained by noting that the left hand side of (2.12)
is equal to the right hand side of (2.13). Thus:
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f
=

1

p
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1

q
(2.14)

This is called the conjugate equation since it relates the conjugate distances p and
q to the focal length f . Equation 2.13 is wonderful for lens designers, but is usually
not of much interest to photographers. On the other hand, the conjugate equation
(2.14) is very useful for understanding the way our lenses work. Right away we
see that a simple lens can be focused by adjusting the lens-to-sensor distance q to
accommodate the object-to-lens distance p. Furthermore, the magnification, that
is the size of the image of an object relative to the actual size of the object, is
equal to the ratio q/p and is, therefore, determined by the focal length. When
the object distance p is much larger than the focal length f , the magnification is
approximately equal to f/p. Note that when p = q, the magnification m is equal
to one and that both p and q are equal to 2f .

Caveat: In the paraxial limit, the thin lens is ideal in the sense that a cone
of rays from a point in an object will be focused into a circular cone of rays that
converges to a point (or to a diffraction limited disk) on the sensor plane. As
the diameter of the lens (or the limiting aperture) increases as the focal length
f shortens, or if we gather rays from scene points far askance from the lens axis,
the paraxial assumption will no longer apply. Focused bundles of rays will distort,
their shape will deviate from circular cones and take on a variety of patterns on the
sensor plane. The patterns are characteristic of spherical lenses and are associated
with well-known aberrations.

Compound Lenses: Paraxial Rules

The focusing power of the lens, taking into account both surfaces, is characterized
by the inverse focal length 1/f . Now suppose we have two thin lenses in contact
as in Figure 2.23. What is the power of the combination? This is an easy question
that can be solved by combining the conjugate equations for the two lenses. First
we introduce the labels 1 and 2 to obtain:

1
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1

q1
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1

f1

1

p2
+

1

q2
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1

f2
(2.15)

The image for the first lens falls to the right of the second lens and becomes its
subject. Therefore, we can substitute −q1 for p2 in the second equation where
the minus sign indicates that the subject is behind (to the right of) the lens. The
equations can then be added to obtain:
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(2.16)



2.3. Ray Bending: Lenses, Apertures and Aberrations 73

Figure 2.23: A pair of thin lenses with exaggerated thicknesses. (Source: Charles
Johnson book, pg. 39.)

The subscripts on the left hand side can be dropped because the combined set of
thin lenses only has one subject (object) distance and one image distance. The
conclusion is that the focusing power of a set of lenses can be computed by simply
adding their separate powers. We know that the quantity 1/f is defined as the
power in diopters when f is measured in meters, and the rule is to add diopters
when lenses are used in combination. If the two lenses are separated by the distance
d, the equation becomes:

1

p1
+

1

q2
=

1

f1
+

1

f2
− d

f1f2
(2.17)

In conclusion, the simple thin lens provides a useful model for understanding all
lenses. The conjugate equation is the starting point for estimating the behavior
of lenses, and it even applies to compound lenses under certain conditions. For
further information, consult Optics: the Science of Vision by Vasco Ronchi [344]
or Introduction to Modern Optics by Grant R. Fowles [139] [16].

2.3.6 Resolution Limits and the Airy Disk

To understand the resolution limits of ideal thin lenses, we return to the pinhole
camera and examine it more closely. A pinhole camera is a light-tight box with a
pinhole in the center of one side of the box and a photographic film plate or digital
sensor attached to the opposite side. It’s a small version of the camera obscura,
which played an important role in the history of art and the early development of
photography. As illustrated in Figure 2.24, the formation of an image can be easily
explained with ray optics. We assume that light beams move in a straight line,
and we perform ray tracing. A ray of light from any point on an object in a scene
passes through the pinhole and strikes the photographic plate or digital sensor on
the opposite side of the box.

It is obvious from the illustration that a point on the object will become a small
circle in the image because the pinhole aperture must have some diameter to admit
the light. This situation creates a photographic dilemma. If we make the pinhole
smaller, the light reaching the image will be diminished and the exposure will take
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Figure 2.24: Illustration of a pinhole camera pointed at the Temple of Wingless
Victory in Athens.

more time. On the other hand, if we enlarge the pinhole, the image resolution
will suffer because of blurring caused by the larger pinhole size. At first there
appears to be no optimum size for the pinhole, and all we can do is search for
a convenient trade off between image resolution and the time required to expose
the image. Unfortunately, that conclusion is not accurate. As we use smaller and
smaller pinholes, at some point we find that the resulting image resolution actually
decreases, contrary to what we might expect. The reason for this unfortunate
development is the ubiquitous phenomenon of diffraction.

In the limit of very small apertures, the image of a distant point source of light,
say a star, is not imaged as a point but as a circular disk with faint rings around
it. The bright central region of this image, called the Airy disk, is illustrated on
the right side of Figure 2.25. The diameter of the disk measured to the first dark
ring is equal to 2.44λN where λ is the wavelength of the light and N is the ratio of
focal length to aperture, f/δ, where f is the f number described earlier and δ is the
aperture diameter. The spot size for a distant point without diffraction is equal to
the aperture diameter δ. Therefore, the spot size will increase for both large and
small pinhole sizes.

The optimum pinhole size occurs when the contributions of these two effects are
equal. Therefore,

δ = 2.44λf/δ (2.18)

The optimum aperture size is therefore equal to

δopt =
√

2.44 λf (2.19)

Since λ is approximately 500 nm in the middle of the visible spectrum, we find that

δopt = 0.035
√
f (2.20)

where δopt and f are measured in millimeters. When f = 100 mm, the optimum
pinhole has the diameter δopt = 0.35 mm.
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Figure 2.25: Incident light on a very small aperture results in diffraction effects in an
image. The vertical scale is greatly exaggerated to reveal the intensity distribution
in the diffraction spot.

This derivation is only approximate. It fails badly for nearby objects, where
light rays from a bright point near the pinhole will diverge through the pinhole to
make a spot that is larger than the pinhole. This results in an additional loss of
resolution for nearby objects, indicating that the optimum size for the pinhole also
depends on the distance of the object from the pinhole [17].

Photography with a pinhole camera requires an exposure time that depends on
the f-number N of the aperture. From the definition we find that the f-number
N = 100 mm/0.35 mm or f/286 for this optimum pinhole camera. How does this
f-number compare with that on a lens-based camera? A typical aperture setting
for outdoor photography with a lens-based camera is f/8. We know that every
time N is doubled, the intensity of light in the camera is reduced by a factor of
four. We must double an f/8 setting five times to reach f/256 (sufficiently close
to f/286), which indicates there is about 45 = 1024 times as much light intensity
on the image plane in a conventional lens-based camera as there is in an optimum
pinhole camera. A typical recommended exposure time for ISO 100 film or for a
digital ISO of 100 in hazy sunlight is 1/125 of a second at f/8. The corresponding
exposure with the optimum pinhole camera at f/286 would be about eight seconds.

One other point is worth noting. The ray tracing approach described above
assumes that rays are undeviated (the path is unaffected) by the pinhole other
than the spreading effect of diffraction. This works if the same medium, such as
air, fills the interior of the camera and the outside space. Suppose instead that the
space between the pinhole and the film is filled with water. A ray passing from
air to water is subject to refraction and the path is bent toward the optical axis
(a line through the pinhole and normal to the film plane). The unexpected result
is a fish-eye view of the world. An air-filled pinhole camera with a glass window
underwater would be the reverse situation, and should give a telephoto effect.

Lenses are obviously much better for imaging than pinhole cameras. They allow
us to make sharp high-resolution photographs at large lens apertures, which means
that adequate exposures can be obtained with fast shutter speeds (short exposures).
In addition, the effects of diffraction can be reduced and the region of sharp focus
(depth of field) can be controlled.
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Figure 2.26: The different types of simple spherical lenses. (Image credit to be
determined.)

2.3.7 How to Make Lenses That Are Good Enough for Pho-
tography

In this section we consider why multi-element lenses are necessary in order to min-
imize aberrations while providing large apertures. We will also show that multi-
element lenses give unacceptable light transmission, ghosts, and flare in the absence
of antireflective multi-coating.

Figure 2.26 illustrates the possible types of spherical lenses. Convex lenses (or
positive lenses) are thicker in the center and cause light rays to focus, while concave
lenses (or negative lenses) are thinner in the center and cause light rays to diverge.
Suppose we select a single biconvex lens for our camera. The resulting image will
look something like Figure 2.27. The image is sharp and in focus in the center of
the scene but it deteriorates and is out of focus away from the center. The primary
reason for this problem is that the image projected by the biconvex lens is not flat,
but other aberrations exist as well.

The English scientist W.H. Wollaston discovered in 1812 that a meniscus-shaped
lens (which is actually convex-concave), with its concave side to the front, can
produce a much flatter image and, therefore, a much sharper photograph overall.
Unfortunately, Wollaston’s simple lens is not suitable for photography because it
exhibits extreme chromatic aberration, focusing blue light at a different place on
the optic axis than yellow light.

These limitations of biconvex and convex-concave lenses demonstrate the prob-
lems that must be overcome in attempting to improve a photographic image. It is
relatively easy to produce lenses with spherical surfaces by grinding and polishing,
but spherical lenses are not optimal. Monochromatic aberrations such as spherical
aberration, coma, astigmatism, and distortion result from the inability of spherical
lenses to produce perfect images. To use spherical lenses for photography we must
correct aberrations by using a compound lens with multiple elements.



2.3. Ray Bending: Lenses, Apertures and Aberrations 77

Figure 2.27: A simulated illustration of the effect of image curvature caused by a
single-element lens. (Photograph by Charles Johnson.)

Aberrations and Coatings

The term ‘aberration’ appears frequently in the discussion of lenses so it is worth-
while to define it carefully18. Recall that Snell’s law describes the refraction of light
rays at each optical surface. For rays that are close to the optical axis and make
small angles with it, Snell’s law can be simplified by replacing the trigonometric
function sin θ with θ itself. This substitution represents paraxial or first-order the-
ory and describes the perfect lens where sin θ = θ is satisfied. With practical lenses,
however, this approximation is not justified and we require something better.

In 1857 Ludwig von Seidel used a Taylor Series expansion to find the next
best approximation of sin θ when θ is still small, namely sin θ ' θ − θ3/6. He
worked out the third-order optics to see what changes result from the extra terms.
His calculation, still an approximation, revealed five independent deviations from
perfect lens behavior for monochromatic light. These deviations are known as Seidel
aberrations. More extreme effects that are not really independent appear at larger
angles, but third-order optics provides a vocabulary and a good starting point for
lens design. Seidel aberrations include spherical aberration, coma, astigmatism,
field curvature and geometric distortion. 19

If these aberrations result from the use of spherical lenses, then why not use
aspheric lenses for photography? After all, aspheric lenses with appropriate shapes
can eliminate spherical aberrations and reduce the number of elements required
in compound lenses. As you might suspect, cost is a factor. Low-quality molded
plastic and glass aspheric lenses are easy to produce, but high-quality glass aspheric
lenses are much more expensive. Depending on the manufacturer, fabrication tech-

182. Klein, M. V., Optics, (Wiley, N.Y., 1970) chap. 4; 3. Photographic optics with illustrations
of Seidel aberrations, www.vanwalree.com/optics.html.

19For descriptions and diagrams of these aberrations see the Melles-Griot web sites.
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Figure 2.28: (a) The refraction of light by positive and negative lenses. Different
frequencies of light are refracted at different angles, which causes the focal length of
the lens to be frequency-dependent. (b) The combination of a positive lens with a
negative lens having a higher index of refraction produces an achromatic compound
lens.

niques can include shaping by diamond turning with a computer-controlled lathe,
or applying optical resin that can be precisely shaped to the surface of a lens. In
spite of high costs, many modern lenses in photography use one or more aspheric
elements. For example. the Canon 17–40 mm and 10–22 mm wide-angle zoom
lenses each have three aspheric lens elements.20

The problem of color fringes or chromatic aberration requires a discussion of
optical materials. The refractive index of glass or any transparent material depends
on the wavelength of light. This property is known as dispersion. Figure 2.28
illustrates how dispersion affects light rays as they pass through lens elements. The
refractive index for blue light is higher than the refractive index for red light, so
blue rays are bent through larger angles, as shown in Figure 2.28(a). This property
causes the focal length of the lens to be different at different wavelengths.

A way to compensate for dispersion is to combine lens elements that have been
carefully selected to cancel chromatic aberration at two well-separated wavelengths,
as shown in Figure 2.28(b). The positive lens element is often crown glass (made
from alkali-lime silicates) with relatively low refractive index, and the negative ele-
ment is flint glass (silica containing titanium dioxide or zirconium dioxide additives)
with a relatively high refractive index. These elements can be cemented together
to make a single acromatic lens that has much less focal length variation over the
selected wavelength range than is possible with a single glass element.

An achromat is a corrected lens with the same focal length at two wavelengths
of visible light, usually in the blue and red regions of the spectrum. An apochro-
mat is a corrected lens with three elements, giving identical focal lengths at three
wavelengths and providing some spherical correction as well. A superachromat, the

20Canon, Inc., EF Lens Work III, The Eyes of Canon EOS (2006).
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Figure 2.29: (a) Modern camera lenses have multiple lens elements in several groups.

best color-corrected lens, gives identical focal lengths at four wavelengths and often
into the infrared region as well. This near-perfect correction requires the use of
expensive low-dispersion optical materials.

Anti-Reflective Coatings

Current lens technology incorporates many lens elements to correct for various
aberrations. Lens catalogs show sample lenses with large numbers of elements,
including low-dispersion glass and aspheric elements in crucial positions to improve
performance. Some examples are:

• Canon EF 100–400mm f/4.5-5.6IS USM, 17 elements in 14 groups (fluorite
and Super UD-glass elements)

• Sigma APO 80–400mm f/4.5-5.6 ex OS, 20 elements in 14 groups (2 SLD
elements)

• Nikon 80–400mm f/4.5-5.6 ED AF VR Nikkor, 17 elements in 11 groups (3
ED elements)

The modern multielement lens benefits from an important 19th-century techno-
logical breakthrough. At that time, lenses with more than four air/glass surfaces
suffered from low contrast, lenses with six glass/air surfaces were sometimes con-
sidered acceptable, but lenses with eight air/glass surfaces, which corrected for
aberrations, yielded film negatives with very low contrast. The problem was the
reflection of light at the surfaces. When light passes from a region with a refrac-
tive index η1 to a region with a refractive index η2, some fraction R of the light is
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Figure 2.30: Reflections of a 5000K lamp from various lenses, showing evidence of
the different coatings on the lens elements. (a) Olympus 50 mm f/1.8 (1972), (b)
Canon 70–300 mm f/4-5.6 (2006), (c) Canon 50 mm f/1.8 (1987), (d) Schneider-
Kreuznach 75 mm f/3.5 (1953). (Source: Charles Johnson book, pg. 48.)

reflected back from the new surface. Equations for R developed in the early 19th
century by Augustin-Jean Fresnel showed that in the limit where the incident light
is normal to the surface

R =

[
η2 − η1
η2 + η1

]
, R = r2 (2.21)

where r and R are associated with the amplitude and the intensity of the reflected
light, respectively. At an air/glass interface with η1 = 1.0 and η2 = 1.5, for example,
the fraction of reflected intensity is R = 0.04 or about 4%. This fraction is lost at
every air/glass surface. In a two-element lens with four surfaces about 15% is lost
and only about 85% of the incident intensity is transmitted. This loss was, indeed,
a serious problem for lens technology. Light was not only lost, but the reflected
light bounced around inside the lens, producing ghosts, flare, and a general loss of
contrast in the focused image.

The answer to the problem of light loss lies in sophisticated anti-reflection coat-
ings. Everyone with a camera has observed, at the front of a lens, the beautiful violet
and pastel shades that are reflected by the lens elements. Figure 2.30 shows reflec-
tions from lenses manufactured at different times. The colors reveal the presence of
coatings that are themselves colorless. These coatings increase the transmission of
a broad range of frequencies in the visible spectrum while reflecting a small amount
of light that has not been completely cancelled by interference.
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Figure 2.31: Single layer anti-reflective coating with exaggerated angle of incidence.
Note: the nx values in the figure should be redrawn as ηx. (Source: Charles Johnson
book, pg. 49.)

How do anti-reflection coatings work? [181] Suppose we apply a thin trans-
parent coat with a refractive index of η1 = 1.25 to a lens made of glass with
refractive index η2 = 1.5. According to Eq. 2.21, the fraction of intensity reflected
at the air/coat surface is 1.2%, and the fraction reflected at the coat/glass surface
is 0.83%. The important question is how do we obtain the total reflection. Un-
fortunately, the numbers we calculated are not helpful at all! Experiments show
that the total reflection depends critically on the thickness of the layer. Transmis-
sion and reflection from thin layers are interference phenomena, and amplitudes of
the electric fields must be combined before squaring. The amplitude of a reflected
wave, which should be thought of as the length of an arrow (vector), is given by
r (not R) in Eq. 2.21 and each arrow has an orientation. [204] A single layer
anti-reflective coating is illustrated in Figure 2.31. (Note: the arrows in this figure
indicate the directions of light rays; the associated amplitudes denoted by the r
values are different quantities.)

Suppose that η0 = 1.0 (air) and η2 = 1.5 (glass) in Figure 2.31. The coating
layer must have a refractive index less than 1.5 (for there to be the same change
in phase angle or turn of the amplitude arrow at the two surfaces). Plus, for
effective cancellation of reflection, it is necessary that r1 = r2. This condition can
be combined with the equation for r to show that the optimum refractive index for
the coating layer is η1 =

√
η0η2, or in this case 1.225. We have a situation in which

there are two ways for a photon to get from the source to the observer, and each
of the paths can be represented by an arrow with a length and an angle. [204]
These arrows must be determined, added together, and then squared to determine
the intensity of the reflected light.

The lengths of the arrows are essentially equal because of the choice of η1, and
the difference in orientation (angles) depends only on the difference in the optical
path lengths. The orientation of the arrow associated with r1(path 1) is arbitrarily
set at 12:00 o’clock, and the orientation of the arrow for path 2 is different only
because of the time required for the photon to traverse the layer of thickness d1
twice with the effective speed c/η1 . A complete rotation of the arrow through 360◦



82 2. Camera Fundamentals

occurs each time the path length increases by one wavelength; and with our choice
of layer thickness, the arrow for path 2 is oriented at 6:00 o’clock or 180◦ out of
phase with the arrow for path 1. The two arrows, when placed head to tail, add
to zero, and there is complete cancellation of the reflected light at the wavelength
λ0. Since the sum of the intensities of the reflected and transmitted light must
equal the intensity of the incident light, this coating permits 100% of light at λ0
to be transmitted. We have simplified the example here by assuming the angle of
incidence is close to zero and the amplitudes of reflection are very small, and by
neglecting multiple reflections in the layer. Corrections for these simplifications are
well known and do not change the qualitative picture.

Of course, things are not perfect because the single layer is only efficient at
cancelling reflection at one wavelength. With a two-layer coating it is possible to
zero out reflection at two wavelengths, a three-layer coating can be designed to
cancel reflection at three wavelengths, and so on. Approximate analyses of these
situations are quite easy with the vector method illustrated here.

From this discussion it is easy to see why modern lenses are so complicated.
It should also be noted that the discussion thus far applies to fairly simple prime
or non-zoom lenses. Also, most modern lenses contain autofocus mechanisms and
in some cases vibration isolation systems that move a lens element to counteract
low frequency camera vibrations. These important technological refinements are
beyond the scope of this book, but some of the optical characteristics of compound
lenses (e.g., primary surfaces and nodal points) will be considered in later chapters.

2.4 Cameras, Rays and Radiance

To gather any measurable amount of light power, a pixel detector (or photoreceptor
in our eye), must gather a four-dimensional bundle of rays—rays that cover a non-
zero solid angle for all points in a non-zero area. Accordingly, when we focus
the lens in a camera (or our own eyes) on a screen point P, we gather together
a sizeable cone of outgoing rays from P, and make them converge at point Q on
the detector. This cone-shaped bundle provides nonzero irradiance, but only at
Q. For measurable amounts of light power, a point is not enough: we need an
irradiated area. Accordingly, a single-pixel detector (or single photoreceptor in our
eye) measures power delivered to a small neighborhood area around Q from a small
neighborhood area around P in the scene, and each point in this 2D neighborhood
delivers an infinitesimal amount of power through its own 2D cone-shaped bundle
of rays collected through the lens.

The seemingly erroneous inclusion of cosine falloff makes good sense if we reex-
amine imaging for these small neighborhoods around P and Q. We begin with our
camera placed directly above the display screen, and assume the lens performs no
magnification, so that the neighborhoods around both P and Q have the same size
and shape. Additionally, we assume that the incident angle θi is zero or nearly zero
for all the rays it gathers. Because a camera’s lens aperture covers only 0.005 stera-
dians out of the span of 2π directions for light leaving the screen in the neighborhood
of point P, then only 1/1256.6 of this light reaches the detector at point Q. More
formally, the lens maps the screen’s uniform radiant exitance W/2 watts/meter2 to
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a detector irradiance of W/2513 watts/meter2.
Now suppose we move the camera to the side, so that its rays to point P form

incident angles at or near 60◦. From this viewpoint, the radiance for each ray has
fallen to half its previous value—yet the detector irradiance at Q stays constant!
To see why, trace rays from the corner points of the neighborhood of Q through
the lens and back onto the screen. As the screen plane tilts, more and more of
its surface area falls within the frustum viewed by the one-pixel area around Q,
exactly counteracting the cosine falloff of radiance. Thus the cosine term in radiance
measurements ensures that uniformly emitting surfaces such as our display screen
produce the same pixel values from any viewing angle.

Suppose we want to measure the light that a back-lit photo sends to our eyes, or
perhaps the light from a perfect, artifact-free CRT or LCD screen. Like many com-
puter graphics and imaging publications, we assume that a digital image consists of
a grid of pixels at integer locations in a plane, and each pixel describes one ray of
light from the pixel’s location in the image plane through the center of projection
of a projector or camera. A pixel is not “a little square” [372] but an infinitesimal
point on a continuous image, and the pixel’s RGB value describes the color value
of the image at that infinitesimal point. We don’t really know the image values
between the points, but displays construct a continuous image by using pixel values
as estimates of neighborhood values.

Instead of imagining a digital image as a grid of little squares, think of the pixels
as equally spaced point-source lights covered by a frosted-glass plate. Each pixel’s
RGB value sets the radiant flux of one point source, and the frosted glass disperses
that light over a small neighborhood, forming a continuous image as a sum of blobs
of light formed by the frosted-glass scattering function, also known as its point-
spread function. While some digital micromirror device (DMD) projectors do use
little squares as their point-spread functions, the highest quality and most visually
uniform point-spread functions are blob-like with slightly negative side-lobes. [274]

Further text after this point to be written and included
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Chapter 3

Epsilon Photography

In this chapter we continue to think of photographs, whether captured digitally or
on film, as fixed and static records of a viewed scene, and straightforward copies
of the 2D image formed on a plane behind a lens. How might we improve pho-
tographs from traditional cameras if we apply unlimited computing, storage, and
communication to them? The past few years have yielded a wealth of new cameras
and enhanced imaging opportunities, and we have started to see new and excit-
ing results. How can these new imaging and computing opportunities continue to
improve conventional forms of photography?

Currently, adjustments and trade-offs dominate film-like photography, and most
camera decisions are locked in once we press the camera’s shutter release. Poor
choices lead to poor photos, and an excellent photo may be possible only for a
narrow combination of settings taken with a shutter-click at just the right moment.
Can we elude these adjustments and trade-offs? Can we defer choosing the cam-
era’s settings somehow, or change our minds and alter the settings later? Can we
compute new images that expand the range of settings, such as a month-long ex-
posure time? What new flexibilities might allow us to take a better picture now,
and also keep our choices open to create an even better one later?

We need to broaden our thinking about photography to avoid missing opportu-
nities. So many of the limitations and trade-offs of traditional photography have
been with us for so long that we tend to assume they are inescapable, a direct con-
sequence of the laws of physics, image formation and light transport. We are misled
by our strong beliefs in how photography is done. Surely every photo-making pro-
cess has to employ a high-quality optical system for high-quality results. Surely any
good camera must require accurate focusing, an appropriate focal length, a good
point of view, and the best framing of the subject scene. To achieve the results
we aspire to, surely we must choose our exposure settings carefully, seek out the
optimal trade-offs among ISO sensitivity, digital noise, and the length of exposure
needed to capture a good image. Surely we must keep the camera stable as we aim
it at our subject. Surely we must match the color balance of our sensor (or film)
to the color spectrum of our light sources, and later match it to the color spectrum
of our display device. Surely we must choose appropriate lighting and pose the
subject for the most flattering appearance (and say ”cheese!”). Only then are we

85
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ready to click the shutter. Right?
Well, no, not necessarily, not any longer. We can break each of these conventions

with computational methods. The technical constraints change radically for each
of these conventions if we’re allowed to combine results from multiple photographs
and/or multiple cameras. This chapter points out some of those assumptions,
describes a few current alternatives, and encourages you to look for more.

A few inescapable limits, though, do remain:

• We cannot measure infinitesimal amounts of light, such as the strength of a
single ray, but instead must measure a bundle of rays; a group that impinges
on a non-zero area and whose directions span a non-zero solid angle.

• We cannot completely eliminate noise from any real-world sensor that mea-
sures a continuum of values (such as the intensity of light on a surface).

• We cannot create information about the scene not recorded by at least one
camera.

Beyond these basic irreducible limits, we can combine multiple photographs to
substantially expand nearly all the capabilities of film-like photography.

3.1 Epsilon Photography

This is a single-strategy chapter. Because existing digital cameras are already ex-
tremely capable and inexpensive, here we will explore different ways to construct
combined results from multiple cameras and/or multiple images. By digitally com-
bining the information from more than one image, we can compute a picture su-
perior to what any single camera could produce. We can also create interactive
display applications that let users adjust and explore settings that were fixed in
film-like photography.1

This strategy is a generalization of bracketing, an exposure technique that is
already familiar to most photographers. Bracketing lets photographers avoid un-
certainty about critical camera settings such as focus, exposure, or white balance.
Instead of taking just one photo at what we think are the correct exposure settings,
we make additional exposures at several higher and lower settings that bracket the
chosen one. If our first best-guess setting was not the best choice, the bracketed
set of photos almost always contains a better one. Perhaps the most common
use for bracketing is in situations where the camera’s in-built metering might get
confused. In this mode the camera automatically captures additional photos that

1HDRShop from Paul Debevec’s research group at USC-ICT (projects.ict.usc.edu/graphics/
HDRShop) helps users construct high-dynamic-range images from bracketed-exposure image
sets, then lets users interactively adjust exposure settings to reveal details in brilliant high-
lights or the darkest shadows; Autostitch from David Lowe’s group at UBC (www.cs.ubc.
ca/∼mbrown/autostitch/autostitch.html) and AutoPano-SIFT (user.cs.tu-berlin.de/∼nowozin/
autopano-sift/) let users construct cylindrical or spherical panoramas from overlapped images;
and HD View (research.microsoft.com/ivm/hdview.htm) from Microsoft Research allows users an
extreme form of zoom to explore high-resolution panoramas, varying smoothly from spherical
projections for very wide-angle views (e.g., > 180 degrees) to planar projections for very narrow,
telescopic views (< 1 degree).
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Application Epsilon over sensors Epsilon over time Epsilon over pixels

Parameter Major Time Major Position Major

Cost/space trade-off Time trade-off Sensor resolution trade-off

Space uniform;
parameter varying

Time uniform;
parameter varying

Space varying

HDR SAMP (different
ND filter)

Bracketing Assorted Pixels

Color 3 CCD Color wheel in the aperture Bayer mosaic; Foveon

Field of View Camera Array
with telephoto lens

Unstructured panoramas

Resolution Shift based superresolution

Depth of Field SAMP (focused at
different depths)

Focal Stacks

Frame Rate Camera Array [Irani] Mosaic (virtual exposure)

Noise
Reduction

SAMP (same camera
settings)

Multiple photos

Table 3.1: Epsilon photography: applications and approaches. [THIS TABLE
COULD HAVE AN ADDITIONAL COLUMN FOR EPSILON OVER MULTIPLE
AXES]

straddle the camera’s exposure estimate. A similar technique is used for assembling
high dynamic range images.

The methods in this chapter are analogous but often use a larger set of photos.
This is because multiple settings may be changed and we may digitally merge
desirable features from multiple images in the set rather than simply select just
one single best photo. The process of capturing the scene multiple times with one
or more parameters, slightly modified each time, and creating a composite image
that contains information from all individual images, is called epsilon photography.
While bracketing is usually done by changing a single parameter and capturing
multiple photos over time, epsilon photography encompasses changing parameters
by epsilon (i.e., a small amount) over (a) multiple sensors, (b) time, (c) pixels,
or (d) multiple axes. Most applications of epsilon photography involve capturing
low-level scene information (i.e., pixel intensities). Table 3.1 shows several common
applications of epsilon photography produced by changing parameters over the three
axes—sensors, time, and pixels. While it would seem as though any application
can be solved by using either of the three approaches, some entries are empty either
because they do not make much sense, or because no feasible solution yet exists.
Trade-offs in epsilon photography improve one measurable aspect of a photograph
at the expense of another. We discuss these trade-offs in greater detail for each of
the three axes over which parameters are varied.

3.1.1 Epsilon over Sensors

Epsilon over sensors is perhaps the most brute-force approach to capturing images
with varying parameters. It simply involves using multiple image sensors with
different parameters to capture the same scene at the same time. This is achieved
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(a) (b)

Figure 3.1: Trichroic beam splitter prism used to split incoming light into its color
components for imaging with multiple sensors in a typical three-CCD setup. (Fig-
ures from wikipedia (en.wikipedia.org/wiki/Three-CCD).

by using clever optics to effectively co-locate the sensors, or by using adjacent
synchronized cameras as in a camera array, or by using some other arbitrary camera
arrangement.

Three-chip cameras (more common for high-quality video applications than for
still photos) use a dichroic prism assembly behind the lens to split the image from
the lens into three wavelength bands for three separate image sensors (see Fig-
ure 3.1). Three images are captured simultaneously and combined together to
create a single color image.

The three-CCD concept can be generalized and extended to a larger number
of camera sensors, each with its unqiue parameter settings. The single-axis multi-
parameter (SAMP) camera [265] uses an optical splitting tree as shown in Fig-
ure 3.2; it is perhaps the most generalized version of epsilon over sensors. This
arrangement uses a series of beamsplitters and cameras that can simultaneously
capture pixel-aligned images for various epsilon photography applications such as
HDR capture, focal stacks, and high frame-rate capture with staggered exposures.
Changing parameters over various sensors is accomplished by placing color or neu-
tral density filters in their optical path.

A closely related approach is the use of an array of cameras where each camera
uses a different set of parameters to capture the same scene (see Figure 3.3). This
approach is different from SAMP because each camera’s spatial location (and possi-
bly also view direction) is unique. This can be thought of as yet another parameter
that is varied among the sensors. Wilburn et al. [427] built an array of one hundred
relatively inexpensive video cameras, and demonstrated epsilon photography appli-
cations such as enhanced spatial resolution, high dynamic range, and high frame
rate. They also used the array to achieve synthetic apertures and scene refocusing.
In a related commercial application, ViewPLUS Inc. manufactures a 5× 5 camera
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Abstract

The authors address the problem of designing and con-
structing efficient cameras that can simultaneously capture
multiple pixel-aligned images for computational photogra-
phy applications. They introduce a design paradigm and
a prototype tool for computer-assisted design using that
paradigm. Results are reported for actual cameras with up
to eight imagers built using these techniques.

1. Introduction
Many computational photography applications require

sets images that are captured simultaneously from the same
viewpoint but have different image sensors and imaging pa-
rameters. In this paper, we address the problem of designing
efficient multi-sensor cameras that can capture such images.
Although for two- and three-sensor cameras ad-hoc designs
are often effective, the design problem becomes challeng-
ing as the number of sensors increases. We demonstrate
results on cameras created using our new design paradigm
that contain as many as eight sensors.

Why are sets of pixel-aligned images of the same scene
useful? Consider a set of images with different exposure
times as an example. Short exposures will capture detail
in the bright areas of a scene, while long exposures will
reveal details in shadows that would otherwise be under-
exposed. Fitting an intensity curve to only the correctly-
exposed images at each pixel fuses the set of images into a
single high-dynamic range (HDR) image that captures de-
tail everywhere. The output is ‘computational’ because the
final image could not have been recorded by an isolated im-
age sensor; it is produced by a battery of sensors and com-
putation. Other popular applications that require include
high-speed, super resolution, focus/defocus analysis, and
multispectral video.

We say that the image sets contain multiple monocular
views of the scene to distinguish them from stereo and other

array cameras where the optical axis is different for each
imager. Working with monocular views is ideal in many
contexts because the images have direct pixel correspon-
dance; except for calibration, they do not need to be warped
and do not exhibit parallax artifacts with depth.

The cameras that can capture multiple monocular views
differ from conventional cameras. A conventional camera
contains a single objective (lens system) and imager. To

Figure 1. Top and side images of our generic eight-view splitting
tree system, which can quickly be reconfigured to implement pre-
vious capture systems like like HDR and multispectral video, or to
meet novel applications. The superimposed laser beam shows the
recursively split optical path.

1

(b)

Figure 3.2: Single-axis multi-parameter (SAMP) camera captures multiple photos
with different parameters at the same time. (Figures from McGuire et al. [265].)

(a) (b)

Figure 3.3: Camera array setups from Stanford University can capture multiple
photos simultaneously from slightly different viewpoints for epsilon changes in pa-
rameters over sensors. (Figures from Wilburn et al. [427].)
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Figure 3.4: Russian photographer Prokudin-Gorskii captured scenes of Tsarist Rus-
sia with a custom-built, sort-first, time-multiplexed camera that captured three
color-filtered images in rapid succession on a tall, single-plate negative [326].

array called the ProFUSION 25, which captures images at a resolution of 640×480
at 25 frames per second.

While this epsilon-over-sensors approach is the easiest to understand, the result-
ing cameras and arrays are usually quite cumbersome. This approach also typically
costs more than others because of the additional sensors and cameras. In spite
of these limitations, camera arrays are popular for capturing light fields and for
synthetic aperture applications, as discussed in Chapter 4.

3.1.2 Epsilon over Time

In the epsilon-over-time approach, we capture a sequence of photographs with one
camera, with different parameters settings for each. Each photo forms one com-
plete image, taken with just one complement of camera settings. Each image is
ready to use as output, and we need no further sorting of the image contents to
construct a viewable output image (though we may still merge several photos to
make the output even better). Bracketing of any kind is a good example of sort-first
photography.

For example, in the early 1900s, commissioned and equipped by Tsar Nicholas
II, Sergei Mikhailovich Prokudin-Gorskii (1863–1944) surveyed the Russian Em-
pire in a set of beautiful color photographs gathered by his own method for color
photography. His single-lens customized view camera took a rapid sequence of
three separate photographs, each through a different color filter in front of the
lens. In 2003, the U.S. Library of Congress digitized a large set of these negatives
and merged them to construct conventional color photographs (see Figure 3.4 and
website www.loc.gov/exhibits/empire/gorskii.html).

Another example of epsilon over time is capturing photographs for assembly
into a panoramic image showing a 360-degree view from a single viewpoint. We
mount a single camera on a tripod, use a lens with a field of view of D degrees, and
take a time-multiplexed sequence by rotating the camera D degrees or less between
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Figure 3.5: A color wheel with red, green, blue and clear portions, as used in a
color DLP projector.

each exposure. With an unchanging scene and a camera with little or no radial
distortion, we can gather a set of photographs that match each other perfectly in
their overlapped regions, Any conventional panorama-making software will produce
a good single image from this sequence. However, any movement or lighting changes
within the scene during this process will introduce inconsistencies that are much
more difficult to resolve. Clouds in the first photograph might not align at all with
clouds in the last photograph, but alignment is not impossible. Tools such as Adobe
Photoshop are suitable for manually resolving modest mismatches.

A similar approach is used in projectors that are based on Texas Instruments’
DLP technology. These projectors use a color filter in front of a digital micro-
mirror device (DMD). The DMD consists of an array of tiny controllable mirrors.
Each mirror can be flipped in two distinct orientations, one of which corresponds
to an “on” pixel, and the other to an “off” pixel. A synchronized color filter (see
Figure 3.5) is used to project the red, green, and blue channels of the image se-
quentially. At any given time, an image of only one of the three color channels is
projected. The phenomenon of persistence of vision in the human visual system
aids in the perception of a natural-looking full-color image. Here’s an experiment
to try in a DLP movie theater. Take a photo with a digital SLR camera of the
image projected by a DLP projector. If the shutter is fast enough, the camera will
capture an image that has a single color (red, green, or blue), or even two colors
for different parts of the image during a color wheel transition.

Varying parameters over time and capturing multiple photos is relatively easy
and is possible with minimal changes to existing cameras. However, this technique
assumes that both the camera and object are perfectly still while the multiple photos
are captured. The illuminating light in the scene should also not change. Suppose
we attempt to photograph a scene as clouds cover or reveal the sun during sort-
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Figure 3.6: The Bayer color mosaic pattern in many modern digital cameras em-
ploys sort-last color sensing. Demosaicing techniques employ edge-following, es-
timation, and interpolation methods to approximate a full-resolution color image
from these measurements. Alternatively, three-chip video cameras follow the sort-
first method, and sense three complete, independent color images simultaneously.
(Figure from wikipedia: en.wikipedia.org/wiki/Bayer filter.)

first exposure bracketing. Our first high-exposure photo, taken before the sun goes
behind clouds, appears overly bright, but our subsequent mid- and low-exposure
photos are darker than they should be, due to falling light levels (the clouds will
be moving as well). A situation like this yields no usable photos at all. In general,
this approach requires a camera on a tripod, and non-moving or relatively slow
changing scenes. Some recent applications of this technique allow for moderate
camera and scene motion, and compensate for it using feature tracking and motion
compensation.

3.1.3 Epsilon over Pixels

The epsilon-over-pixels approach mixes several different parameter settings within
the pixels of a single photo. After capturing the photo, we must sort the contents
of the photos, and rearrange and recombine them somehow to construct a suitable
output image.

The Bayer color mosaic pattern found on nearly all single-sensor digital cam-
eras is perhaps the most widely used example of the epsilon-over-pixels approach.
Figure 3.6 illustrates how Individual, pixel-sized color filters cover adjacent pixels
on the imaging sensor, forming a red, green, and blue filter pattern. Even though
the sensor loses spatial resolution because of this multiplexing, we can measure
all three colors at once and interpolate sensible values for every pixel location (a
process called demosaicing) to give the impression of a full-resolution image with
all colors measured for every pixel.

Unlike epsilon over time, the epsilon-over-pixels technique requires modifications
to the image sensor, and may be harder to implement. Semiconductor manufactur-
ing techniques can impose additional restrictions on the pixel parameters that may
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Figure 3.7: The Lomography Actionsampler Flash 35mm film camera uses multiple
flashes and four lenses to capture multiple photos in quick succession. Each photo
is taken from a slightly different point of view, and at a slightly different time.

be modified by using this technique. Additionally, the effective pixel resolution is
reduced by a factor of the number of parameter settings used. On the other hand,
multiple simultaneous measurements in a single photo make this method less sus-
ceptible to scene variations over time, reducing the chance that a transient scene
value will escape successful measurement.

3.1.4 Epsilon over Multiple Axes

The classification on the basis of the axis along which parameters are changed
is not rigid. Hybrid systems of video cameras or still cameras enable capture of
each step of a complicated event over time in order to understand the event better,
whether captured as a rapid sequence of photos from one camera (a motion picture),
a cascade of single photos taken by a set of cameras, or something in between.
The Lomography Actionsampler Flash 35mm film camera shown in Figure 3.7 is
essentially a 2× 2 camera array where each camera takes a photo sequentially over
time, thus effectively combining epsilon over sensors and epsilon over time.

Schechner and Nayar [356] rigidly attached a spatially varying mask some dis-
tance in front of the camera lens (as shown in Figure 3.8). Since the mask is not the
limiting aperture of the optical system, different scene points are attenuated differ-
ently by the mask. Moving the camera-mask setup yields multiple measurements for
each scene point under different optical settings, resulting in image mosaics with
additional scene information such as extended dynamic range and multispectral
data. This technique is called generalized mosaicing. The registration algorithm
is non-trivial because of spatially varying effects of the filter. A vision-based algo-
rithm [358] synchronizes a changing mask in the optical system to the corresponding
acquired image, thus allowing for uncontrolled modulation of the imaging system.

3.2 Improving Dynamic Range

The sensors in digital cameras have a limited input range. They cannot record
image details in bright highlights and dark shadows at the same time. Too much
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     Exposure                         Spectrum                      Polarization                          Focus 

Figure 3.8: Setup for generalized mosaicing [356], which is a simple and effective
method for extracting additional information at each scene point. As a camera
moves, it senses each scene point multiple times. An optical filter with spatially
varying properties is attached in front of the camera lens so that each scene point is
measured multiple times but under different optical settings. (Figure from Schech-
ner and Nayar [356])
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light can overwhelm the sensor, ruining the image with a featureless white glare,
while too little light can leave image features indistinguishably lost in shadowy
darkness. Most film-like cameras provide automatic metering and exposure options
to match the camera’s overall light sensitivity to the amount of light in a viewed
scene. These options include adjusting lens aperture to control the light admitted
through the lens (which affects the depth of field), adjusting exposure time (which
can result in motion blur), placing neutral density filters in front of the lens (which
results in longer exposure times), or adjusting the ISO sensitivity of the sensor itself
(which can add digital noise to an image). Despite such trade-offs, these options
combine to give modern cameras an astoundingly wide range of sensitivity to light,
rivaling or exceeding that of the human eye (which adapts to over 16 decades of
light intensity from the absolute threshold of vision at about 10−6cd/m2 up to the
threshold of light-induced eye damage near 108cd/m2).

Camera adjustments for light sensitivity still aren’t enough, however, to match
the ability of the eye to sense the wide variations in light intensity of a high-contrast
scene. Scenes with bright highlight regions and dark shadow regions are difficult
to photograph well. The intensity ratio between the brightest and darkest regions
overwhelms the ability of the camera sensor to record these intensities accurately.
The sensor cannot capture details of the darkest blacks and the brightest whites
simultaneously. Troublesome high-contrast scenes often include large visible light
sources aimed directly at the camera, scenes with strong backlighting and deep
shadows (for example, a dimly lit indoor scene with a background window showing
a brightly lit exterior scene), or scenes with reflections and specular highlights, such
as shown in Figure 3.9. Film-like photography offers us little recourse other than
to add light to the shadowy regions with flash or other fill lighting. Rather than
adjust the camera to suit the scene, we adjust the scene to suit the camera!

Unlike a camera’s adjustable sensitivity to light, a camera’s maximum contrast
ratio, known as its dynamic range, is not adjustable. Formally, dynamic range is
the ratio between the brightest and darkest light intensities a camera sensor can
capture in a single image without losing image detail. In other words, this is the
maximum intensity ratio between the darkest detailed shadows and the brightest
textured brilliance, as shown in Figure 3.9. No one single sensitivity setting (or
exposure value) will suffice to capture a high dynamic range (HDR) scene that
exceeds the camera’s contrast-sensing ability.

The lens and the sensor together limit the camera’s dynamic range. In a high-
contrast scene, unwanted scattering of light within complex lens structures causes
glare and flare effects. The degree of these effects depends on the image itself, but
traces of light from bright parts of the scene typically leak into dark image areas,
washing out shadow details and limiting the maximum image contrast the lens can
form on the sensor. The maximum contrast is usually between 100,000:1 to 10
million:1 [264, 390]. The dynamic range of the sensor itself (typically < 1000 : 1)
imposes further limits. Device electronics (e.g., charge transfer rates) set the upper
bound on the amount of sensed light, and the least amount of light distinguishable
from darkness is set both by the sensitivity of the sensor and by its noise floor, which
is the combined effect of all the camera’s noise sources (quantization, fixed-pattern,
thermal, EMI/RFI, and photon arrival noise).

The range of visible intensities in many scenes often exceeds the ability of cam-
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Figure 3.9: Tone-mapped high dynamic range (HDR) image from [82]. The high
contrast of outdoor scenes such as this can easily exceed the dynamic range of most
digital cameras. The bottom row shows the original scene intensities scaled by pro-
gressive factors of ten. Scene highlight intensities in the clouds are approximately
10,000 times brighter than shadow details in the forest. This contrast range is well
beyond the typical 1000:1 dynamic range of conventional CMOS or CCD camera
sensors.

eras to record the scene and the ability of displays to represent the scene. When
plotted on a logarithmic scale (where distance depicts ratios, and each tic mark
represents a factor-of-10 change), the range of human vision spans about sixteen
decades, while typical film-like cameras can capture no more than five or six decades
and displays can represent no more than two or three decades. For the daylight-
to-dusk (photopic) intensities (upper two-thirds of scale), humans can detect con-
trast differences as small as 1–2% (1.02:1, which divides a decade into 116 levels
(1/log101.02)). Accordingly, 8-bit image quantization with a maximum of 256 levels
is barely adequate for cameras and displays whose dynamic range may exceed two
decades (100:1). Many cameras and displays use 10, 12, or 14-bit internal image
representations to avoid visible contouring artifacts.
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Figure 3.10: Analog Incident Light Meter (source: wikipedia)

3.2.1 Exposure Metering

Photographers have long recognized the importance of correct exposure. Expe-
rienced photographers often use the f/16 rule (also called the sunny-16 rule) to
estimate exposure without using a light meter. The rule is as follows; on a sunny
day, set the lens aperture to f/16 and the shutter speed to 1/ISO, where the ISO
value is the exposure index of the film or the digital sensor. This reliable rule,
together with luck and experience, has produced many iconic photographs, partic-
ularly in street photography and photojournalism. The rule results in acceptable
exposures for black-and-white film and some color print films with wide exposure
latitude. Slide film and digital sensors, however, are less forgiving of exposure er-
rors, so the f/16 rule is not ideal. Fortunately, nearly all current cameras rely on an
in-camera light meter to estimate the light values in a scene, allowing the camera
to automatically determine the shutter speed and aperture setting for appropriate
exposure.

There are two general types of light meters: reflected-light meters and incident-
light meters. Reflected-light meters measure the light reflected by objects the scene.
All in-camera meters are reflected-light meters. A spot meter measures the re-
flectance from a very small part of the scene (a subtended angle of 1◦ or less at
the light meter), while a center-weighted meter takes the average of reflectances
from a larger central portion of the entire field of view. In either case, the meter
is calibrated to show the appropriate exposure for an average scene (typically an
18% gray scene). A scene with higher reflectance, such as a scene with snow, sand,
or specular highlights, would affect the average reading of a light meter and lead
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to underexposure in the image. An incident-light meter that integrates the light
arriving at a scene point can measure scene light values more accurately, and is less
likely to lead to incorrect exposures, but it is inconvenient since it requires placing
the meter at the scene point prior to capturing the photo.

The American photographers Ansel Adams and Fred Archer developed the Zone
System as a means of determining optimal exposure with the use of a handheld or
in-camera light meter [32]. The Zone System is essentially an enhanced version of
the sunny-16 rule that relies on the photographer’s experience to estimate expo-
sure. In the Zone System, measurements are made of individual scene elements,
and exposure is adjusted based on the photographer’s knowledge of what is being
metered (a photographer knows the difference between freshly fallen snow and a
black horse, while a meter does not). Many books have been written on the Zone
System, but the concept is simple—render light subjects as light, and dark subjects
as dark, according to the photographer’s visualization. The Zone System assigns
numbers from 0 through 10 to different brightness values, with 0 representing black,
5 middle gray, and 10 pure white; these values are known as zones. To make zones
easily distinguishable from other quantities, Adams and Archer used Roman rather
than Arabic numerals. Strictly speaking, zones refer to exposure, with a Zone V
exposure (the meter indication) resulting in a mid-tone rendering in the final im-
age. Each zone differs from the preceding or following zone by a factor of two, so
that a Zone I exposure is twice that of Zone 0, and so forth. A one-zone change is
equal to a one-stop difference in exposure, corresponding more closely to standard
aperture and shutter controls on a camera. Evaluating a scene is particularly easy
with a light meter that indicates exposure value (EV), because a change of one EV
is equal to a change of one zone.

In 1983, Nikon introduced matrix metering in the Nikon FA camera. This
technology was perhaps the first commercial implementation of multizone meter-
ing. Since then all camera manufacturers have implemented a similar metering
technique, but call it by different names (such as evaluative metering, honeycomb
metering, and multisegment metering). The camera measures reflected light inten-
sity at several distinct points in the scene, and intelligently combines the results
to find optimal exposure settings. The number of points or zones varies from five
to several thousand, depending on the camera. Newer cameras measure light in
different color channels, and also incorporate information about focusing point, fo-
cus distance, scene mode, and the presence or absence of backlight to estimate the
exposure. Current multizone metering algorithms are sophisticated, and produce
nearly perfect exposure in most circumstances, freeing the photographer to better
explore more creative aspects of the image-making process.

3.2.2 Capturing High Dynamic Range

Film-like photography is frustrating for high-contrast scenes because even the most
careful attention to exposure settings will not allow us to capture the visible contents
of a whole scene in a single picture. Exposure sensitivity that is set to reveal shadow
details will cause severe overexposure in brightest parts of the scene; exposure
sensitivity that is set to capture the brightest highlight details will cause severe
underexposure in the darkest parts of the scene. Fortunately, several practical
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methods are available that allow a photographer to capture all the scene contents
in a usable way.

High dynamic range (HDR) imaging is a rich and active area of research. We re-
fer the reader to existing books (such as Reinhard et al. [336]) and recent surveys [53]
for a more complete treatment of the subject. [WE COULD ADD A FEW MORE
REFERENCES HERE, INCLUDING A REFERENCE TO THE UPDATED 2010
VERSION OF THE REINHARD BOOK]

HDR by Multiple Exposures.

The sort-first approach is highly suitable for capturing HDR images. [EXPLAIN
WHAT YOU MEAN BY ”SORT-FIRST”] To capture the widely varying intensities
of light in a high dynamic range scene, we stabilize the camera on a tripod and
take multiple images at different exposure settings, and then merge these images
in imaging software. In principle, the merge is simple; we divide the pixel value
of each pixel by the light sensitivity of the camera as it took that picture, and
combine the best estimates of scene radiance at that pixel for all the pictures we
took, ignoring badly overexposed and underexposed images.

This form of image merging, which is quick to compute, found widespread early
use as exposure bracketing [282, 72, 252, 404]. Many of these methods assumed the
linear camera response curves typically found on instrumentation cameras. How-
ever, most digital cameras intended for photography introduce intentional nonlin-
earities in their response to light, often mimicking the S-shaped log-log film response
curves called Hurter-Driffield or H-D curves. These H-D curves enable digital cam-
eras to capture a wider usable range of intensities, which provides a visually pleasing
representation of HDR scenes, even at the extremes of overexposure and under-
exposure. Some authors have proposed acquiring images at different exposures to
estimate the radiometric response function of an imaging device and then use the es-
timated response function to process the images before merging them [255, 91, 275].
This approach has proven robust and is now widely available in commercial soft-
ware tools (Adobe Photoshop, CinePaint) and open-source projects (HDRShop
(www.hdrshop.com), PFStools (www.mpi-inf.mpg.de/resources/pfstools), and oth-
ers).

HDR by Exotic Image Sensors

While easy and popular for static scenes, exposure bracketing methods are not the
only option available for capturing HDR scenes. They are particularly unsuitable for
scenes that vary rapidly over time. In later chapters we will explore exotic image
sensor designs that can sense higher dynamic range in a single exposure. They
include logarithmic sensors, pixels with assorted attenuation [287], multiple sensor
designs with beam splitters, and gradient-measuring sensors [406]. In addition,
we will explore techniques for dealing with high dynamic range scenes with video
cameras [109] or for capturing panoramas with panning cameras via attenuating
ramp filters [107, 111].
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3.2.3 Tone Mapping

Tone mapping is used to display the contents of a high dynamic range (HDR) image
on a device or material of limited dynamic range, such as a computer monitor, an
LCD display, or paper. By finding an optimal tone mapping, all or most of the HDR
image information can be represented on the limited device. Conversely, when low
dynamic range (LDR) images are to be displayed on HDR devices, we need to
reversely convert the LDR content to HDR content in a visually convincing way.
In both cases, human perception is a key factor to be incorporated.

Dynamic range compression

Certain tone mapping techniques, used primarily in photography, compress the
extended high dynamic range of a real scene into the relatively limited contrast
range of a device or medium. Some tone mapping techniques are global and act
equally on all the pixels in the image, while other tone mapping techniques are local
and manage tonal values and contrast in selected portions of the image.

Global Manipulation of Dynamic Range

Global operations to compress high dynamic range are spatially uniform non-linear
functions that are based on the luminance and other global variables of the image.
These variables are used to estimate an optimal transfer function for the image, such
that every pixel in the image is mapped by this transfer function into new values,
independent of the values of surrounding pixels. These techniques are simple, quick,
and easily implemented, but they often result in a decrease in image contrast.
Examples of common global tone mapping methods are brightness adjustment,
contrast reduction, and color inversion. The well-known gamma transfer function,
or gamma correction, is a typical global operator.

Local Manipulation of Dynamic Range

Local operations to compress high dynamic range are spatially varying non-linear
functions that are determined at each pixel, according to local features extracted
from the image parameters of surrounding pixels. Local tone mapping algorithms
are more complicated to implement than global techniques. They often result in
image artifacts such as ringing, which produces a thin bright line (the halo effect)
at well-defined transitions in contrast. The output from local operations can look
unrealistic, but they often provide the best overall image correction, since human
vision is mainly sensitive to local contrast.

Local manipulation methods are content aware, and thus more sophisticated
than global methods, but they typically require more computation. Some examples
of local manipulation methods are gradient domain manipulation, bilateral filtering,
and constraint propagation approaches.

Gradient domain manipulation methods, such as those developed by Fattal et
al. [130] and Mantiuk et al. [256], concentrate on preserving the contrast between
neighboring regions rather than adjusting the absolute magnitude of tonal value.
This approach is motivated by the fact that human perception is more sensitive to
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Figure 3.11: Gradient attenuation factors are computed locally for the Belgium
House HDR radiance map [130] and are used to compress the tonal values of the
HDR image. Darker shades indicate smaller scale factors, which leads to stronger
tonal attenuation.[THE BEFORE AND AFTER IMAGES COULD BE HERE AS
WELL]

changes in image contrast than to changes in absolute intensities. Fattal’s method
examines the gradient field of the luminance image and attenuates the magnitudes
of large gradients. A new low dynamic range image is obtained by processing the
modified gradient field of the high dynamic range image. The method compresses
dynamic range (often drastically), while preserving fine image details and avoid-
ing common artifacts such as halos, gradient reversals, or loss of local contrast.
The method also enhances ordinary images by bringing out detail in dark regions.
Figure 3.11 shows an example of an attenuator map for dynamic compression deter-
mined by this technique, made from the Belgium House HDR radiance map [130].
The darker the shade in this map, the stronger the attenuation in the high dynamic
range image. [DO YOU HAVE THE BEFORE AND AFTER IMAGES FOR THIS
ATTENUATOR MAP?]

Bilateral filtering methods proposed by Durand et al. [101] also reduce contrast
in HDR images while preserving image details. Bilateral filtering decomposes the
image into two layers—a base layer and a detail layer. The base layer is adjusted to
reduce contrast, while the detail layer remains unaltered to preserve image details.
Durand et al. then implemented a real-time bilateral filtering–based tone-mapping
framework [311], as well as applied it to interesting photographic manipulations [50].

Constraint propagation approaches proposed by Lischinski et al. [249] can per-
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form interactive tone mapping with an edge preserving property, which means the
adjustments will be performed only on a local region, without leaking outside of
the edge.

Mantiuk et al. [110] proposed an adaptive-tone-mapping operator for different
display devices. The operator weights contrast distortions according to their visi-
bility, as predicted by the model of the human visual system. [THIS SENTENCE
IS TAKEN FROM THE PAPER ABSTRACT]]

Inverse—from Low Dynamic Range to High Dynamic Range

Inverse tone mapping techniques are needed now that HDR displays are available
in the consumer market and when the HDR visual content does not have great
dynamic range. This dilemma is similar to 3D displays and the problem of 2D-
to-3D conversion. Rempel et al. [337] proposed a robust algorithm for converting
legacy LDR video and photographs to HDR versions in real time, which can be
played on HDR displays.

Reverse tone-mapping is an under-constrained problem, as a result, a reasonable
evaluation system is needed for designing algorithms and improving results. Masia
et al. [259] proposed a method for evaluating the reverse tone mapping algorithms
on the basis of varying exposure conditions.

To be included?
Tumblin and Rushmeier [407]
LCIS by Tumblin and Turk [408]
Gradient domain HDR compression by Fattal et al. [129]
Bilateral filter; Trilateral filter
Ledda et al. [228] compared various tone mapping operators using a HDR dis-

play.

3.2.4 Compression and Display

An HDR image covers a dynamic range that is much wider than conventional
eight-bit or ten-bit image file formats can express. A limited number of bits of
information per color channel per pixel is inadequate to depict the full range of
HDR light intensities in a camera sensor or display device (see Figure 3.12). Early
file formats, using extravagant amounts of memory to represent light intensities,
employed simple grids of floating-point pixel values. One popular solution used 8-
8-8-8 bit pixels that featured a shared exponent E and 8-bit mantissas in a compact,
easy-to-read RGBE format. This representation was devised by Greg Ward [421],
and used in his photometrically accurate 3D renderer RADIANCE [420]. A psy-
chophysically well-motivated extension to the format was proposed for the TIFF 6.0
image standard [226], which formed the basis for the slightly simpler format used
by HDRShop. Later, the openEXR format developed in 2003 by Industrial Light
and Magic and independent partners provided a simpler storage format, combin-
ing flexible bit-depth, compression capabilities, backwards compatibility, suitability
for motion-picture workflows, computing platform independence, and open-source
licensing. This format has gained widespread acceptance. 2.

2See www.openexr.com
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Figure 3.12: Visual dynamic range mismatch between a real life scene and a typical
display or capture device.

To appear in the ACM SIGGRAPH conference proceedings

4.1 Hardware Setup

In a conventional LCD, two polarizers and a liquid crystal are used
to modulate the light coming from a uniform backlight, typically a
fluorescent tube assembly. The light is polarized by the first polar-
izer and transmitted through the liquid crystal where the polariza-
tion of the light is rotated in accordance with the control voltages
applied to each pixel of liquid crystal. Finally, the light exits the
LCD by transmission through the second polarizer. The luminance
level of the light emitted at each pixel is controlled by the polariza-
tion state of the liquid crystal. It is important to point out that LCDs
cannot completely prevent light transmission - even at the darkest
state of a pixel, light is emitted and as such the dynamic range of an
LCD is defined by the ratio between the light emitted at the bright-
est state and the light emitted in the darkest state. For a high end
LCD, this ratio is usually around 300 : 1, with monochromatic spe-
cialty LCDs (e.g. those for medical imaging) going up to 700 : 1.
The luminance range of the display can easily be adjusted by con-
trolling the brightness of the backlight, but the dynamic range ratio
will remain the limiting factor. In order to maintain a reasonable
‘black’ level of about 1cd/m2, the LCD is thus limited to a maxi-
mum brightness of about 300cd/m2.
The basic modification introduced by the HDR technology in-

volves inserting a second light modulator and increasing the bright-
ness of the backlight. These two modulators in series provide an ex-
tremely dark state with a very low light emission, which then makes
it possible to increase the brightness of the backlight dramatically
without losing the ‘black’ state. Optically, this series of modulators
results in multiplication of the individual dynamic ranges.
For the projector-based HDR display presented in this paper, the

backlight and the first modulator are combined into a single DLP
using a Digital Mirror Device with a dynamic range of 800 : 1.
The three central components of the HDR display are then the pro-
jector, the LCD and the optics that couple the two. Using these
components, each image on the HDR display is the result of modu-
lated light coming from the projector which is directed onto the rear
of the transmissive LCD by the optics system, modulated a second
time by the LCD, and properly diffused for viewing.
The projector used in the HDR display is an Optoma DLP

EzPro737 digital mirror projector. To reduce unnecessary light loss,
we have removed the color wheel from the projector, resulting in
a monochrome display system with a threefold increase in bright-
ness due to the absence of the color filters. New control electronics
have been integrated into the commercially available projector to
re-synchronize it in absence of this color wheel.
The LCD panel is a 15” XGA color LCD made by Sharp (Sharp

LQ150X1DG0). It is driven by an EarthVision AD2 LCD con-
troller, which allows a direct VGA connection. The LCD panel has
been separated from the conventional backlight and all of the opti-
cal layers behind the display have been removed to create a trans-
missive image modulator.
The optics used in the HDR display include the conventional

projection lens of the EzPro projector, and a Fresnel lens directly
behind the LCD display to collimate the projected light into a nar-
row viewing angle for maximum brightness of the HDR display and
to avoid color distortion due to diverging light passing through the
color filters of the LCD. Finally, a standard LCD diffuser has been
used to redistribute the collimated light into a reasonable viewing
angle.
All three components have been installed in a single housing

with appropriate alignment mechanisms to create a close match-
ing of the DLP and LCD pixels. The alignment can be fine-tuned
through the controls of the DLP projector. However, a perfect
match is impractical as alignment at the sub-pixel level is hard to
achieve and almost impossible to maintain. To avoid moiré patterns
and alignment artifacts associated with even a minor misalignment,
we have deliberately blurred the projector image and compensate

for that blur in the LCD image as described in the following sec-
tion.

LCDFresnel Lens and Diffuser

Projector

LCD
Controller

Dual-VGA Graphics
Card in PC

Figure 4: Top: schematic of the HDR display including the pro-
jector, LCD and optics. Bottom: actual photograph of the display.
Both projector and LCD are driven by a single dual-VGA graphics
card.

Using this configuration, the light output of each pixel of the
HDR display is effectively the result of two modulations, first by
the DLP and then by the LCD pixel, along the same optical path.
The upper boundary of the dynamic range results from full trans-
mission of both pixels (i.e. the 255th level on both modulators),
and the lowest boundary from the lowest possible transmission of
both modulators (i.e. the 0th level on both modulators). Since the
DLP has a dynamic range of 800 : 1 and the LCD a dynamic range
of 300 : 1, the theoretical dynamic range of the HDR display is
240, 000 : 1. Imperfections in the optical path introduce noise that
reduces the dynamic range to a measured 54, 000 : 1. The lumi-
nance values matching these boundaries are a result of the bright-
ness of the projector and the transmission of the LCD. In this case,
the Optoma EzPro737 is rated at 1200 Lumens, or approximately
2400 Lumens once the RGB color filters are removed (since each
filter for red, green and blue eliminates approximately 2/3 of the
incoming light). The Sharp LCD panel has a measured transmis-
sion of approximately 7.6% in the white state (this is quite high for
an LCD since even the theoretical maximum for a color LCD with-
out any losses is only 16% due to the light reduction of 50% at the
polarizer and another 66% due to the RGB color filter). Assuming
that the light emitted by the HDR display is diffused across a solid
angle ω, the maximum luminance is then given by:

Lmax =
Φmax

Aω

where A is the area of the LCD and Φmax is the maximum outgo-
ing flux. In the HDR display prototype, the flux is approximately
182 Lumens (2400 Lumens ×7.6%). The area A is the area of the

4

Figure 3.13: High dynamic range display demonstrated by Seetzen et al. [360] uses
two LCDs placed one after the other to create higher contrast ratios than possible
with a single LCD. (Figure from [360]).
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Seetzen et al. [360] developed display devices capable of directly displaying HDR
images without the use of tone mapping. They used two displays—a low resolution
display behind a standard LCD panel. The overall contrast of the combined device
is given by (c1 · c2) : 1, where c1 : 1 and c2 : 1 are the contrast ratios of the
two displays. In one prototype they used a low resolution array of high power
LEDs behind a standard high resolution LCD to achieve a dynamic range beyond
50, 000 : 1. (See Figure 3.13).

3.3 Beyond Tricolor Sensing

Existing photographic capture and reproduction methods mimic the well-understood
trichromatic response of human vision. Three fixed color primaries—red, green, and
blue (RGB)—are used to represent any color in the color gamut of the device. Un-
fortunately, fixed-spectrum photography limits our ability to detect or depict several
visually useful spectral differences. In the common phenomenon of metamerism, for
example, the spectrum of available lighting used to view or photograph objects can
cause materials with notably different reflectance spectra to have the same appar-
ent color because they evoke equal responses from the broad, fixed color primaries
in our eyes or the camera. Metamers are commonly observed in fabric dyes where
two pieces of fabric might appear to have the same color under one light source,
and a very different color under another.

Fixed color primaries also impose a hard limit on the gamut of colors that a
device can accurately capture or reproduce. As the well-known CIE 1931 color
space chromaticity diagram illustrates [WE CAN ADD THE CIE CHROMATIC-
ITY DIAGRAM HERE AS A FIGURE], each set of fixed color primaries defines a
convex hull of perceived colors within the space of all humanly perceptible colors.
The device can reliably and accurately reproduce only the colors inside the convex
hull defined by its color primaries. In most digital cameras, the fixed, passive Bayer
RGB filter grid overlaid on pixel detectors sets the color primaries. Current digital
micro-mirror device (DMD) projectors use broadband light sources passed through
a spinning wheel that holds similar passive RGB filters. These filters compromise
between narrow spectra that provide a large color gamut and broad spectra that
provide greatest on-screen brightness.

At first glance an increase in the spectral resolution of camera, lights, and pro-
jectors might not seem to offer any significant advantages in photography. [PARA-
GRAPH IS INCOMPLETE. LIST THE ADVANTAGES HERE.]

3.3.1 Metamers and Contrast Enhancement

Black-and-white photographers often use yellow, orange, red, or green lens filters for
specific visual effects in their images. Without filters, white clouds and blue sky are
often rendered at roughly the same intensity in a black and white photograph. A
yellow, orange, or red filter on the lens makes the sky appear progressively darker
than the clouds, thus rendering sky and clouds as different tones on black and
white film. A red filter essentially attenuates the wavelength corresponding to blue
and green colors in the scene, thus creating strong tonal differences between the
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   (a) (b)

Figure 3.14: Comparison of the spectral response of a typical color film and digital
camera sensor. (a) Spectral response of the Nikon D70 sensor [276]. (b) Spectral
response of Fujichrome Velvia for Professionals color slide film [145]. [THE NIKON
D70 IS A NINE-YEAR-OLD CAMERA. WE COULD FIND A NEWER SENSOR
EXAMPLE.]

clouds and the sky in the resulting photograph. This is a classic case of effectively
modifying the illumination to distinguish between metamers.

Unfortunately, photographers can carry only a limited number of filters with
them. These filters are often broadband and useful for only standard applications.
A camera that allows arbitrary and instantaneous attenuation of specific wavelength
ranges in a scene would give a photographer increased flexibility. The camera could
iteratively and quickly work out the best effective filter to achieve a metamer-free
high contrast photograph for a given scene. Similarly, with an “agile” light source
guided by our camera, we might change the illumination spectra enough to disrupt
the metameric match. Or, we might interactively adjust and adapt the illuminant
spectrum to maximize contrasts of a scene, both for human viewing and for capture
by a camera.

[ARE CAMERAS WITH SUCH CAPABILITIES AVAILABLE COMMER-
CIALLY? IT SEEMS LIKE A PROPOSED CAPABILITY, RATHER THAN AN
EXISTING EPSILON CAPABILITY. THIS SECTION ON TRICOLOR SENSING
DOESN’T GO INTO ANY DETAIL ABOUT WHAT IS “BEYOND” TRICOLOR
SENSING. THIS SECTION NEEDS MUCH MORE ATTENTION TO MAKE IT
FIT BETTER IN THIS CHAPTER ON EPSILON PHOTOGRAPHY.]

3.4 Wider Field of View

Human vision provides us with seemingly endless visual richness and detail; the
more we look, the more we see. We are almost never conscious of angular extent or
the spatial resolution limits of our eyes, nor are we overly concerned with where we
stand as we look at something interesting, such as an ancient artifact behind glass
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Figure 3.15: HDview—Capture and viewing of gigapixel panoramic images [220].
[CAPTION NEEDS MORE DETAIL ABOUT THIS IMAGE]

in a display case. Our visual impressions of our surroundings appear seamless,
enveloping and filled with unlimited detail apparent to us with just the faintest
bit of attention. Even at night, when rod-dominated scotopic vision limits spatial
resolution, and the world looks dim, gray, and soft, we do not confuse a tree trunk
with a telephone pole, or the distant grassy field beyond it.

Like any optical system, our imperfect lens and photoreceptor array offer little
or no resolving ability beyond 60–100 cycles per degree, yet we have the experience
clarity and visual detail at a much higher level. We infer that the edge of a knife
blade is sharp and discontinuous. It appears disjoint from its background, and is
not optically mixed with with surrounding details on even the most minuscule scale.
Our impressions of our surroundings seldom lack subtlety and richness; we seek out
mountaintops, ocean vistas, spectacular sunsets, and dramatic weather effects in
part because the more we look around, the more variety we see in these visually
rich scenes. With close attention, we almost never exhaust our eye’s abilities to
discover interesting visual details, including the fine vein structure of a leaf, the slow
boiling formation of a thunderstorm, and the magnificently complex composition
of luxurious fur on an animal. Of course we cannot see behind our heads, but we
rarely have any sense of our limited field of view.

By comparison, camera placement, resolution, and framing are key governing
attributes in nearly all photographs. How might we move past these current pho-
tographic requirements and limitations to achieve a more free-form visual record
computationally? How might we construct a photograph to better achieve the im-
pression of an unlimited and unbounded field of view, along with the visual richness
revealed with little more effort than an intent gaze?

A panorama is a first-step solution to an unbounded field of view. To capture a
panorama the photographer must point the camera at interesting parts of a larger
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scene while ensuring adequate overlap between adjacent captured photos. The
overlapped photos are then processed, or stitched, by a software application into
a nearly seamless larger image. The stitching process works best for relatively
static scenes far from the camera, such as landscapes, large crowds, or city scenes.
Panoramas are popular because of the visual appeal of a “wide” shot, and because
the composite stitched image has a higher resolution—and more visual detail—than
a single image from a camera’s digital sensor. Additionally, the photographer can
select exactly the parts of a scene to photograph and the parts to ignore. The
resulting panorama might not have a traditional rectangular shape, but it will
contain all the visual information the photographer finds appealing.

The main disadvantages of panoramas are that they require careful capture of
multiple photos, so lens choice, camera stability, image overlap, and proper exposure
are critical, and the stitching software can be less than perfect and produce visible
seams in the final image. In addition, as camera resolution and field of view increase,
panoramic image files become larger in size and more awkward to store, transfer,
and display. Nevertheless, panoramic photography is more popular than ever. Many
current digital cameras and smartphones now have built-in capabilities to create
panoramas, without additional software processing. These are fun to use, even
though they sacrifice ultimate image quality for convenience and speed.

The great advantage of carefully made panoramas is a pleasingly wide perspec-
tive and heightened image detail. Recently, several efforts have led to progress in
capturing gigapixel resolution images via panoramic stitching, and viewing those
gigapixel images using novel interfaces, such as HDview [220]. The HDview system
cleverly selects the image-browsing parameters by continuously varying the blend
between spherical and planar projections. Figure 3.15 shows an example of an
HDview image. [MORE DETAIL ABOUT THIS GIGAPIXEL-IMAGE EFFORT
AND OTHER PANORAMA CREATION EFFORTS COULD BE SUMMARIZED
HERE.]

3.5 Improving Resolution

The spatial resolution in film-based cameras is set by the film emulsion. The point
spread function (PSF) describes the distribution of light recorded by the film for an
in-focus point source, due to internal scattering and film grain [153]. The effective
resolution often depends on the film sensitivity, which is determined by the ISO
exposure index of the film. Film with lower ISO has finer film grain and higher
resolution, while film with higher ISO has coarser film grain and lower resolution.
Photographers usually prefer using a lower ISO film for most portraits, landscapes,
and object photography. For example, film such as Ilford PAN F Plus at ISO 50 has
extremely fine grain and is widely used for high resolution photography in scientific,
technical and copying applications. On the other hand, film such as Kodak Tri-X
at ISO 400 is often used in low light conditions, in action scenes that require fast
shutter speed, and for creative purposes where the higher noise and grain more
effectively capture the essence of the scene.

The sensor in a digital camera replaces and mimics the film in a traditional
camera. Digital sensors have a finite number of discrete light-sensing pixels that



108 3. Epsilon Photography

(a) (b)

Figure 3.16: Image resolution decreases as ISO sensitivity of the digital sensor
increases. The amount of digital noise produced at high ISO values depends on the
camera sensor, and is especially noticeable in shadow areas of an image. (a) Sensor
sensitivity at ISO 100 produces an image with fine details. (b) Sensor sensitivity
at ISO 1600 produces a noisy image that obscures fine details.

set the maximum spatial resolution of a captured photograph. Sensor resolution is
fixed at the factory, and replacing the sensor on a commercial camera is not possible
(whereas a roll of film is easily replaced). Most digital sensors allow the user to
modify the ISO sensitivity within some reasonable range by changing the gain on
the A/D converter. However, higher ISO sensitivity results in increased digital noise
in the captured photograph because the pixel size is fixed. [OTHER FACTORS IN
SENSOR FABRICATION AND PROCESSING ALSO AFFECT NOISE—THOSE
FACTORS COULD BE LISTED HERE.] This is different from film where the
effective “pixel size” of the film grain changes according to the ISO sensitivity of
the film. Because of increased digital noise the usable resolution of a digital sensor
actually decreases as we increase the ISO sensitivity, as shown in Figure 3.16.
[I ADDED A FIGURE THAT ILLUSTRATES LOSS OF RESOLUTION WITH
INCREASED NOISE.]

Researchers have developed many techniques to improve sensor resolution. One
technique, called superresolution, improves image resolution by combining multiple
low-resolution images to recover higher spatial frequency components lost to under-
sampling. Numerous algorithms and techniques have been proposed [405, 213, 193,
194, 215, 106] that first estimate the relative motion between the camera and the
scene, and then register all images to a reference frame. The images are then fused,
usually by interleaving filtered pixels, to obtain a high resolution image. Keren et
al. [212] and Vandewalle et al. [411] use randomized or ‘jittered’ sensor positions
that they estimate by using sub-pixel image registration. Komatsu et al. [219] inte-
grate images taken by multiple cameras with different pixel apertures to get a high
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resolution image. Joshi et al. [209] merge images taken at different zoom levels, and
Rajan et al. [327] investigate the use of blur, shading, and defocus for achieving
superresolution of an image and its depth map. Most authors also applied mod-
est forms of deconvolution to boost the image’s high spatial frequency components
that were reduced by the box filter. Park et al. [314], Borman and Stevenson [64],
and the book by Chaudhuri [80] provide a unified survey and explanation of many
current methods. Lin and Shum [246], and Baker and Kanade [52] analyze the
limits on the actual level of enhancement that superresolution techniques provide,
and place hard bounds on it.

[NOTE IN MS: talk about Ankit’s superres by moving mask in lens aperture]

[NOTE IN MS: to do: should this paragraph below go to the optics chapter
instead (coded projections)?]

Agrawal and Raskar [40] propose a technique for obtaining superresolution from
a single photograph. They use the effect of motion blur to increase the resolution
of a moving object. A larger blur size gives greater resolution enhancement with a
corresponding increase in reconstruction noise.

3.6 Extending the Depth of Field

Chapter 2 describes how the depth of field of an imaging system is related to the
size of the lens aperture. The larger the aperture, the shallower the depth of field.
Conversely, the smaller the aperture, the greater the depth of field. Unfortunately,
a small aperture size can create other problems, such as higher noise (because
less light enters the camera) and more pronounced diffraction artifacts. Several
techniques have been proposed to extend the effective depth of field while still
using a relatively large aperture size.

Extending depth of field has been a long-standing problem in the field of mi-
croscopy. Microscopes typically have an extremely shallow depth of field—a few
microns—at close-up distances, and they are almost always light deprived (thus the
need for a large aperture). A technique often used to extend the depth of field is to
capture a series of images with the lens focused at different sample depths. These
images form a focal stack, which contains sharply focused information at varying
depths in the separate images. The focal stack can be processed into a single opti-
mized image that has the appearance of much greater depth of field. Because the
images in a focal stack are made over a period of time, this technique is limited to
static subjects rather than live moving organisms. A similar processing technique
known as confocal microscopy is discussed in Chapter 4.

Agarwala et al. [37] developed the photomontage processing technique (dis-
cussed in detail in Chapter 7) to combine the various images of a focal stack and
produce a single image with extended depth of field. They find high contrast regions
in the stack of images, segment these regions by using graph cuts, and fuse segments
from different images by using gradient domain fusion. Figure 3.17 shows that the
resulting synthesized image has a much greater depth of field than possible with an
image made by a large physical aperture. Recently, Hasinoff and Kutulakos [176]
analyzed the use of focal stacks to achieve desired depth of field (Figure 3.18). They
show that by optimally selecting aperture, exposure time, and focus setting on each
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Figure 3.17: No single lens can achieve enough depth of field at close-up distances
in microscopy to cover the full length of an object such as an insect. Because
of extremely shallow depth of field at small distances, the lens can focus only on
antennae or thorax or parts in between, as shown in the upper figure. By taking
a series of focus-bracketed images, however, we can create a focal stack. With
processing and optimization of the focused portions of each image, we can assemble
a single image with much greater depth of field, as shown in the bottom figure.
(Source Agarwala et al. [37].) [NOTE IN MS: replace with nicer figure.]
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1 photo @ f/8
total time: 2 s

2 photos @ f/4
total time: 1 s

synthesized photo
with desired DOF

2 s 0.5 s0.5 s

Fig. 1. Left: Traditional single-shot photography. The desired depth of field is shaded (red). Right:

Light-efficient photography. Two wide-aperture photos span the same DOF as a single-shot

narrow-aperture photo. Each wide-aperture photo requires 1/4 the time to reach the exposure

level of the single-shot photo, resulting in a 2× net speedup for the total exposure time.

it is not possible to span a wide DOF with a single wide-aperture photo, it is possible to
span it with several of them, and to do so very efficiently.

Using this observation as a starting point, we develop a general theory of light-

efficient photography that addresses four questions: (1) under what conditions is cap-
turing photo sequences with “synthetic” DOFs more efficient than single-shot photog-
raphy? (2) How can we characterize the set of sequences that are globally optimal for a
given DOF and exposure level, i.e. whose total exposure time is the shortest possible?
(3) How can we compute such sequences automatically for a specific camera, depth of
field, and exposure level? (4) Finally, how do we convert the captured sequence into a
single photo with the specified depth of field and exposure level?

Little is known about how to gather light efficiently from a specified DOF. Re-
search on computational photography has not investigated the light-gathering ability of
existing methods, and has not considered the problem of optimizing exposure time for a
desired DOF and exposure level. For example, even though there has been great interest
in manipulating a camera’s DOF through optical [10–13] or computational [2, 5, 14–18]
means, current approaches do so without regard to exposure time – they simply assume
that the shutter remains open as long as necessary to reach the desired exposure level.
This assumption is also used for high-dynamic range photography [2, 19], where the
shutter must remain open for long periods in order to capture low-radiance regions in a
scene. In contrast, here we capture photos with camera settings that are carefully chosen
to minimize total exposure time for the desired DOF and exposure level.

Since shorter total exposure times reduce motion blur, our work can be thought of
as complementary to recent synthetic shutter approaches whose goal is to reduce such
blur. Instead of controlling aperture and focus, these techniques divide a given exposure
interval into several shorter ones, with the same total exposure (e.g., n photos, each with
1/n the exposure time [9]; two photos, one with long and one with short exposure [8];
or one photo where the shutter opens and closes intermittently during the exposure [7]).
These techniques do not increase light-efficiency but can be readily combined with our
work, to confer the advantages of both methods.

Figure 3.18: Light efficient photography. Capturing and merging multiple images
taken at large aperture sizes is more efficient than capturing a single image taken
at a smaller aperture size. (source Hasinoff and Kutulakos [176]).

photo, they can achieve a given depth of field with a given exposure level in less
time than it takes to capture a single photo with the same depth of field. They
derive a closed-form solution for a globally optimal capture sequence that may be
used as an alternative to a single-shot narrow-aperture photograph. They use a
technique similar to photomontage to combine the multiple images. [NOTE IN
MS: to do: add more details for this?]

Section 4.4.3 discusses additional techniques that can achieve extended depth
of field. A light field camera such as those described by Wilburn et al. [427], Ng
et al. [303], and Veeraraghavan et al. [414] essentially capture the focal stack of a
scene in a single shot. The focal stack is then processed to obtain a single extended
depth of field image. Veeraraghavan et al. [414] and Levin et al. [231] use a mask
at the aperture and a phase plate in place of a lens [100, 76], allowing them to use
point spread function engineering to extend the depth of field.

3.7 Capturing Fast Phenomena

In the 1870s, well before the era of motion pictures, English photographer Ead-
weard Muybridge developed a method for capturing motion by constructing an
elaborate multicamera system of wet-plate (collodion) cameras to take single short-
exposure-time photographs in rapid-fire sequences. He devised a clever electromag-
netic shutter-release mechanism triggered by trip-threads to capture action photos
of people and animals in motion, such as the galloping horse in Figure 3.19. He
refined the system by using electromagnetic shutter-release mechanisms triggered
by pressure switches or elapsed time, which allowed him to record walking human
figures, dancers, and acrobatic performances 3). His sequences of short-exposure
freeze-frame images provided the first careful examination of the subtleties of hu-
man and animal motion, which are typically too fleeting or complex for our eyes to
absorb as they are happening. Going beyond the visual information in one perfect
instant in a single traditional photograph, Muybridge’s event-triggered image se-
quences contain valuable visual information that stretches across time and across a

3www.kingston.gov.uk/browse/leisure/museum
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Figure 3.19: Eadweard Muybridge sequence of a galloping horse, made in the 1870s
with multiple cameras and a shutter release system timed to movement. (Source:
en.wikipedia.org/wiki/Eadweard Muybridge).

sequence of camera positions. Image sequences such as these are suitable for several
different kinds of computational merging.

In some of Muybridge’s pioneering efforts, two or more cameras were triggered
at the same time to capture multiple views simultaneously. Modern work by Bre-
gler and others on motion capture from video merged these early multiview image
sequences computationally to infer the 3D shapes and the movements that caused
them. Bregler et al. [68] found image regions undergoing movements consistent
with rigid jointed 3D shapes in each image set, and computed detailed estimates
of the 3D position of each body segment in each frame. They then re-rendered the
image sets as short movies at any frame rate viewed from any desired viewpoint.

High speed video has gained wide popularity because of professional video cam-
eras such as the Vision Research Phantom HD Gold and Phantom Flex [338] and
consumer cameras such as the Casio Exilim Pro EX-F1 [125]. The professional
cameras record impressive high-definition video at high frame rates of 1000 frames
per second or more, and the consumer cameras give good results at slower frame
rates and lower resolutions. These cameras provide a valuable perspective on tem-
poral detail and motion, which our limited human vision doesn’t allow us to see
otherwise.

Several computational approaches to achieving higher frame rate videos were
recently proposed. Shechtman et al. [368] extended superresolution to the spatio-
temporal domain. They captured a dynamic scene with multiple cameras, each
with relatively low resolution and low frame rate. They then exploit the sub-pixel
spatial and sub-frame temporal misalignment between the cameras to combine the
captured information with superresolution techniques. The multiple cameras offer
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the classical “wagonwheel effect”where the fanappears tobe
falsely rotatingbackwards (counterclockwise).Wecomputed
the spatial and temporal misalignments between the se-
quences at subpixel and subframe accuracy using [9] (the
recovered temporal misalignments are displayed in Figs. 6a,
6b, 6c, and 6d using a time-bar). We used the SR method of
Section 2 to increase the temporal resolution by a factor of 3
while maintaining the same spatial resolution. The resulting
high-resolution sequence displays the true forward (clock-
wise)motion of the fan as if recorded by a high-speed camera

(in this case, 75 frames/sec). Examples of a few successive

frames fromeach low resolution input sequence are shown in

Figs. 6a, 6b, 6c, and 6d for the portion where the fan falsely

appears to be rotating counterclockwise. A few successive

frames from the reconstructed high temporal-resolution

sequence corresponding to the same time are shown in

Fig. 6e, showing the correctly recovered (clockwise)motion. It

is difficult to perceive these strongdynamic effects via a static

figure. We therefore urge the reader to view the video clips
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Fig. 5. Space-time super-resolution. This figure shows a result of simultaneous resolution enhancement in time and in space using the algorithm
described in Section 2. The top part shows one out of the 36 simulated low resolution sequences used as input to the algorithm. The lower part
shows the output sequence whose frames are 2! 2 larger and whose frame-rate is !8 larger. The right-hand side shows the resolution
enhancement obtained in space (text) and in time (moving coke can). These results are contrasted with the corresponding places in the low
resolution input sequence (regions are magnified). It should be appreciated that no object motion estimation or segmentation was involved in
generating these results.

Fig. 6. Example 1: Handling motion aliasing—The “wagon wheel effect.” (a)-(d) display three successive frames from four PAL video recordings of a

fan rotating clockwise. Because the fan is rotating very fast (almost 90" between successive frames), the motion aliasing generates a false

perception of the fan rotating slowly in the opposite direction (counterclockwise) in all four input sequences. The temporal misalignments between

the input sequences were computed at subframe temporal accuracy and are indicated by their time bars. The spatial misalignments between the

sequences (e.g., due to differences in zoom and orientation) were modeled by a homography and computed at subpixel accuracy. (e) shows the

reconstructed video sequence in which the temporal resolution was increased by a factor of 3. The new frame rate 75 frames
sec

! "
is also indicated by

time bars. The correct clockwise motion of the fan is recovered. For video sequences, see: www.wisdom.weizmann.ac.il/~vision/SuperRes.html.

Figure 3.20: Shechtman et al. [368] proposed spatio-temporal superresolution. They
combined images from multiple low-resolution, low-frame-rate cameras to produce
a video with a higher spatio-temporal resolution. (Figure from Shechtman et
al. [368].)

staggered exposures that are then combined. Figure 3.20 shows how their technique
recovers rapid dynamic events that are not visible in any of the input sequences.
They also analyze trade-offs between spatial and temporal superresolution. For
example, motion blur (a spatial artifact) is resolved by increasing the temporal
resolution. [WE COULD DESCRIBE ADDITIONAL COMPUTATIONAL AP-
PROACHES TO HIGHER FRAME RATES.]

More than a hundred years after Muybridge’s work, Marc Levoy and colleagues
at Stanford University constructed an adaptable and reconfigurable array of 128
individual film-like digital video cameras that simultaneously perform both time-
multiplexed and space-multiplexed image capture [426]. The reconfigurable camera
array enabled a wide range of computational photography experiments. Using
the valuable lessons learned from earlier arrays [211, 433, 262, 439], developers of
the Stanford array added interchangeable lenses, custom control hardware, and
a refined mounting system, all of which permitted adjustment of camera optics,
positioning, aiming, and spacing between cameras. One configuration kept the
cameras packed together, a inch apart, and staggered the triggering times for each
camera within the normal 1/30 second video frame interval. The video cameras all
viewed the same scene from almost the same viewpoint, but each viewed the scene
during different overlapped time periods. By assembling the differences between
overlapped video frames from different cameras, the team was able to compute the
output of a virtual high-speed camera running at multiples of the individual camera
frame rates and as high as 3,000 frames per second.

However, at high frame rates these differences were quite small, causing noisy
results we wouldn’t find acceptable in a conventional high-speed video camera. In-



114 3. Epsilon Photography

   
(a) (b)  (c)

(d) (e) (f )

Figure 3.21: Staggered video frame times permit construction of a virtual high-
speed video signal with a much higher frame rate via hybrid synthetic aperture
photography [426]. Images of a scene are captured simultaneously through three
different apertures: (a) a single camera with a long exposure time, (b) a large
synthetic aperture with short exposure time , and (c) a large synthetic aperture
with a long exposure time. Computing (a + b − c) yields image d, which has
aliasing artifacts because the synthetic apertures are sampled sparsely from slightly
different locations. Masking pixels not in focus in the synthetic aperture images
before computing the difference (a + b − c) removes the aliasing in image e. For
comparison, image f shows the image taken with an aperture that is narrow in
both space and time. The entire scene is in focus and the fan motion is frozen, but
the image is much noisier.
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Figure 3.22: Bennett and McMillan [58] propose the concept of virtual exposure,
where the effective exposure on each pixel is adaptively and independently varied,
depending on the scene.

stead, the team simultaneously computed three low-noise video streams with differ-
ent trade-offs by using synthetic-aperture techniques [238]. They made a spatially
sharp but temporally blurry video Is by averaging together multiple staggered video
streams, providing high-quality results for stationary items but excessive motion
blur for moving objects. For a temporally sharp video It, they averaged together
spatial neighborhoods within each video frame to eliminate motion blur, but this
induced excessive blur in stationary objects. They also computed a temporally and
spatially blurred video stream Iw, to hold the joint low-frequency terms, so that the
combined streams Is + It?Iw [MS HAS ? HERE FOR AN OPERATOR—WHAT
SHOULD ? BE?] exhibited reduced noise, sharp stationary features, and modest
motion blur, as shown in Figure 3.21.

[NOTE IN MS: TO DO: Bullet time; sing bing kang]

3.8 Noise Reduction

Martinec [257] explains various noise sources in digital sensors and analyzes noise
for modern digital SLR cameras.

Bennett and McMillan [58] introduce the concept of virtual exposure, where the
exposure on each pixel is adaptively and independently varied in post-processing,
based on the temporal and spatial neighborhood of the pixel. They estimate each
pixel’s exposure setting by using spatially uniform tone mapping of each frame.
They then recreate the corresponding gain at each pixel by combining several tem-
poral samples for static regions and spatial samples for dynamic regions of the scene.
The resulting video has not only lower noise, but also a higher (tone mapped) dy-
namic range. The basic algorithm is extended to work with moving cameras by
tracking feature points and compensating for camera motion. The results look
impressive for static parts of the scene (see Figure 3.22), but detail may be lost
in dynamic parts where spatial filtering is applied. [THIS PARAGRAPH READS
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Figure 3.23: The elastic collision dynamics of a baseball. (Photo by Harold Edger-
ton.) [THIS FIGURE ALSO APPEARS AS FIGURE 1.7 IN CHAPTER 1. TEXT
FOR THIS FIGURE WAS REMOVED BY RW.]

LIKE IT WAS TAKEN WORD FOR WORD FROM A PAPER ABSTRACT.]

Summary

The goal of film-like photography is to copy an image formed by a lens. We shift
our attention in this chapter to the broader topic of capturing visual experience
by looking for broader sets of solutions for gathering visual information. Just
as biological vision systems include many different designs for different purposes,
we believe that computational photography devices can achieve similarly broad
diversity and novelty in design.



Chapter 4

Optics

The simplest optics for image formation is a pinhole placed at a distance from
a sensor or film. This is the technique used in the well-known camera obscura.
Because of its small size, however, a pinhole blocks nearly all the light needed to
form an image, and the pinhole size creates diffraction effects that reduce image
quality. Instead of pinholes, lenses are commonly used because they capture more
light and avoid the diffraction effects created by pinholes. In principle a simple
convex lens is sufficient for image formation, but in practice a compound lens with
several optical lens elements is required to correct (as much as possible) the many
optical aberrations that lenses produce.

New methods of imaging can form a coded intermediate image on the sensor.
An intermediate image such as this may not be suitable for human observation, but
software techniques can decode it and recover a richer representation of the imaged
scene. In addition, many other techniques such color manipulators, patterned masks
and arrangements that create a non-standard view and perspective are used to form
an image.

4.1 Animal Eyes

Although the variety of eyes in the animal kingdom seems astonishing, physical laws
have constrained solutions for collecting and focusing light to just eight types of eye
optics. Of around 33 animal phyla, about one-third have no specialized organ for
detecting light, one-third have light-sensitive organs, and the rest are animals with
what we would consider eyes. Simple photon detectors aggregate incident light. But
animal eyes have organs that also compare light from different directions. Biological
pinholes, lenses, or mirrors are used to focus an image on photoreceptors.

As earliest evolution occurred in water, which transmits only a limited range
of wavelengths, the mechanisms for photon response converged on biochemical so-
lutions that set the course for subsequent evolution (3). The evolution of eyes
very likely proceeded in stages. First were simple eyespots (early Cambrian period,
570 to 500 million years ago), with a small number of receptors in an open cup
of screening pigment. Eyespots would distinguish light from dark but could not
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Figure 4.1: Categorization of eyes found in animals. They are broadly classified as
chambered and compound eyes. (Figure from Fernald [134]).
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Figure 4.2: (a) Two-plane parameterization for light fields, (b) two-plane pa-
rameterization L(s, u) in the flatland case, and (c) spatio-angular parameteriza-
tion L(x, θ) in the flatland case.

represent complex light patterns. Invagination of this eyespot into a pit would add
the capacity to detect the direction of incident light. Addition of receptors may
then have led to a chambered eye, whereas duplication of an existing pit may have
led to a compound eye (2). Adding an optical system that could increase light
collection and produce an image would later dramatically increase the usefulness of
an eye. Whereas primitive eyes can provide information about light intensity and
direction, advanced eyes deliver more sophisticated information about wavelength,
contrast, and polarization of light.

4.1.1 Traditional Optics in Cameras

(Depending on what we add in Chapter 3 about optics in Film-like photography,
we may have to add more text here.)

Traditionally we see a (i) cascade of lenses (ii) aperture stop or iris (iii) filters
such as polarization, color (iv) coatings and (v) additional optics for operations like
range-finder, view-finder. [THIS SUBSECTION SHOULD BE A TRANSITION
FROM THE INTRODUCTORY TEXT ON ANIMAL VISION TO A SUMMARY
OF CAMERA OPTICS TO THE FOLLOWING SECTION ON LIGHT FIELDS.]

4.2 Light Fields and Ray Space Analysis

The light field is a 4D quantity that completely characterizes light transport in free
space. While the concept of 4D ray-space has been used in computer graphics and
vision for some time, it was first formalized and generalized in the computer graphics
literature by Levoy and Hanrahan [240], and Gortler et al. [162]. The light field
describes the set of all possible rays of light in a space free from occluders. A popular
light field parameterization is the two-plane parameterization, also called the light
slab. Two parallel planes separated by a finite distance describe all the rays between
them. A ray of light exists between all points on the first plane (u, v) and all points
on the second plane (s, t) (Figure 4.2(a)). This 4D parameterization, L(u, v, s, t),
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is frequently used to describe and understand image formation in cameras and
image-based rendering techniques.

As discussed in Chapter 2, a traditional film or digital camera (and even the
human eye) captures only a 2D slice of the 4D light field entering through the lens.
The rest of the information is lost as the sensor integrates over the lens aperture.
The exact 2D slice captured by the sensor depends on the focal length of the lens,
the distance between the scene and the lens, and the distance between the lens
and the sensor. Changing the plane of focus on a camera (or the eye) results in a
different 2D projection, but at any given instant we only get a single 2D projection.
As early as 1992 [35] several researchers recognized the value of sensing the direction
of incident light at each point on the focal plane behind a lens. Adelson’s camera
system combined a large front lens and a field of microlenses behind the lens. This
design gathered what is now known as a 4D light field estimate, and Adelson used
it for single-lens stereo reconstruction. More recently Ng et al. [303] refined the idea
further with an elegant hand-held digital camera (currently marketed as the Lytro
camera) for light-field capture that permits digital refocusing and slight changes of
viewpoint computationally.

This chapter describes light fields or the 4D ray space analysis of optical setups.
We discuss manipulation and capture of light fields and their use for applications
such as refocusing, 3D shape recovery, glare removal, and multispectral imaging.
While discussing ray space analysis, it sometimes helps to simplify the problem and
consider the easier problem in a flatland scenario1. Flatland is simply a hypothetical
2D plane where the light field reduces to a 2D quantity. Much of the flatland
analysis directly extends to the real world or a 4D light field. We can parameterize
the rays in a 2D light field using two parallel lines separated by a finite distance,
as shown in Figure 4.2(b). A ray of light exists between all points on the first
line (u) and all points on the second line (s) in this light slab parameterization.
Another parameterization for the light field is the spatio-angular parameterization
introduced by Georgiev et al. [156] (Figure 4.2(c)). A ray of light is described
by the point where it intersects a given line (x), and by the angle it makes with
that line (θ). The light field representation using either parameterization, L(u, s)
or L(x, θ), describes all the rays in the 2D space. It is fairly straightforward to
convert from one parameterization to another using simple trigonometry.

4.2.1 Light Field Projections

Figure 4.3 shows the 1D projection obtained on a screen placed at different points
in the 2D light field. As shown in Figure 4.3(b), a screen at t = 0 captures the
projection of the light field along the θ-axis,

I0(p) =

∫
L(p, θ)dθ.

The signal, I0(p) is essentially the image a camera or the eye focused on the x-plane
captures on its sensor or on the retina (shown in Figure 4.4(a)). The cone of rays

1The term flatland comes from the book entitled Flatland: A Romance of Many Dimensions,
by Edwin A. Abbott.
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Figure 4.3: Placing a screen at different points perpendicular to the t-axis results in
various 1D projections of the 2D light field, L(x, θ). The projection angle depends
on the distance t from the x-axis.

coming out of any scene point (A) combine back to a single, unique point (A′)
on the sensor plane, and the angular information is completely collapsed by the
integral. As we move the screen away from the x-plane to t = t1, the projection
direction changes from the vertical to a slant as shown in Figure 4.3(c). Finally,
moving the screen to t =∞ (Figure 4.3(d)) results in a projection along the x-axis
of the light field,

I∞(p) =

∫
L(x, p)dx.

The signal I∞(p) is an integral over all the spatial points for each angle θ.

The Fourier Slice Theorem [65] states that the Fourier transform of the projec-
tion of a 2D function on a 1D plane is exactly equal to a slice through the origin
and perpendicular to the projection direction of the 2D Fourier transform of the
original function. Ng applied the Fourier slice theorem to light field projections
and demonstrated its use for fast refocusing [301]. So a vertical projection like the
one in Figure 4.3(b) is equivalent to the inverse Fourier transform of a horizontal
slice through the center of the Fourier transform of the 2D light field. Similarly the
horizontal projection as shown in Figure 4.3(d) is equivalent to the inverse Fourier
transform of a vertical slice through the center of the Fourier transform of the light
field.

Light field of a pinhole camera. An infinitely small pinhole allows a single
ray for every scene point to pass through. We assume that the scene is the u-plane,
and the pinhole is the s-plane of the light field. The pinhole reduces the light field
L(u, s) to Ls0(u), where s0 corresponds to the pinhole position. The image captured
on a film placed behind the pinhole only contains a single degree of freedom, and
the remaining information in the light field is lost to the occluder surrounding the
pinhole.

Light field of a Lambertian fronto-parallel scene. Consider the special
case of a Lambertian fronto-parallel scene (called a painting) placed in front of a
camera as shown in Figure 4.4(a). Since the scene is diffuse, the outgoing rays in all
directions (θ) from each point on the scene are exactly the same. The resulting light
field has a single degree of freedom, Lp(x, θ) = I0(x). Each row in Figure 4.4(b)
is an exact copy of the other. Figure 4.4(a) shows a camera lens (or the lens of a
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Figure 4.4: (a) A fronto-parallel scene, called a painting, placed in front of a camera
with the lens focusing on the painting, and (b) the corresponding light field when
the painting is Lambertian. Each row in Lp(x, θ) is exactly the same, as indicated
by the horizontal orange rows in the light field visualization.

human eye) focusing a scene in the x-plane onto the camera’s sensor (or the eye’s
retina). In the special case when we have a Lambertian painting in the x-plane, all
rays coming out of a point A on the painting are identical. The sensor (or the eye)
captures a vertical projection of the light field Lp(x, θ). This special projection is
typically referred to as the image of the scene, and this is what all film cameras
and digital cameras capture. This projection is simply a scaled version of the image
captured by a pinhole.

4.3 Transformation of Rays in the Incident Light
Field

The goal of optics is to guide rays through the lens assembly so that they form a
high quality, invertible image on the sensor. In addition to the traditional optical
process, which involves bending rays at the main lens, researches in computational
photography attempt to transform a set of rays through additional bending as well
as attenuation and scattering 2. The additional transformation can be classified
into three stages, based on where the rays are manipulated.

• Transform First optical elements manipulate rays before they are passed
through the focusing mechanism.

• Transform Middle optical elements manipulate rays while the image is
being formed as part of the traditional focusing mechanism.

• Transform Last optical elements intercept and manipulate the rays after
they have been guided by the traditional focusing mechanism to form an
otherwise ordinary image.

2Prisms and polarizers cause wavelength-dependent and polarization-dependent bending or
attenuation respectively
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In this chapter we show how transformations take place at these three stages,
with examples in bending (microlens array for light field capture), attenuation (masks
for encoding intensities for linear combination), and scattering (color dispersion for
multispectral imaging). The concept of stages of first-middle-last transform comes
from computer graphics triangle visibility calculations using multiple pipelines,
where the triangles are sorted first-middle-last, depending on the assignment of
processing units to different depth slabs or display area.

A fourth stage for transforming rays is located between the illumination source
and the scene. This stage, usually referred to as computational illumination, will
be studied in the next chapter.

4.4 Lenses and Focus

Traditional cameras use a complex sequence of lenses to produce a high-quality
image on the film or sensor plane. These lenses are designed to minimize image
artifacts such as chromatic aberration, spherical aberration, vignetting, and various
forms of geometric distortion. The lens is the primary ray bender that transforms
the incoming light field so that a sharp, focused image is formed on the sensor. The
focal length of the lens determines the effective field of view for a given sensor size.
This section describes the application of computational techniques to generalize the
concept of lenses and focusing.

4.4.1 How Autofocus Works

As discussed in Chapter 2, a lens focuses a plane in the scene onto the image sensor.
Scene points away from this plane are blurred and appear out-of-focus. The photog-
rapher or the autofocus camera decides which plane to bring in focus by changing
the distance between the sensor and the lens before the photo is captured. This is
typically accomplished by manually sliding or rotating the lens in a manual focus
camera, or by a motor in an autofocus camera. The first point-and-shoot autofocus
camera was the Konica C35 AF, introduced in 1977. It used a phase-based auto-
focus module designed by Honeywell. The Minolta Maxxum 7000, introduced in
1985, was the first popular autofocus single lens reflex (SLR) camera. The phase-
detecting autofocus sensors and drive motor were both embedded in the camera
body, and the camera used a mechanical link in the lens mount for focusing and
aperture control. Modern autofocus cameras today use clever optics and algorithms
to provide almost instantaneous focusing. Most SLR cameras now embed the motor
for translating the lens in the lens itself, and use electronic coupling between the
lens and camera body.

Phase-based autofocus is most common in digital SLR cameras that use lenses
with reasonably large aperture. The camera uses a beamsplitter to direct light to an
autofocus sensor under the main reflex mirror on the camera. Two optical prisms
capture the light rays coming from the opposite sides of the lens aperture. This
creates a rangefinder with a baseline equal to the aperture size of the lens. The
two images are usually sensed by 1D sensor arrays. The phase difference between
the readings from the two arrays gives the direction and distance of lens motion to
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Figure 4.5: Phase-based autofocus, illustrated in this figure from US Patent
5589909 (Nikon), is used in most digital SLR cameras. A beamsplitter directs
light to an autofocus sensor. Two optical prisms capture light rays coming from
opposite sides of the lens aperture, which produces a rangefinder with a baseline the
size of the lens aperture. Phase differences from the two light rays give the direction
and distance needed for autofocus. [NOTE: THIS FIGURE NEEDS LABELS FOR
THE FOUR PARTS.]

achieve focus. Figure 4.5 illustrates the process of phase-based autofocus.

Contrast-based autofocus is commonly used in smaller digital point-and-shoot
cameras, video cameras, some cell-phone cameras, and some digital SLR cameras
in live-view mode. Contrast measurement is achieved by measuring the contrast
within the image as seen through the lens and captured by the sensor. Measuring
the local intensity difference between adjacent pixels gives an estimate of the degree
of defocus. Unlike phase-based autofocus, the camera needs to search for best focus
by moving the lens in the direction that increases contrast. As a result, focusing
is usually slower. Since contrast-based autofocus does not use a separate sensor, it
is easily implemented in software on less expensive cameras. Both the phase-based
and contrast-based methods require reasonably high contrast in the image at the
selected focus point. For example, neither technique works well on a uniformly lit
textureless wall.

Active autofocus systems use ultrasonic sound waves (measuring the delay in
their reflection), or infrared light (triangulation or amount of reflected light) to
measure the distance to the subject independently of the main optical system of
the camera. While active methods do not require a level of contrast in the scene,
their accuracy is typically lower than passive systems, and they do not work through
windows and glass.

A second and equally important aspect of autofocus is choosing where to focus.
Most cameras have a mode where the camera automatically determines the best
plane of focus based on some heuristics involving contrast, distance, and scene
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brightness. Newer cameras use face detection to focus on the closest face. Most
cameras also allow the photographer to manually select the focus point in the
viewfinder or the LCD display. This is usually done by using a touch interface
on the display, or a set of arrow buttons, or even by tracking the eye gaze in the
viewfinder.

4.4.2 Light Field Capture and Post-Capture Refocusing

As discussed in Section 4.2, a camera based on the traditional camera obscura
design only captures a 2D projection of the 4D light field incident on the camera
lens. Information is lost in the process of obtaining this 2D projection, and as
a result we get only one plane in perfect focus in the resulting photograph. The
other image planes are blurred by the point spread function (PSF) corresponding
to the degree of defocus. Several people have proposed modified camera designs
that capture the complete 4D light field on a single 2D image sensor. Most of these
techniques trade off spatial resolution for angular resolution, and encode higher
dimensional angular information on the same sensor. Consequently the final image
resolution is typically an order of magnitude lower than that of the sensor.

In its simplest form, light field capture can be thought as a form of epsilon
photography, as discussed in Chapter 3, where the camera position is changed over
sensors (using a camera array), over pixels (using a lenslet array), or over time (using
a changing aperture mask).

Integral imaging is an auto-stereo imaging technique that displays a 3D image
without requiring any special 3D glasses. The technique was first proposed by
Gabriel Lippmann in 1908 [248]. An array of small convex microlenses or pinholes
is placed over the image plane so that the viewer sees a different view through
each eye, thus giving a sense of depth. The image behind each individual microlens
element represents the various angular (θ) components for that macro pixel. A
similar setup with the microlens array in front of the film plane is used to capture
the image of a 3D scene. Ives [196, 197] added a large aperture lens in front of
the microlens array in the camera setup. A thorough history of integral imaging
and photography is given by Okoshi [307], and Roberts and Smith [342]. The book
edited by Javidi and Okano [200] provides a thorough survey of 3D video and 3D
TV technologies based on integral imaging.

Light field cameras build on the basic idea of integral imaging to capture a
complete 4D light field. Adelson and Wang [35] used a similar optical design to
estimate the depth for each pixel in a scene, and called a camera of this design
the plenoptic camera. Figure 4.6 shows how their camera uses a single main lens
along with a pinhole array or a lenticular array placed in front of the sensor plane.
The light arriving at each pinhole gets broken up into pixels corresponding to the
incoming angle of incidence. Each pinhole can be thought of as a macro-pixel,
with corresponding sub-pixels capturing the angular information. Their prototype
used a ground-glass diffuser placed behind a lenticular array, which is imaged by a
second video camera. The resulting optical setup provides information about how
the scene would look when viewed from a continuum of possible angular viewpoints
bounded by the main lens aperture.

Ng et al. [303] eliminated the diffuser from the optics and built a handheld
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Figure 4.6: Light field capture using a pinhole array placed at the image plane next
to the sensor. (The figure is from Adelson [35]) ADD CAPTION TEXT THAT
EXPLAINS THE THREE DIFFERENT PARTS OF THIS FIGURE.

Figure 4.7: Light field capture using a microlens array placed at the image plane
next to the sensor. Each macropixel captures the angular image information oth-
erwise lost in a standard camera. (Figure from Ng [303])
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(a)

—

Stanford Tech Report CTSR 2005-02

Figure 14: Refocusing after a single exposure of the light field camera. Top
is the photo that would have resulted from a conventional camera, focused
on the clasped fingers. The remaining images are photographs refocused
at different depths: middle row is focused on first and second figures; last
row is focused on third and last figures. Compare especially middle left and
bottom right for full effective depth of field.

Figure 15: Left: Extended depth of field computed from a stack of pho-
tographs focused at different depths. Right: A single sub-aperture image,
which has equal depth of field but is noisier.

Figure 16: Refocusing of a portrait. Left shows what the conventional
photo would have looked like (autofocus mis-focused by only 10 cm on the
girl’s hair). Right shows the refocused photograph.

Figure 17: Light field photograph of water splashing out of of a broken
wine glass, refocused at different depths.

Figure 18: Moving the observer in the macrophotography regime (1:1 mag-
nification), computed after a single light field camera exposure. Top row
shows movement of the observer laterally within the lens plane, to pro-
duce changes in parallax. Bottom row illustrates changes in perspective
by moving along the optical axis, away from the scene to produce a near-
orthographic rendering (left) and towards the scene to produce a medium
wide angle (right). In the bottom row, missing rays were filled with closest
available (see Figure 7).

10

(b)

Figure 4.8: (a) Refocusing example from the Stanford plenoptic camera. (b) An
all-in-focus image created from the focal stack produced by the light field data has
less noise than an image captured by a smaller aperture size to get the same depth
of field. (Figure from Ng [303])

plenoptic camera by placing a microlens array immediately above the sensor of a
medium format camera (Figure 4.7). They used the captured light field to arbi-
trarily refocus at different planes in the scene as a post-process (Figure 4.8(a)).
They perform real-time refocusing using the Fourier Slice theorem [301] discussed
in Section 4.2.1. They also demonstrate changing the camera’s center of projection
to any point within the aperture of the lens as a post-process. Their prototype
gives a spatial resolution of 292 × 292, and an angular resolution of 14 × 14. The
ability to change the plane of focus and effective aperture size after the photo cap-
ture process is extremely appealing in terms of the flexibility it offers. Like several
other light field capture techniques, the resulting images suffer from a significant
loss in spatial resolution.

Levoy et al. [241] implemented a light field microscope by inserting a microlens
array in the optical path of a conventional microscope (Figure 4.9). While the setup
is similar to earlier light field cameras, microscopes are inherently orthographic
devices, and the perspective views offered by this setup represent a new way to
look at microscopic specimens. Furthermore, the ability to create focal stacks from
a single photograph allows moving or light-sensitive specimens to be recorded in a
single shot. Unlike traditional photographic applications, however, diffraction is a
major limitation on the resolution obtainable by such a setup.

Georgiev et al. [156] used a sort-first approach to capture the 4D light field. They
placed an array of lenses outside the camera’s main lens to capture the incident
light field. Unlike previous approaches, they captured a complete image, each from
a slightly different center of projection, behind each lens element. They explore the
tradeoff between spatial and angular resolution in light field capture. Their setup
sacrifices angular resolution for higher spatial resolution, and relies on computer
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(a)

(b)

Figure 4.9: (a) Prototype of a light field microscope (MUCH BIGGER FIGURE (a)
NEEDED HERE). (b) A light field captured by the optical setup, and a perspective
pan and a focal stack computed from a single shot. (Figure from Levoy [241])

(a) (b) (c) (d)

Figure 4.10: ((a) Optical “lens” consisting of lens-prism pairs. (b) Sparse light field
camera with an array of 20 negative lenses. (c) and (d) Refocusing results from a
single captured image. (Figure from Todor [156])
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vision techniques for interpolating the limited angular resolution. Figure 4.10 shows
a prototype system of lenses and prisms that is attached external to a conventional
camera. This is very similar to a camera array setup discussed in Section 4.5.6.

All the lens-based techniques discussed thus far spatially re-bin rays of light to
capture the 4D light field on a 2D sensor. Veeraraghavan et al. [414] placed a mask
close to the image sensor to perform a similar re-binning in the frequency domain.
Section 4.5 discusses this and other mask-based techniques for capturing the 4D
light field.

Zhang and Chen [440] proposed using a bare sensor to capture multiple pictures
for different positions of the sensor to estimate the light field of the scene.

Recently, Levin et al. [232] proposed a Bayesian inference-based approach to
compare and contrast the performance of various light field cameras, and analyze
the limitations and advantages of the various designs. They also propose a prior
that models a real world light field better than the band-limited assumption and
significantly reduces sampling requirements.

4.4.3 Extending the Depth of Field

[NOTE: THIS SUBSECTION HEAD IS IDENTICAL TO SECTION HEAD 3.6
IN CHAPTER 3]

Section 3.6 discussed the problem of limited depth of field with a finite-sized
aperture, and the use of focal stacks to extend the effective depth of field. Here we
discuss some more advanced techniques, most of which either work by capturing
the full light field, or use ray-space analysis to integrate the optical setup and
computation.

Extending the concept of focal stacks to work with a light field is straightforward.
A focal stack is obtained from the light field data by computationally refocusing
at different depths. These images are then combined by using a technique similar
to the digital photomontage technique of Agarwala et al. [37]. The resulting image
is less noisy than that obtained by simply extracting a single sub-aperture image
because it integrates more light (Figure 4.8(b)).

As described in Chapter 2, the circle of confusion is the disc-like spot produced
on the sensor by an out-of-focus point source. More generally, we call the image
produced by a point source on a sensor the point spread function (PSF) of the
imaging system. The PSF of an in-focus point source of an ideal lens is an infinitely
sharp point. The PSF becomes a disc of increasing diameter as the point source
moves away from the plane of focus. The PSF is clearly dependent on the depth
of the point source, and is often considered a 3D function (two dimensions for the
image sensor and a third dimension for the depth of the scene point). For a general
out-of-focus scene, the defocus effect is the same as that of a blur filter that is the
PSF corresponding to the depth. Using deconvolution to recover a sharp focused
image of an out-of-focus plane is non-trivial because

• Inverting the the disc-like blur PSF is ill-posed due to the presence of ze-
roes in its frequency domain representation. High frequency information is
irrecoverably lost in the image formation process.
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Figure 4.11: Simulated extended depth of field using a broadband coded aperture.
(Figure from Veeraraghavan et al. [414])

(a) Prototype setup (b) Photo captured at f/1.4 (c) Extended depth of field

Figure 4.12: Flexible depth of field setup and extended depth of field results. (Fig-
ure from Nagahara et al. [284])

• The scale of the PSF (dependent on the scene depth) is generally not known
and hard to estimate.

Section 4.4.5 discusses the use of special aspheric optics in place of a traditional
lens to extend the depth of field. The optics are designed to make the point spread
function independent of the degree of defocus or scene depth. With a fixed defocus
kernel size, they use deconvolution techniques to obtain a sharp image. Similarly,
Veeraraghavan et al. [414] and Levin et al. [231] used an amplitude mask placed in
the aperture of the lens to engineer the effective defocus point spread function. In
the work of Veeraraghavan et al. [414], this amplitude mask makes the blur kernel
well conditioned so that its inversion is no longer ill-posed. They demonstrated
recovering an extended depth of field by combining images obtained by deconvolving
with different scales of the blur kernel (Figure 4.11). These mask-based methods
are discussed in more detail in Section 4.5.
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Fig. 3. Simulated (a,c) normal camera PSFs and (b,d) EDOF camera IPSFs, obtained
using pillbox and Gaussian lens PSF models for 5 scene depths. Note that the IPSFs
are almost invariant to scene depth.

where, b(t) is the blur circle diameter at time t, and λt = 1 if b(t) ≥ 2r and 0
otherwise. On the other hand, if we use the Gaussian function in Equation 4 for
the lens PSF, we get

IP (r, u) =
uf

(u − f)
√

2πrasT

(
erfc

(
r√

2gb(0)

)
+ erfc

(
r√

2gb(T )

))
. (7)

Figures 3(a) and (c) show 1D profiles of a normal camera’s PSFs for 5 scene
points with depths between 450 and 2000 mm from a lens with focal length
f = 12.5 mm and f/# = 1.4, computed using Equations 3 and 4 (with g = 1),
respectively. In this simulation, the normal camera was focused at a distance
of 750 mm. Figures 3(b) and (d) show the corresponding IPSFs of an EDOF
camera with the same lens, p(0) = 12.5 mm, s = 1 mm/sec, and T = 360
msec, computed using Equations 6 and 7, respectively. As expected, the normal
camera’s PSF varies dramatically with scene depth. In contrast, the IPSFs of
the EDOF camera derived using both pillbox and Gaussian PSF models look
almost identical for all 5 scene depths, i.e., the IPSFs are depth invariant.

To verify this empirical observation, we measured a normal camera’s PSFs
and the EDOF camera’s IPSFs for several scene depths, by capturing images
of small dots placed at different depths. Both cameras have f = 12.5 mm,
f/# = 1.4, and T = 360 msec. The detector motion parameters for the EDOF
camera are p(0) = 12.5 mm and s = 1 mm/sec. The first column of Figure 4
shows the measured PSF at the center pixel of the normal camera for 5 different
scene depths; the camera was focused at a distance of 750 mm. (Note that the
scale of the plot in the center row is 50 times that of the other plots.) Columns 2-
4 of the figure show the IPSFs of the EDOF camera for 5 different scene depths
and 3 different image locations. We can see that, while the normal camera’s
PSFs vary widely with scene depth, the EDOF camera’s IPSFs appear almost
invariant to both spatial location and scene depth. This also validates our claim
that the small magnification changes that arise due to detector motion (discussed
in Section 3) do not have a significant impact on the IPSFs.

Figure 4.13: (a) and (c) Simulated normal camera point spread functions. (b) and
(d) Extended depth of field camera impulse point spread functions (IPSF), obtained
by using pillbox and Gaussian lens point spread function models for five scene
depths. The IPSFs are almost invariant to scene depth. (Figure from Nagahara
et al. [284].) [THIS FIGURE AND CAPTION IS THE ONLY PLACE IN THE
BOOK WHERE YOU MENTION ‘IMPULSE POINT SPREAD FUNCTIONS.’]

Nagahara et al. [284] achieved an approximately depth independent blur, similar
to that obtained by wavefront coding, by translating the sensor relative to the lens
during the integration time of a single exposure (see Figure 4.12). Figure 4.13
compares the PSF of a traditional camera (pillbox and gaussian) to that produced
by one with a translating sensor. Since a typical camera produces a greatly minified
image of the scene, very small (order of microns) sensor translation is adequate to
cover a large range of scene depths. Since the resulting PSF is nearly constant
over the range of depths that the sensor sweeps through during the exposure, the
captured photo is deconvolved with a single blur kernel to recover an image with
an extended depth of field.

Häusler [177] used a very similar technique to extend the depth of field in a
microscope. He moved the specimen under observation along the optical axis as its
magnified image was filmed, and the resulting PSF was invariant over the depth
range of the specimen. Mohan et al. [?] used synchronized sensor and lens trans-
lation in planes parallel to one another in order to achieve approximately depth
invariant blur size (though their PSF is harder to invert).

4.4.4 Reducing the Depth of Field

The problem of reducing the depth of field in a photograph is perhaps the exact
opposite to that of extending the depth of field. Once again, the problem has a
parallel in microscopy where confocal imaging is used to illuminate and focus on
a very small part of the specimen to minimize scatter from the out-of-focus parts
of the specimen. Another approach involves the use of a camera array to simulate
a larger synthetic aperture. See Section 4.5.6 for more details on confocal imaging
and synthetic aperture.

In photography, a shallow depth of field is often used for artistic and creative
effects. The defocus effect produced by a lens is often referred to as the bokeh of the
lens. A pleasing emphasis is often more important than the sharpness and detail in
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Figure 1: Our technique magnifies defocus given a single image. Our defocus map characterizes blurriness at edges. This enables shallow

depth of field effects by magnifying existing defocus. The input photo was taken by a Canon PowerShot A80, a point-and-shoot camera with a

sensor size of 7.18×5.32 mm, and a 7.8 mm lens at f/2.8.

Abstract

A blurry background due to shallow depth of field is often desired for photographs such as portraits, but, unfortu-

nately, small point-and-shoot cameras do not permit enough defocus because of the small diameter of their lenses.

We present an image-processing technique that increases the defocus in an image to simulate the shallow depth of

field of a lens with a larger aperture.

Our technique estimates the spatially-varying amount of blur over the image, and then uses a simple image-based

technique to increase defocus. We first estimate the size of the blur kernel at edges and then propagate this defocus

measure over the image. Using our defocus map, we magnify the existing blurriness, which means that we blur

blurry regions and keep sharp regions sharp. In contrast to more difficult problems such as depth from defocus,

we do not require precise depth estimation and do not need to disambiguate textureless regions.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications

1. Introduction

Sharp foreground with blurred background is preferred in

many types of photography such as portraits. But point-and-

shoot cameras have small lenses and sensors, which fun-

damentally limits their ability to defocus the background

and generate shallow depth of field. We present an image-

processing technique that magnifies existing defocus given a

single photo.

For a given field of view and subject distance, depth of

field is directly related to the physical diameter of the lens

aperture. This means that compact cameras that rely on

smaller sensors – and therefore on smaller lenses – yield

less defocus and cannot blur the background the way a large-

aperture single-lens reflex (SLR) lens can (Fig. 2). While a

smaller amount of defocus (larger depth of field) can be de-

sirable, for example in landscape or macro photography, it is

often a serious limitation for portraits and creative photog-

raphy. Users of compact cameras often complain that their

portraits do not look “artistic” and lack the clarity afforded

by defocused backgrounds. In fact, the quality of a blurry

c© The Eurographics Association and Blackwell Publishing 2007. Published by Blackwell

Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,

MA 02148, USA.

Figure 4.14: Defocus magnification by Bae and Durand [51]: (left) input image,
(center) estimated blur map, (right) result with magnified defocus. (Figure from
Bae and Durand [51])

the focused parts of the image, especially for portrait photography. The depth of
field and the bokeh are closely related to the shape and size of the aperture. Lenses
with large apertures are frequently desired as much for their shallow depth of field
as for their light-gathering capability. Unfortunately, such lenses tend to be bulky
and expensive. Small point-and-shoot cameras usually have more modest aperture
sizes, greatly limiting their use for professional or creative photography.

Bae and Durand [51] proposed a technique to estimate the spatially varying
amount of blur over the image, and then magnify the existing blur of the out-of-focus
regions, while maintaining the sharpness of the focused regions (see Figure 4.14).
Since the blur (and depth) estimation from a single photo is not robust, their tech-
nique may suffer from incorrect blur estimation at sharp foreground-background
edges. Hasinoff and Kutulakos [175] demonstrated a technique for combining mul-
tiple images with varying aperture diameters to simulate a larger aperture.

Mohan et al. [?] translated the lens and sensor of a camera parallel to one an-
other in a synchronized fashion during the integration time of an exposure. This
destabilization of the standard alignment of the sensor and lens allows them to
introduce programmable defocus effects, including simulating a lens with a larger
effective aperture size (see Figure 4.15). This technique of creating a lens in time
allows the use of cheap and small lenses to produce defocus effects otherwise possi-
ble only with a larger lens on an SLR camera. While the technique works well for
1D translation, it only allows discrete sampling of the virtual aperture plane when
used to simulate a 2D lens. This technique is similar to laminography, a technique
historically applied in X-ray imaging to focus at distinct layers of a subject with-
out using refractive elements. In contrast to more modern methods of computed
tomography, laminography directly forms a sharp cross-sectional image by using
synchronized motion rather than post-capture computation.

4.4.5 Wavefront Coding and Phaseplates

Geometric aberrations in lenses cause image distortions, but these distortions can
be modeled, computed, and in some cases robustly reversed. In 1995, Dowski and
Cathey [100, 76] used special aspheric optics (a cubic phase plate) instead of the lens
to extend the depth of field of their imaging system (Figure 4.16). This technique
forms images that are intentionally distorted, but makes the PSF independent of the
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Stepper Motor

Sensor
Lens

Linear Stage

(a) Prototype Setup (b) All-in-focus photograph with
an f/22 lens

(c) Destabilized photograph by
shifting an f/22 lens and sensor

Figure 4.15: Image Destabilization for reducing the depth of field. (Figure from
Mohan [?])

Figure 4.16: Wavefront coding using a cubic phaseplate. (Source probably one of
the WFC papers)
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degree of defocus or the scene depth. With a fixed PSF size, simple deconvolution
techniques can be used to recover an in-focus image over an extended depth of
focus.

[THERE IS MORE TO DO IN THIS SECTION ON WAVEFRONT CODING.
ORIGINAL MS SAYS ”TO DO—MAROUM’S THING]

4.5 Masks and Aperture Manipulation

A mask usually refers to a thin planar element that attenuates rays of light in a
spatially varying fashion. In some applications masks may change or move during
an exposure, and in some cases LCDs and DLPs [325] are used to create time-
varying masks. While masks are used extensively in imaging applications such as
astronomy, microscopy, and spectroscopes, their use in photography is relatively
new. Coupled with appropriate computational methods, masks are becoming an
important optical element, just like a lens or a prism is important in traditional
optics.

(QUESTION IN MS FOR THE FOLLOWING PARAGRAPH—Do motion de-
tectors really use masks? I think they take the gradient electronically rather than
mechanically?) THIS PARAGRAPH ON MOTION DOESN’T BELONG IN THIS
SECTION ON MASKS! (RW)]

Motion is detected when an infrared emitting source with one temperature, such
as a human body, passes in front of a source with another temperature, such as a
wall. You have probably noticed that your light is sensitive to motion, but not to
a person who is standing still. That’s because the electronics package attached to
the sensor is looking for a fairly rapid change in the amount of infrared energy it is
seeing. When a person walks by, the amount of infrared energy in the field of view
changes rapidly and is easily detected. You do not want the sensor detecting slower
changes, like the sidewalk cooling off at night. Your motion sensing light has a wide
field of view because of the lens covering the sensor. Infrared energy is a form of
light, so you can focus and bend it with plastic lenses. But it’s not like there is a
2-D array of sensors in there. There is a single (or sometimes two) sensors inside
looking for changes in infrared energy.

For ease of presentation, we categorize masks on the basis of the position of the
mask relative to the camera’s lens. The three positions are (1) a mask near the
scene, (2) a mask at the limiting aperture of the lens, and (3) a mask near or on the
image sensor. These three positions are illustrated in Figure 4.17. The boundaries
between these categories are vague, however, and Gao et al. [147] proposed a simple
optical relay that gives greater freedom in mask placement for most applications.

4.5.1 Lensless Imaging

The idea of putting a mask in the aperture of an optical system has been well
explored in the fields of astronomy and scientific imaging [370]. Refined coded
aperture methods using Modified Uniformly Redundant Arrays (MURA) [163] en-
abled lensless gamma-ray imaging systems for distant stars. Zand [?] has a nice
survey of coded aperture techniques in astronomy. Figure 4.18 shows simulated
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Scene Lens Sensor

Mask near
the scene

Mask at
the aperture

Mask near
the sensor

Camera

Figure 4.17: Mask positions with respect to the camera: a mask near the scene, a
mask at the limiting aperture of the lens, and a mask near or on the image sensor.

(a) MURA pattern used as
the aperture of a lensless
camera

(b) Image captured by the
camera with a MURA mask
at the aperture

(c) Reconstructed image by
performing correlation of the
smeared image with the de-
coding pattern

Figure 4.18: Lensless imaging using a MURA mask at the aperture. (Figure from
www.paulcarlisle.net/old/codedaperture.html.) [SECTION 4.5.1 SAYS THESE
IMAGES ARE SIMULATED, BUT THEY LOOK AUTHENTIC. IF THEY ARE
SIMULATED, THE CAPTION SHOULD INCLUDE THAT FACT.]
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Figure 4.19: (left) Setup used by Talvala et al. [389] for glare reduction. (center)
Glare reduces the contrast in the photo of a scene with backlight; (Right) Glare
reduced and contrast increased using the technique described in the paper. (Figure
from Talvala et al. [389])

images obtained when using a lensless camera with a MURA mask at the aper-
ture. Such techniques are largely limited to scenes with point sources, such as in
astronomy. The captured image has a much lower contrast than the scene, and this
somewhat limits its applicability.

Lensless imaging is also used in diffraction-free microscopy. The camera consists
of an image detector and a special aperture, but no lens. The aperture is a set of
parallel light-attenuating layers whose transmittances are controllable in space and
time. By applying different transmittance patterns to this aperture, it is possible to
modulate the incoming light in useful ways and capture images that are impossible
to capture with conventional lens-based cameras. Zomet and Nayar [?] proposed
a lensless camera made up of a stack of parallel light attenuating masks in front
of a bare image sensor. They modulated the incoming light by applying different
transmittance patterns in space and time to the various layers. This general design
gives the camera several novel capabilities such as capturing disjoint regions in a
scene on a single photograph, and panning and tilting the field of view without
using any moving parts.

4.5.2 Mask and Gratings outside the Camera

Placing a mask near a scene is closely related to the use of structured illumination
as discussed in Chapter 5. Both of these cases attenuate rays from different parts
of the scene differently, and this can give more useful information in the captured
images. Recently Nayar et al. [292] used photos of a scene illuminated with high fre-
quency striped patterns to separate the direct and global illumination components.
Talvala et al. [389] used a similar technique to reduce the effect of veiling glare in
a photograph. They captured multiple photos with slightly different positions of
a checkerboard mask occluding parts of the scene, and used these to separate the
direct and indirect components of the intra-camera light transport. Since glare is
a global illumination effect, separating it from the scene data is greatly simplified.
Figure 4.40 illustrates these results. Their capture process takes around an hour
and is limited to static scenes. Furthermore, since the mask needs to be nearly in
focus, they need to place it close to the scene or use a very small aperture, thus
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Figure 4.20: Setup used by Schechner and Nayar for generalized mosaicing [356].
(Figure from Schechner and Nayar [356])

limiting the technique to studio settings.
Schechner and Nayar [356] rigidly attached a spatially varying mask some dis-

tance in front of the camera lens (as shown in Figure 4.20). Since the mask is not
the limiting aperture of the optical system, different scene points are attenuated
differently by the mask. Moving the camera-and-mask setup yields multiple mea-
surements for each scene point under different optical settings, resulting in image
mosaics with additional scene information such as extended dynamic range and
multispectral data. This technique is called generalized mosaicing. The registra-
tion algorithm is non-trivial due to spatially varying effects of the filter. They also
proposed a vision-based algorithm [358] to synchronize a changing mask in the op-
tical system to the corresponding acquired image, thus allowing for uncontrolled
modulation of the imaging system.

4.5.3 Mask at the Aperture

Placing a mask at the limiting aperture of a camera is considered a special case
because the point spread function of such a camera is a scaled copy of the aperture
mask (ignoring any diffraction effects). The image of an out-of-focus point light
source in the scene is a scaled copy of the mask itself, and since the mask is also the
limiting aperture, the point spread function is spatially invariant for all points in
the field of view. Most techniques using the mask in the aperture assume the scene
is planar and Lambertian; extending them to work in the general case is usually
non-trivial.

Farid and Simoncelli [127] exploited defocus by using two calibrated masks to
optically measure the differential variation in image intensities with respect to a
change in camera position. They used this differential change for range estimation.
Hiura and Matsuyama [185] introduced a multi-focus camera that captured three
images with different focal planes simultaneously. They placed a mask with four
pin holes in the aperture plane and estimated depth from defocus from the three
captured images.
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Broadband Mask

(a) (b) (c)

Figure 4.21: Broadband mask placed in camera aperture to make the deconvolution
process well conditioned. The image obtained after deconvolution is sharp and
without any ringing artifacts (right). (Figure from [414])

(a) Mask placed in
lens aperture.

(b) Input (single image) (c) Estimated depth

Figure 4.22: Depth estimates from a conventional camera with a coded aperture.
(Figure from Levin [231])

Veeraraghavan et al. [414] put a broadband mask at the lens aperture to make
deconvolving the out-of-focus blur a well-posed problem. This allows them to re-
cover refocused images at full resolution for layered Lambertian scenes (see Fig-
ure 4.21). Levin et al. [231] placed a similar mask at the lens aperture that helps
to discriminate the depth of the out-of-focus parts of the photo. They use this
technique to obtain an all-in-focus image, together with a layered depth map of the
scene (see Figure 4.22).

Liang et al. [245, 244] proposed a programmable aperture camera that captured
the light field by taking multiple photos, each with a different aperture shape. This
can be thought of as re-binning the 4D light field onto a 3D sensor, where time is
the third dimension. The resulting light field has higher spatial resolution than that
obtained with other approaches. This approach may not work for dynamic scenes,
however, since it requires multiple photos. Figure 4.23 shows two prototypes that
they proposed: the first uses a scrolling pattern in the aperture plane of the lens,
and the second uses a custom LCD module placed in the aperture plane. The LCD
offers near-real-time control of the aperture shape.

[NOTE: MS INCLUDES THE FOLLOWING TO-DO ITEM HERE]
Superresolution. Mohan et al. [277]. Talk about Roarke’s paper. Horstmeyer

et al. [189]
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(a) (b)

Figure 4.23: (a) Prototypes of the programmable aperture cameras with (first row)
aperture patterns on an opaque slip of paper, and (second row) on an electronically
controlled liquid crystal array. (b) High resolution refocusing results. (Figure from
Liang et al. [244])

4.5.4 Mask near or on the Sensor

Since the sensor plane is conjugate to the plane in focus outside the camera, placing
a mask near the sensor is very similar to placing a mask near the photographed
scene. However, placing an arbitrary mask next to the sensor can be much eas-
ier than modifying the scene, and this makes masks near or on the sensor more
interesting.

The most common example of a mask on the sensor of a conventional digital
camera is the Bayer filter [55]. The Bayer filter allows a monochrome sensor to
capture a full color image in a single shot by what can be thought of as spatial
re-binning of rays based on wavelength. Narasimhan and Nayar [?] took this basic
idea further and proposed assorted pixels, where they use similar structured inter-
polation between neighboring pixels for applications such high dynamic range color
imaging using a mosaic of overlapping color and exposure filters.

Nayar and Mitsunaga [293] placed a spatially varying optical mask on the cam-
era’s sensor. This gives adjacent pixels of the detector different exposures of the
scene, and they used image reconstruction to obtain a high dynamic range photo.
Nayar and Branzoi [290] extended this idea by placing an LCD next to the sensor
or at the lens aperture, which adaptively controls the exposure for each pixel based
on the radiance value of the corresponding scene point in real time.

Nayar et al. [291] used a digital micro-mirror device (DMD), as illustrated in
Figure 4.24, to build a programmable imaging system. The imaging lens focuses the
scene onto a programmable array of micro-mirrors, and a re-imaging lens images
the DMD onto the final sensor. The DMD is optically in a plane conjugate to
the sensor plane. The orientations of the mirrors of the array can be controlled
with high precision over space and time, and the DMD allows flexible pixel-wise
modulation of the sensor array. This enables the system to select and modulate
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Figure 4.24: Imaging using a digital micro-mirror device (DMD). The scene image is
focused onto the DMD plane. The image reflected by the DMD is re-imaged onto
a CCD. The programmable controller captures CCD images and outputs DMD
(modulation) images. While technically the mask (DMD) is not near the sensor, it
is optically in the sensor’s conjugate plane. (Figure from Nayar [291])

rays from the scene’s light field based on the needs of the application at hand. In
addition to applications in high dynamic range imaging, they also demonstrated
simple image processing in the optical domain, such as feature detection and object
recognition.

Takhar et al. [388] used compressive sensing to construct an efficient single pixel
camera. They obtained a series of pseudo-random linear projections of all scene
intensities by imaging the scene onto a DMD array and integrating the reflected
rays onto a single photon detector (see Figure 4.25). Unlike Hadamard coding,
the number of samples needed is fewer than the number of pixels. [DEFINITIONS
AND MORE DETAIL NEEDED IN THIS PARAGRAPH]

[MS SAYS THE FOLLOWING MATERIAL IS ”ASHOK’S STUFF” ON FRE-
QUENCY DOMAIN RE-BINNING]

Designs based on the idea of integral photography [IN SECTION 4.4.2 THIS
IS CALLED INTEGRAL IMAGING] spatially re-bin the 4D light field onto a 2D
sensor. Veeraraghavan et al. [414] replaced the microlens array with a sinusoidal
mask placed close to the image sensor, and achieved similar re-binning, but in the
frequency domain. Their design builds on the basic ideas of heterodyning from
signal processing and communication theory, and can be thought of as spatial opti-
cal heterodyning. The 4D light field is recovered from the Fourier transform of the
captured 2D image. In microlens-array-based design, each pixel effectively records
light along a single ray bundle. With patterned masks, each pixel records a lin-
ear combination multiple ray-bundles. Georgiev [155] proposed a generalization
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Figure 4.25: Single pixel camera. Multiple pseudo-random linear projections of all
the scene intensities are captured on a single pixel, and combined to form a high
resolution image. (Figure from Takhar [388])

Figure 4.26: Mask-based glare reduction. The glare shows up as a high fre-
quency artifact in the 4D light field analysis, and is easy to remove. (Figure from
Raskar [332].)

of frequency domain multiplexing using masks, meshes, and pinholes. and Veer-
araghavan et al. [412] analyzed the effect of a non-refractive ray filter on a light
field.

Raskar et al. [332] analyze veiling glare in 4D ray space. They use the fact that
glare is essentially high frequency noise in the 4D space to reduce its effect without
reducing the image resolution significantly (see Figure 4.26). They do not capture
the full 4D light field, but their approach is heavily based on the light field analysis.

[TO DO NOTE IN MS: Raskar et al. is discussed in epsilon photography chapter
as well; remove details from here.]

4.5.5 Aperture Manipulation

Several researchers have investigated modifying the lens aperture in clever and
interesting ways other than simply placing a mask in the aperture or in the optical
path.

Pentland [316] estimated range by using the finite depth of field for a given
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Figure 4.27: (left) Photographs and schematic diagrams of an optical system used
by Green et al. [164] to capture multi-aperture images. The system is designed as
an extension to a standard digital SLR camera and consists of a main photographic
lens imaged through relay optics and split by using a set of tilted mirrors. (right)
Sample images captured by the system. (Figure from Green et al. [164])

aperture size. Hasinoff and Kutulakos [174] captured several hundred photos of a
scene with all possible combinations of aperture size and focus settings, and used
this extensive data to compute the 3D shape of the scene. Gao and Ahuja [146]
placed a rotating glass plate in front of the camera lens. Each rotation angle
provides a stereo pair, and the large number of stereo pairs from various rotation
angles gives a robust depth estimate for the scene.

Aggarwal and Ahuja [38] split the aperture into multiple parts, and used an
assembly of mirrors to direct the rays arriving at each part onto different sensors.
They used a different exposure setting on each sensor, and merged the captured
images to construct a high dynamic range image. McGuire et al. [267] performed
real-time video matting by using a setup of multiple cameras to capture multiple
video streams, each with different aperture size and plane of focus. Later McGuire
et al. [266] proposed a general solution, using beam-splitters, to construct efficient
cameras that capture an arbitrary number of pixel-aligned images in one shot.

Fergus et al. [133] used an arrangement of random mirrors in place of a lens to
acquire several random projections of a light field, and reconstructed the scene by
using basis pursuit from compressive sensing and a machine learning model. They
explored applications in 3D imaging and superresolution.

Hasinoff and Kutulakos [175] captured multiple photos of a scene with varying
aperture size, and used these photos to change the focus setting and depth of field
in a post-processing environment. [MS CONTAINS A NOTE HERE— ”WRITE
MORE.”]

As shown in Figure 4.27, Green et al. [164] proposed an optical system that
captures four images of the scene with different aperture settings in a single shot,
and uses these images to modify the depth of field and the focus.
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(a)

Yang et al. / Light Field Camera

Figure 11: Cross-eyed stereo pair synthesized from our light field camera.

Figure 12: An array of raw images taken with our light field camera. The person in this light field is jumping in mid-air.

Note that these images are unrectified, so the variations in the cameras’ viewing directions are readily apparent.

c The Eurographics Association 2002.

(b)

Figure 4.28: Light field camera proposed by Yang et al. [434]. (left) A photo of a
64-camera light field camera array. The cameras are arranged in rows of eight. (b)
An array of photos captured by the system. Figure from Yang et al. [434]

4.5.6 Camera Arrays and Synthetic Aperture

An approach closely related to aperture manipulation in a single camera is the
use of multiple cameras in camera arrays, such as by Wilburn et al. [427], Yang
et al. [434], and others. They used a square array of off-the-shelf video cameras
to capture the light field with a very large synthetic aperture. The basic idea of
synthetic apertures in computational photography is similar to synthetic apertures
in radar technology, where a highly directional conventional rotating antenna is
replaced with many low-directivity small stationary antennas scattered over some
area near or around the area of the object being imaged,

Synthetic aperture focusing consists of warping and adding together the images
in a 4D light field so that objects lying on a specified surface are aligned and thus
in focus, while objects lying off this surface are misaligned and hence blurred. This
provides the ability to see through partial occluders such as foliage and crowds (see
Figure 4.29), making it a potentially powerful tool for surveillance [410]. Vaish et
al. [409] later proposed a generalized synthetic aperture approach for tilted focal
planes and arbitrary camera configurations. However, by their very nature, camera
arrays are cumbersome and have somewhat limited applications. Synthetic aperture
using camera arrays also suffers from aliasing issues due to inadequate sampling of
the virtual aperture space.

Confocal microscopy is a family of imaging techniques that employ focused
patterned illumination and synchronized imaging to create cross-sectional views of
3D biological specimens. It was first proposed by Marvin Minsky [272] in a 1957
patent (Figure 4.30). Levoy et al. [239] adapted confocal imaging to large-scale
scenes by replacing the optical apertures used in microscopy with arrays of real
or virtual video projectors and cameras. A dense array of projectors simulates
a wide aperture (synthetic aperture illumination) projector, which can produce a
real image with small depth of field. By projecting coded patterns with an array
of virtual projectors and combining the resulting views, we can selectively image
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(a) (b)

Figure 4.29: Synthetic aperture using camera arrays. (a) Photo from a single
camera. (b) Image obtained by combining photos from each individual camera in
the array. (Figure from Vaish [410])

Figure 4.30: Page from Marvin Minsky’s patent on confocal imaging, filed in 1957.
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Figure 4.31: High speed photography using camera arrays. (Figure from
Wilburn [426].)

any plane in a partially occluded environment. These ideas were demonstrated
on enhancing visibility in weakly scattering environments, such as murky water, to
compute cross-sectional images and to see through partially occluded environments,
such as foliage.

Wilburn et al. [426] proposed a system for capturing high speed videos (multi-
thousand frames per second) by using a dense array of relatively cheap off-the-shelf
cameras. The camera array allows researchers to capture higher speeds by adding
more cameras. The fundamental limit to the scalability of the system is determined
by the minimum integration time of the camera. Unlike a single camera, the dense
array system allows the possibility of overlapping exposure intervals, which could
allow for temporal superresolution. It is assumed that the scene is either relatively
planar or reasonably far from the camera. Projective transforms align the pictures
captured by the various cameras. The cameras are also color calibrated to get
consistent color matching in the resulting video. Joshi et al. [210] used a camera
array and synthetic aperture refocusing for robust real time natural video matting.

4.6 Catadioptric Imaging

To bend light and form an image, optical systems often use reflective mirrors in ad-
dition to refractive elements such as lenses. An optical system that uses both lenses
and curved mirrors is called a catadioptric optical system. While bending light by
using a mirror results in physically smaller optical systems, aberration is often a
problem with catadioptric imaging (though chromatic aberration is minimal).

Catadioptric optical systems have traditionally been used in telescopes and long
focal length lenses in photography. Figure 4.32 shows the Minolta 500mm Reflex
lens, which uses a curved mirror to reduce the physical length of the lens. While
the lens is smaller and lighter than a refractive-only lens of a similar focal length,
it produces a donut-shaped bokeh (point spread function for an out-of-focus point
source) because of the mirror that occludes light in the middle of the front lens
element.

While not strictly a catadioptric system (it uses flat mirrors and no lenses), Han
and Perlin [169] used a tapered kaleidoscope with a single camera to view the same
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(a) (b) Donut shaped bokeh from the lens

Figure 4.32: (a) Minolta AF 500mm Reflex lens. (b) A donut-shaped bokeh image
from the Minolta lens, from www.flickr.com/photos/26068133@N07/3122669401.
[WHO OWNS THIS IMAGE?] The bokeh is due to the mirror in the reflex lens,
which occludes light in the front lens element.

surface sample which is on the far end of a tapered kaleidoscope will
be able to see that same surface sample simultaneously from many
different angles. These differently angled views of the surface sample
appear to the camera as different facets of the virtual sphere.

4.2 Illumination

A nice benefit of this approach is that we can also use it as an
illumination technique, using a single projector to illuminate the same
surface sample from many different directions. When we point a
projector down into the tapered kaleidoscope, different pixels of the
projected image will arrive at the sample after having reflected off
the kaleidoscope walls in different ways, and therefore will approach
the sample from various directions. In effect, different regions of the
projected image behave like separate light sources. By keeping only
selected pixels of the projected image bright, we can choose a
particular direction from which to illuminate the sample.

The optical paths of the camera and projector need to be merged
together, so that both can be pointed down into the kaleidoscope. We
do this through the use of a 45° beam splitter. Light from the projector
reflects off this beam splitter down into the kaleidoscope. Light
emerging back out of the kaleidoscope is transmitted through the beam
splitter and is then captured by the camera. This arrangement allows
the projected image to be coaxial with the image seen by the camera.
Figure 2 shows an optical schematic of the device.

4.3 Procedure

Measurement of the surface BTF proceeds by taking a sequence of
successive sub-measurements, one after the other. During each sub-
measurement, exactly one region of the illumination image is bright,
and all others are dark. Because each region of the illumination image
corresponds to a unique sequence of reflections of light off of the
kaleidoscope walls, that region will illuminate the surface sample from
a unique sub-range of incoming light directions. A complete
measurement consists of successive illumination of the sample surface
by each of the illumination regions in turn.

4.4 Advantages

Our approach has a number of advantages in comparison to previous
methods for measuring the BTF.

The new method requires no moving parts, allowing for full
measurement to be performed very quickly. Since no physical
movement is required between sub-measurements, all sub-
measurements are guaranteed to be perfectly registered to one another.
This property allows for a quite significant improvement in accuracy
over previous methods.

The device can be used to measure surfaces in situ, under any lighting
conditions, without relocating the sample from its native setting. For
some site-specific surfaces, such as living human skin, methods in
current use for measuring BTF are simply not viable, since they all
require isolating a sample into a light-controlled environment. Also,
approaches that require the sample to be physically repositioned
between measurements cannot be used to measure loose samples such
as rice, dirt or pebbles.

The new method requires only a single CCD camera or equivalent
image capture device. This property allows the device to be fabricated
at a low cost in comparison with previous methods that require
multiple CCD cameras or equivalent image capture devices.

The new method richly samples the BTF. Even our first prototype
captured 484 illumination/view angle pairs, which exceeds the 205
pairs captured by the technique of Dana et al. [1999].

The technique is also versatile enough to allow the device to be
portable and hand-held; we discuss this further in the future work
section.

All of these qualities make for a valuable new measurement tool, for
use in situations for which current techniques are too bulky or
unwieldy, or are simply impossible. For example, during a motion
picture production, a member of the visual effects crew could use a
device employing our method to measure the BTF of the skin of
various parts of an actor’s face, or the fabric of a costume or couch,
or any prop or desk, wall, or floor surface of the set. With this
information in hand, the appearance of these items can then be
duplicated digitally with highly convincing realism and fidelity. Once
the entire BTF has been captured, the filmmaker is free to make
arbitrary decisions about lighting and camera placement, which the
virtual objects can be synthesized to match.

5 Design Parameters

The kaleidoscope approach to BTF measurement is an extremely
flexible one, with many design parameters to consider, depending on
the objective.

5.1 Choice of the number of sides

In general, the kaleidoscope can be made as a regular polygon of n
sides, for n>=3. We implemented a ray-tracer to better understand
the effects of various values of n (see Figure 3).

It is apparent that not every virtual facet is complete; many are
fragmented, appearing to have real and virtual mirror seams slicing
through them. For simplicity we decided to consider only the un-
fragmented facets as usable data. As a result, the effect of n on
fragmentation is a major factor in kaleidoscope design, since the
proportion of these facets varies with n.

Figure 2: Schematic of optical components

743

(a) (b)

Figure 4.33: Kaleidoscope optics to measure the bidirectional texture function
(BTF) of a sample surface. (Figure from Han [169])
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Figure 4.34: Radial catadioptric optics (Figure from Kuthirummal et al. [222])

surface simultaneously from many directions (Figure 4.33). They coupled this with
the ability to illuminate the surface simultaneously from many directions by using a
single light source to measure the bidirectional texture function (BTF) of the surface
in situ. The BTF is a 6D function that contains the variation in texture (x, y) with
the illumination (θi, φi), and viewing (θo, φo) directions [88]. Capturing the BTF
typically requires hundreds of images, and can take several hours. Han and Perlin
used a tapered kaleidoscope to simulate the effect of an entire array of cameras
pointing toward the sample from different viewing directions. The strength of their
method is the single-shot in situ capture of the BTF.

Kuthirummal and Nayar [222] describe a class of imaging systems, called radial
imaging systems, that use a camera and a curved mirror to capture a scene from
a large number of viewpoints within a single image. These systems can recover
scene properties such as geometry, reectance, and texture, and they can be used
to derive analytic expressions that describe the properties of a complete family
of radial imaging systems, including their loci of viewpoints, fields of view, and
resolution characteristics. Some of these radial imaging systems can, from a single
image, recover the frontal 3D structure of an object, generate the complete texture
map of a convex object, and estimate the parameters of an analytic BRDF model
for an isotropic material. In addition, one of the systems can recover the complete
geometry of a convex object by capturing only two images. Radial imaging systems
such as these are simple, effective, and convenient devices for a wide range of
applications in computer graphics and computer vision.

Tremblay et al. [?] proposed an origami lens, which is an ultrathin telephoto
lens that bends light on multiple surfaces, as shown in Figure 4.35. Light enters
through an annular aperture and bounces back and forth between reflecting surfaces
to finally produce a focused image on the sensor.



148 4. Optics

(a) (b)

Figure 4.35: Folded optics origami lens. (Figure from Tremblay et al. [?]

(a) (b)

Figure 4.36: (a) Electromagnetic spectrum including visible light. (b) Bayer filter
over a sensor. (Figures from wikipedia.)
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4.7 Color and Wavelength

Most color films have three layers of emulsions, each sensitive to a different wave-
length range. The spectral response curve provides a measure of relative sensitivity
of the film emulsion to the different wavelengths of light. Films based on Agfacolor-
Neu contain the color couplers along with the emulsion layers, while Kodachrome
film required the addition of color dyes during film processing [85]. Film photogra-
phers commonly use films with very different spectral response curves for different
applications. For example, Fuji Reala is used extensively for portrait photography
because of its accurate skin tones, while Fuji Velvia is an obvious choice for land-
scapes and sunsets because of its saturated reds and greens. Joseph Friedman’s
classic book on the history of color photography [141] gives an excellent overview
of some very clever techniques used for color scene capture over the past century.

In a digital camera, the Bayer filter [55] is a three-color (red, green, blue) filter
array placed over the sensor. The purpose of this array is to separate light intensities
into three distinct color channels in order to obtain color photographs. Different
colored filters are placed over adjacent sensor sites in a checkerboard-like pattern
(50% green, 25% red, 25% blue). Figure 4.36(b) illustrates how each sensor site
captures light of only one of the three primary colors. A demosaicing algorithm
reconstructs a high resolution image from this sparse sampling [33].

The Foveon X3 digital sensor [364] uses a different structure to produce color
photographs. Each pixel has three layers, and each layer is sensitive to one of the
three primary colors—red, green, and blue. This structure is similar to the multi-
layer color emulsions used in film, and demosaicing is not required to produce the
resulting photograph. DLP projectors [325] use a color wheel with three or more
color filters that act as color primaries for the projector. In all these cases, the color
filters are fixed at the factory and are not user-replaceable. Moreover, the exact
spectral response on the filters is adjusted so that they work reasonably well for
most scenes. It is not possible to optically tweak the spectral response, depending
on the scene. Cameras do allow limited post-capture processing, but this is limited
by the dynamic range and the bit-depth captured by the sensor.

4.7.1 Imaging Spectrometers and Multispectral Cameras

The idea of dispersing light to measure its spectral components is certainly not new.
Spectrometry has been an area of research ever since Newton discovered dispersion
of light [299]. The book by John James et al. [199] provides an excellent survey
of sophisticated spectrograph designs perfected over the years. The basic idea of
a spectrograph is simple. Light enters through a slit and a collimating lens and
is passed through a prism or a diffraction grating. Rays of different wavelengths
are bent by different amounts because of dispersion, and a lens then focuses these
rays onto a digital sensor, film, or direct-view optics. Since the power on narrow
wavelength bands might be extremely small, most spectrometers typically use more
sophisticated basis functions, such as the Hadamard or S-matrices [173], for better
efficiency.

Spectrometry traditionally analyzes the spectra of point sources, or spatially
uniform diffuse sources. The field of imaging spectrometry or multispectral photog-
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Figure 4.37: Ray diagram showing basic idea behind a diffraction-grating-based
spectrometer (Figure from wikipedia).
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Figure 4.38: Scanning techniques used for acquiring the spectral data cube (x, y, λ).
(left) Scan along the x-direction; (center) scan along the y-direction; (right) scan
along the wavelength, λ.
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(d) Blurred spectral light field for a fronto-
parallel Lambertian painting.

Figure 4.39: Placing a dispersing prism in a light field gives us many shifted copies of
the light field, resulting in a set of overlapping spectral light fields. A fronto-parallel
Lambertian painting results in a blurred spectral light field.

raphy is relatively new. A multispectral camera captures the data cube, (x, y, λ),
which is equivalent to a spectrometer for each spatial scene point. Since image
sensors are only two dimensional, capturing a 3D data cube typically requires scan-
ning over one of the three dimensions. Figure 4.38 illustrates three ways to scan the
data cube: along the two spatial dimensions (x, y), and along the spectral dimen-
sion (λ). Harvey et al. [172] compared the SNR for various imaging spectrometers.
This work is an excellent source for more information about multispectral cameras.

Gat [149] provides a nice review of liquid crystal tunable filters (LCTF), acousto-
optical tunable filters (AOTF), and interferometers and their applications in imag-
ing spectroscopy. Placing one of these filters in front of a camera allows a con-
trollable wavelength of light to pass through. A series of images are captured
at different wavelengths, and then merged to form one multispectral photograph.
Unfortunately, these filters are rather expensive, and usually allow only a single
wavelength of light to pass through (these are also called notch pass filters).

A classic spatial scanning imaging spectrometer accepts polychromatic input
and disperses spectral information across one dimension and spatial information
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across the orthogonal direction [308]. A diffraction grating or a prism performs the
dispersion, with the grating having more throughput. Much of the research in the
area of imaging spectrometers was done for airborne remote sensing applications.
A spectrometer that scans a scene by using a viewing platform’s forward motion,
without any active scanning motion, is called a pushbroom camera. A whiskbroom
camera scans a linear array across a scene by using a gimbal mechanism.

A linearly variable interference filter (LVIF) transmits light by using interference
films that vary in thickness along one dimension. The filter acts as a spatially
varying spectral notch filter, and transmits a narrow spectral notch centered around
a wavelength that is a linear function of the spatial position on the filter. A wedge
imaging spectrometer [96] consists of a LVIF mated directly to the image sensor.
This gives a single, compact, integrated assembly, and avoids the use of gratings and
prisms. Detected information varies spatially in one dimension and spectrally in
the other. Forward motion of the viewing platform builds a complete multispectral
image. Schechner and Nayar [357] rigidly attached a similar LVIF to a camera and
moved the camera to capture a mosaic. They then combined the multiple photos
to generate a multispectral mosaic.

Li and Ma [243] proposed a novel design for an imaging spectroscope. They
used a monochromator to disperse the rays of specific wavelengths from a scene,
and then they used a moving slit to select a single wavelength to pass through.
Then they used another monochromator to recombine the rays. [EXPLAIN THE
ADVANTAGES OF THIS TECHNIQUE]

Recently Gehm and Brady [151] proposed a pushbroom scanning or tomo-
graphic (rotational) scanning imaging spectrometer that uses a coded spectrometer
proposed earlier by Gehm et al. [152] as the spectral engine. Willett et al. [429]
used compressive sensing techniques for multispectral imaging. Gat et al. [150] used
reformatted fiber optics to map a 2D image to a linear array, and fed that linear
array to the input slit of a 1D imaging spectrometer. This technique allows for very
fast multispectral capture, which is ideal for rapidly changing phenomena.

Chromotomography methods reconstruct a data cube (x, y, λ) by capturing
multiple 2D projections of a 3D cube. They then use tomography to combine
the collection of projections to get an estimate of the unknown data cube. Since
all the incoming light is used, the acquisition process is fast and efficient. Levin
and Vishnyakov [236] were probably the first to discover this technique. Several
other researchers independently came up with similar designs with minor changes.
Okamoto and Yamaguchi [306] merged five projections obtained with a 2D trans-
mission grating and a TV camera. Bulygin and Vishnyakov [71] used prisms with
different dispersion factors. Betremieux et al. [62] constructed a 2D spectral imager
by rotating a 1D spectrometer and by using the same tomograph-based reconstruc-
tion technique. Descour and Dereniak [97] proposed the Computed Tomography
Imaging System (CTIS) by using crossed gratings, and later a more efficient com-
puter generated hologram [98]. Mooney et al. [280] used a rotating direct vision
prism (Amici prism) and captured multiple images. Unfortunately all these meth-
ods suffer from the missing cone problem because physics restricts the directions in
which we can obtain projections. Johnson et al. [203] proposed the use of spatially
varying masks to solve this problem. Their setup better recovers energy in the high
spectral and low spatial frequencies.
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4.7.2 Multispectral Projectors

Controlling the spectrum of a light source is traditionally done by using various
types of lamps in combination with diffraction-grating monochromators and color
filters. Recently several people have used a digital micromirror device (DMD) along
with a spectrometer and a broadband lamp to create a programmable spectrum
light source [417, 251, 69, 128]. These methods typically use a diffraction grating
to disperse white light, and focus the dispersed wavelengths onto a DMD. The DMD
programmatically bends the desired wavelengths toward an exit lens, followed by
an integration sphere or another prism to recombine the dispersed rays.

Nelson et al. [298] described a system to project a linear (1D) image with con-
trollable spectrum for each point along it. They positioned a DMD at the sensor of
a spectrograph. Light first traverses through the spectrograph in the forward direc-
tion, and then again through it in the reverse direction. The 2D DMD controls the
wavelength spectrum for each point along the outgoing slit. Rosenthal et al. [346]
used a diffraction grating to disperse light, modulate it differently for each pixel
in a scanline, and then project one scanline at a time by using a scanning mirror
arrangement to form the image.

Among the rapidly expanding choices in illumination sources is the use of nar-
rowband LEDs to illuminate an object and acquire multispectral images [271]. Fryc
et al. [142] proposed a spectrally tunable light source using a large number of LEDs
and an integrating sphere. Similarly, several new projectors use more than three
LEDs to get better color rendition [382]. Park et al. [313] proposed a spectral mul-
tiplexing scheme to illuminate a scene by using multiple spectral sources to recover
spectral reflectances in the scene.

Rice et al. [341, 339, 340] proposed a hyperspectral image projector design that
is perhaps the most similar to the design proposed in Chapter ??. [LATEX INDEX
IS ”CHAP:AGILE”—WHERE IS THIS PROPOSAL? WHAT CHAPTER?] Their
system has two parts—the spectral engine and the spatial engine. They use a reverse
spectrograph [341], a forward spectrograph with a spatial integrator [339], or a
double subtractive spectrograph [340] for their spectral engine. All cases essentially
obtain a tunable light source by using dispersion, a DMD, and a broadband light
source. This tunable source is fed into a spatial engine, which is essentially a DLP
projector. By controlling the wavelength emitted by the source before the spatial
modulation of a DLP projector, they can control the color displayed at each pixel
on the screen. This technique requires modifying the light source inside a projector.
Unlike their approach, I use light field analysis and modulate the image spectrum
after the spatial modulation. [WHO IS THE ”I” HERE? RASKAR? TUMBLIN?
DO WE HAVE A REFERENCE?] This greatly simplifies the projector design since
we can easily retrofit a traditional RGB projector by placing lenses and a diffraction
grating outside it. In addition, this modification allows us to use the same basic
optical setup both as an image projector and as an image capture system.

4.8 Suppression of Glare

A scene with a bright light source in or near the field of view is difficult to photo-
graph because of glare, which occurs because of multiple scattering of light inside
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Figure 4.40: (left) Setup used by Talvala et al. [389] for glare reduction. (center)
Glare reduces the contrast in the photo of a scene with backlight. (right) Glare
reduced and contrast increased by using the technique described in the paper.
(Figure from Talvala et al. [389])

the lens optics and the body of the camera. A primary result of glare is reduced
image contrast. Glare is unavoidable; it disrupts every optical system, including
the human eye. Glare can be broadly classified in two ways: glare due to reflection
(Fresnel reflection at lens surfaces) and glare due to scattering (diffusion in lenses).
The reflection of the retro-reflective camera sensor on the rear lens element can also
result in additional glare.

High-end lenses use special optical design and materials to reduce glare. Lens-
makers’ strategies include coating and lens shaping. The 4% to 8% transmission
loss due to reflection at each glass-air interface means that a 5 to 10 element lens
can lose half the incident light and instead create significant reflection glare. Anti-
reflective coating films make use of the light-wave interference effect. Vacuum vapor
deposition coats the lens with a 1/4 wavelength thin film using a

√
n refractive

index substance, where n is the lens glass index. Multilayered coating can bring
down the reflection to as low as 0.1%. But this is not sufficient to deal with light
sources, which may be 4+ orders of magnitude brighter than other scene elements.
Ancillary optical elements such as filters also increase the possibility of flare effects.
Meniscus lenses with a curved profile act as a spherical protective glass in front of
the lens assembly and prevent unwanted focused reflections from the sensor. The
curved profile defocus creates large area flare rather than ghosts. Lens makers
use an electrostatic flocking process to directly apply an extremely fine pile to
surfaces requiring an anti-reflection finish. The pile stands perpendicular to the
wall surfaces, thus acting as Venetian blinds—an effective technique for lenses with
long barrel sections. Structural techniques include light blocking grooves and knife
edges in lenses to reduce the reflection surface area of lens ends. Hoods or other
shading devices are recommended for blocking undesired light outside the picture
area.

Talvala et al. [389] presented a technique that prevents glare-producing light
from reaching the sensor pixels. They selectively block glare-producing light by us-
ing a structured checkerboard occlusion mask, combined with a new direct-indirect
separation of lens light transport to eliminate glare. They captured multiple pho-
tos with slightly different positions of the checkerboard mask occluding parts of the
scene. Since glare is a global illumination effect, separating it from the scene data
is greatly simplified. Their capture process takes around an hour and is limited to
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Figure 4.41: Mask based glare reduction. (Figure from Raskaret al. [332]) [THIS
FIGURE IS ALREADY INCLUDED EARLIER IN THIS CHAPTER AS FIG-
URE 4.26

static scenes. Furthermore, since the mask needs to be nearly in focus, they need to
place it close to the scene or use a very small aperture, thus limiting the use of this
technique to studio settings. The size and focus requirements make it difficult to
photograph a scene several meters away from the camera, such as sunlit buildings.
Their method is best suited for extended area sources and cannot handle point
and small area sources very well. [THIS SAME RESEARCH BY TALVALA IS
MENTIONED EARLIER—ALMOST WORD FOR WORD—IN SECTION 4.5.2]

Raskar et al. [332] analyzed veiling glare in 4D ray space. They used the fact
that glare is essentially high frequency noise in the 4D space to reduce its effect
without reducing the image resolution significantly (see Figure 4.41). The procedure
is easier to explain using the terminology of a traditional light field camera. [THIS
FIGURE AND THREE ACCOMPANYING SENTENCES WERE INCLUDED
EARLIER IN THIS CHAPTER.] A light field camera records the spatial and an-
gular variations of rays incident at each location on the sensor (see Chapter 2). For
an unoccluded Lambertian scene patch in sharp focus, the incoming rays have no
angular variations. Reflection glare causes a bright light source in the scene to make
a stray contribution to the sensor, but only along a specific angular direction (Fig-
ure YYY) [SPECIFY FIGURE]. These outliers appear as high frequency noise in
4D although the projection of ray-space onto a 2D sensor creates an apparent low-
frequency glare. The high frequency noise is easily removed in higher dimensions
using outlier rejection. Unlike light field cameras, they do not reversibly encode
the spatial structure of the ray space, leading to a simpler design, and ability to
recover a glare-free image without loss of resolution.

The prototype was a modified handheld camera with a mask placed very close
to the camera sensor. The method is suited for isolated bright narrow-area light
sources (e.g., bright sun or isolated room lights), and is tolerant to pixel saturation
due to glare. It works without the need for multi-exposure HDR capture. Fur-
thermore, the technique partitions glare into different types, thus providing easy
opportunities for resynthesis. Unlike the method of Talvala et al., however, the
technique does not work well for extended-area light sources, or with highly scat-
tering lenses.

Mohan et al. [279] use an agile spectrum setup to acquire high dynamic range
images and glare reduction by varying the exposure in the spectral or wavelength
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Figure 4.42: Spectral high dynamic range photography and glare removal. (a)
Photo with a traditional camera of a green LED next to the red letters “EG.” (b)
Photo of the same scene at a lower overall exposure. The wavelength modulation
function m(λ) is uniformly reduced. The text is too dark to read, and the glare
still exists. (c) Agile spectrum camera is used to attenuate the green wavelength
throughout the photo. The glare is removed, and more detail is visible.

dimension. Figure 4.42(a) shows a photo of a scene containing the text “EG” and
a bright green LED next to it. The LED is too bright and produces a glare that
renders part of the text unreadable. Reducing the exposure does not help because
it makes the text darker as well (Figure 4.42(b)). Blocking the green wavelength
by using an appropriate mask in the so called rainbow plane (see Section AAA)
[SPECIFY SECTION—NOTE: RAINBOW PLANE IS NOT MENTIONED ANY-
WHERE ELSE IN THIS CHAPTER] leaves the red text unaffected, but greatly
reduces the intensity of the LED and the glare (Figure 4.42(c)). While this method
does not require placing a mask in front of the scene, it does assume that the glare
is due to a narrowband light source whose spectral profile is known.

[THE FOLLOWING SECTIONS ARE FRAGMENTARY IN THE MS]

4.9 Polarization

talk about Stokes vectors, Mueller matrices??

[QUOTE] “Natural light has no particular polarization—it is composed of roughly
equal amounts of all possible polarizations. When light is reflected from a reflec-
tive or specular surface, such as a pane of glass, a mirror or the surface of a body
of water, light with one polarization is reflected more than light with the orthog-
onal polarization. In other words, the light reflected from a specular surface is
polarized in one chief direction. A polarizing filter placed in front of the cam-
era lens can remove that polarized light and so ”block out” the reflected light.”
www.bobatkins.com/photography/tutorials/polarizers.html

** how to measure polarization (talk about some of the CTIS stuff)

next talk about use of polarizers in photography (wikipedia photos?)
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Figure 1. [Dashed rays] Light coming from the illuminant (e.g., sun) and scattered by atmospheric particles towards the camera is the
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increases with the distance z from the object:

A = A∞
(
1 − e−βz

)
, (1)

where β is the scattering coefficient [11]. Here A∞ is the

airlight corresponding to an object at an infinite distance,

which we may take as the horizon.

Assume for a moment that the illumination of any scat-

tering particle comes from one direction (one illumination

source). The light ray from the source to a scatterer and the

line of sight from the camera to the scatterer define a plane

of incidence. We divide the airlight intensity into two com-

ponents1, that are parallel and perpendicular to this plane,

A‖ and A⊥, respectively. The scattered light is partially
linearly polarized perpendicular to this plane [8, 9]. The

airlight degree of polarization is

P ≡ A⊥ − A‖

A
, (2)

where
A = A⊥ + A‖ (3)

is the total airlight intensity given in Eq. (1). The degree

of polarization greatly varies as a function of the size of the

scattering particles, their density and the viewing direction.

We now explain the effectiveness of polarization in various

haze and illumination conditions.

2.1.1 The Trivial Case

The strongest polarization effect is observed when the scat-

tering is caused by independent air molecules and very

small dust particles (Rayleigh scattering) [3, 9, 20, 26].

1In terms of the electric field vector associated with the airlight radi-

ation: these are the expectation values of the squared projections of this

vector, parallel and perpendicular to the plane of incidence.

Only when the light source is normal to the viewing direc-

tion, the airlight is totally polarized (P = 1) perpendicu-
lar to the plane of incidence. Thus, it can be eliminated

if the image is captured through a polarizing filter oriented

parallel to this plane. Dehazing in this case is thus trivial,

because it is achieved by optical filtering alone. Note that

this situation is very restricted. In contrast, our method is

applicable to more general situations.

2.1.2 The General Case

In general, the airlight will not be completely polarized.

Thus, the polarizing filter, on its own, cannot remove the

airlight. For example, in Rayleigh scatteringP decreases as

the direction of illumination deviates from 90o (relative to

the viewing direction). The degree of polarization P is also

decreased by depolarization. This is caused by multiple

scatterings: an illuminant of a scattering particle may be an-

other particle. Thus, light may undergo multiple scatterings

in the atmosphere, in random directions, before hitting the

particle that ultimately scatters part of this light towards the

viewer. Each direction of scattering creates a different plane

of incidence. Because the camera senses the sum of these

scatterings, the overall degree of polarization is reduced [2].

Multiple scatterings [3, 8, 9, 20], are more probable when

the particle size is large or when the density of scatterers is

high (poorer visibility). To make matters more complicated,

the depolarization depends on the wavelength [9, 20].

Fortunately, our algorithm does not require explicit mod-

eling of the precise mechanisms of scattering. The method

is based on the fact that even a partial polarization of the

airlight can be exploited in post-processing to remove scat-

tering effects. However, this degree of polarization needs

to be significant enough to be detected. There are some

2

Figure 4.43: Light scattering in air (Figure from Schechner [355].)

TO DO: put some figures of with and without a polarizer Polarizers have long
been used in conventional photography to - bluer sky - eliminate the reflection of
light on tiny water droplets in the atmosphere, makes the color of the sky darker
more saturated. - reduce reflections from surface water bodies, making them more
transparent; useful to photograph the river bottom, for example. - more saturated
foilage - similar to sky enhancement (reduce reflection) - reduce the effect of haze,
fog - reduce the reflection arriving from praticles suspended in atmosphere.

Schechner et al. [355] proposed a technique to remove the effect of haze in images
using polarization.

Tali and Schechner [401] - dehazing - underwater imaging

4.10 Non-standard Perspective

Gupta and Hartley [165] describe the pushbroom camera, motivated by the geom-
etry of satellite imagery. Zomet et al. [444] generalize this notion to the cross
slit camera, which selects a family of rays passing through two lines in space. Pa-
jdla [310] describes oblique cameras, in which no two rays intersect (linear oblique
cameras are also known as bilinear cameras). The work of Yu and McMillan [436]
then collected and generalized these cameras, classifying them as two-dimensional
slices of the four dimensional space of rays passing between two planes.”—from
Adams and Levoy [31].

Adams and Levoy [31] reformulated and extended the concept of general linear
cameras to include focus.

Yu et al [437] give a thorough overview of the area of multiperspective modeling,
rendering and imaging.

Multiperspective Rendering: Yu and McMillan [?]
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Figure 4.44: Multiperspective rendering (Figure from Yu [?].)

4.11 Shadowgrams and Schlieren Photography

4.12 Etcetera—MISC STUFF LOOKING FOR A
NICE HOME

Compressive sensing [99]
McMillan and Bishop [268]
Diffraction limit for lensless imaging [270]
Ng aberrations [302]
The Plenoptic function [34] is a 5D function (ignoring wavelength, polariza-

tion, and time) that represents the radiance in every direction (θ, φ), at every
point (x, y, z) in space. This function is redundant in a space free of occluders (out-
side the convex hull of an object, for example), and reduces to a 4D function called
the light field [240, 162] as defined in Chapter 2.

Several people have theoretically analyzed the properties of light fields. Chan
and Schum [78] analyzed the light field in the frequency space, and used it to
estimate the spectral support of a light field. Chai et al. [77] used a frequency
space analysis for a scene bounded by a depth range to estimate the minimum
light field sampling rate for avoid aliasing. Zhang and Chen [441] provide an ex-
cellent summary of the work done in the area of light field sampling. Isaksen et
al. [195] proposed dynamic 4D interpolation and filtering of the light field for inter-
active rendering of photographic effects such as variable focus and depth-of-field.
Finally, Ng [301] applied the Fourier slice theorem to light field projections and
demonstrated its use for fast refocusing.

Color has been an important part of computer graphics research as for a while.
Salesin and others [324, 380] investigated the use of arbitrary ink pigments to
reproduce the right color in a printout; Wilkie et al. [428] proposed a BRDF model
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for diffuse fluorescent surfaces; Hersch et al. [183] presented algorithms for printing
images with fluorescent inks that are visible only under ultraviolet illumination;
and Gooch et al. [159] proposed an algorithm for perceptual conversion of color
images to gray-scale. We propose applications of color modulation in the areas of
metamer detection, glare removal, and high dynamic range imaging, which have
not been explored previously.
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Chapter 5

Illumination

The camera has evolved from the camera obscura to a cumbersome view camera
on a tripod to an easily portable hand-held imaging device. The technology of
lighting the photographic subject, however, remains traditional and problematic,
and the lighting equipment is often bulky, awkward, and expensive (see Figure 5.1).
Because of the sophistication of modern consumer cameras, we can argue that the
only characteristic that distinguishes an amateur photographer from a professional
is the use of auxiliary lighting. What can we learn about lighting from the expert
photographer? What can we create that goes beyond a professional’s traditional
lighting techniques? Can we create programmable lighting that minimizes critical
human judgment at the time of capture? Can we create computational lighting
that manipulates the lighting in images after they are taken?

Every traditionally trained photographer knows how to capture a variety of
subjects under different lighting conditions. This is done for any scene by carefully
measuring the light intensity with a light meter (hand-held or in-camera) and by
manipulating the exposure variables of the camera—ISO sensitivity (or film speed),
lens aperture, and shutter speed—to record the light accurately. In modern digital
cameras these exposure functions can be automated, or programmed, by camera
electronics, so the photographer doesn’t have to think about exposure choices.
This is good, because it frees the photographer to concentrate on subject and
composition, but occasionally it is not so good because for some scenes the camera’s
programmed choices aren’t accurate.

Many situations and scenes, such as traditional portraits or weddings, require
a photographer to add auxiliary lighting to create the most pleasing picture. A
photographer has many choices for how the auxiliary lighting affects the look of
a picture. The following auxiliary photographic lighting choices are considered
programmable:

• Duration and intensity;

• Presence or absence of auxiliary lighting;

• Color, wavelength, and polarization;

• Position and orientation;

• Modulation in space and time

161
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Figure 5.1: The photographic camera has evolved from a cumbersome view camera
on a tripod to a portable hand-held imaging device. Computational photography
is the on-going next stage in the development of digital imaging. Even though
the technology of lighting has not progressed into new forms as quickly as digital
photography, can lighting and computational illumination become similarly flexible
and programmable?

We will see later in the chapter how a photographer can also exploit the change in
natural lighting.

In the early days of electro-chemical flash photography, controlling the duration
and intensity of flash was challenging. But today’s illumination sources are sophis-
ticated and highly programmable, thanks to advances in solid state lighting, light
emitting diodes, sophisticated temporal modulation via strobes, and spatial mod-
ulation via spatial light modulators and video projectors. This chapter describes
how these choices and advances all contribute to computational illumination. For
an ultimate level of control and programmability, researchers have recently devel-
oped illumination domes in which hundreds of programmable lights or projectors
surround a subject, allowing the researchers to synthesize any desired type or qual-
ity of illumination, including from other locations. [REFERENCE TO DEBEVEC
ET AL. NEEDED HERE.]

5.1 Modifying Duration and Intensity

A traditional shutter exposure time on a modern digital camera can be as short
as 1/8000th of a second. While this shutter speed seems extraordinarily fast, and
can freeze most moving objects or athletes in action, it still isn’t nearly fast enough
to record many physical phenomena in nature. How can we create faster shutter
speeds? Similarly, we can carefully control the flash output from small electronic
flash units, but can we scale the intensity of the flash illumination to the size of
a city or time the release and duration of the flash to the nearly instantaneous
burst of a speeding bullet or an explosion? The answer to both of these questions
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is found in making electronic devices—strobes—that emit bright bursts of light of
extremely short duration.

5.1.1 Stroboscopic Freezing of High Speed Motion

In the 1930s, MIT researcher Harold Edgerton and photographer Gjon Mili rev-
olutionized instantaneous photography by employing ultra-short electronic strobe
flashes to illuminate transient phenomena. These photos captured the beautiful
intricacy and the graceful flow of movement that was too rapid or too complex for
the human eye to discern or for traditional cameras to capture. Edgerton and Mili
used these techniques to capture dramatic images of bursting balloons and, most
famously, of a bullet at the moment of impact with an apple (see Figure 5.2). A key
challenge Edgerton faced was how to trigger the flash at the appropriate instant,
so he developed a flash release circuit timed to sound. To this day, audio and laser
triggers are commonly used to provide a similar synchronization in engineering and
scientific applications. We can look at these developments in strobe photography
in the 1930s as an early example of computational illumination, even though the
term had not yet been invented.

Since the pioneering work of Edgerton and Mili, the technology of high-speed
photography has evolved and entered the consumer market. Film-based high-speed
photography was facilitated by the transition to stronger film substrates, including
mylar and acetate bases introduced by Kodak in the 1960s. The introduction of
CCD and CMOS digital sensors in the 1980s allowed for the possibility of ultra-
short exposures. Today, modestly priced high-speed digital cameras are available,
such as the Casio EX-F1, capable of 300 frames per second (fps) at 512 × 384
pixel resolution and up to 1,200 fps at 336 × 96 pixel resolution. More expensive
high-speed digital cameras such as the Vision Research Phantom Flex can shoot
2570 fps at high-definition television resolution (1920 x 1080). With cameras such
as these, consumers can capture their own images of balloons bursting and water
drops frozen in time. Important challenges remain in high-speed photography,
including providing sufficiently bright illumination for ultra-short exposures, as
well as providing sufficient storage for the massive data collected during extended
high-speed photography sessions.

5.1.2 Sequential Multiflash Stroboscopy

Certain motions are more effectively recorded by using multiple flash illuminations
during the shutter exposure. This allows a temporal sequence of motion to be
summarized in a single photograph. This technique works well when the subject
is photographed against a dark background and when subsequent frames have lim-
ited overlap. A good example is a golfer swinging a golf club perpendicular to the
camera’s optical axis, as shown in Figure 5.2. The narrow golf club appears at
distinct non-overlapping positions in successive frames. The results are typically
less compelling when the scene is not filmed against a high-contrast background
or the motion is toward or away from the camera. Today, high-speed video se-
quences can be processed to produce similar composite photographs, although the
short exposure times of individual frames may lead to images with excessive noise.
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Figure 5.2: Early instances of computational illumination. (left) In the 1930s, MIT
researcher Harold Edgerton and photographer Gjon Mili used ultra-short-duration
electronic strobe flashes to illuminate transient phenomena that couldn’t be pho-
tographed with a traditional camera. Their photo of a bullet moving through an
apple is world famous. (right) Certain actions, such as a golf swing, are best pho-
tographed by a sequence of multiple flashes triggered during the camera exposure.
In both of these examples the flash intensity is much greater than the ambient room
illumination, and the duration of the camera shutter is significantly longer than the
flash duration.

As a result, time-sequential multi-flash stroboscopic flash illumination remains the
preferred method to produce such compelling imagery.

5.2 Presence or Absence of Auxiliary Lighting

The simplest form of computational illumination is the ubiquitous and simple
camera-based flash unit, whether built into the camera or attached to the cam-
era hot shoe. Electronic circuits in both the camera and the flash unit compute
the proper amount of flash intensity to illuminate a dark scene. This simple and
direct flash illumination can be used to gather information from a scene. Di Carlo
et al. [94] first explored the idea of capturing a pair of images from the same cam-
era position, one image illuminated only with ambient light and the other image
using the camera’s flash as an auxiliary light source. They used this image pair to
estimate object reflectance functions and the spectral distribution of the ambient
lighting. Hoppe et al. [187] took multiple photos at different flash intensities, allow-
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ing the user to interpolate among them to simulate intermediate flash intensities.
In both of these cases, the scene is assumed to be sufficiently close to the camera,
so that the flash will produce a detectable change in surface brightness. This close
distance requirement is a fundamental limitation for all such methods requiring
active illumination.

5.2.1 Flash/No-Flash Pair for Noise Reduction

Petschnigg et al. [112] and Eisemann et al. [108] concurrently proposed similar
strategies for combining information contained in the flash/no-flash image pair to
generate a single image with enhanced aesthetics. The no-flash photograph captures
the large-scale illumination and overall ambiance of the scene (see Figure 5.3). But
in low light, the no-flash photo also exhibits excessive noise. In contrast, the flash
photograph exhibits lower noise and greater high-frequency detail, yet this image
also appears unnatural and fails to convey the mood of the scene (see Figure 5.4).
A simple technique combines the photos and decouples the high-frequency and low-
frequency components in the photo pair, and then recombines them in a manner
that preserves the desired characteristics—high-frequency detail, color, and low
noise from the flash photo, and overall ambiance from the no-flash photo. Such
decoupling is achieved using a modified bilateral filter called the joint bilateral
filter.

The flash image is used to perform a guided smoothing and to reduce noise
in the no-flash image without excessive blurring of sharp features. In traditional
image processing pipelines, smoothing is performed directly on an image by using
information available only in that image. Smoothing an image, for example with a
Gaussian filter, reduces high-frequency noise, but also blurs sharp edges. By using a
bilateral filter [399], the image filtering process can be controlled to preserve sharp
edges, while reducing noise by smoothing in regions with slowly varying texture
(see Figure 5.5). In this manner, the bilateral filter performs smoothing based on
both spatial extent as well as intensity similarity within the kernel filter support.
The intensity similarity term “stops” the kernel influence at the intensity edge. By
exploiting intensity similarity, the bilateral filter can reduce image noise while pre-
serving sharp details. Nevertheless, bilateral filtering still causes unnecessary sup-
pression of weak details along with noise. Similar methods for general anisotropic
diffusion [318] are also subject to these limitations, motivating the development of
the joint bilateral filter and the inclusion of auxiliary data from additional images.
In addition to these limitations, both bilateral filtering and anisotropic diffusion
are non-linear algorithms, significantly increasing the computational cost of evalu-
ating a smoothed image. [AN EXAMPLE IMAGE OF THE FLASH–NO-FLASH
TECHNIQUE COULD BE INCLUDED HERE.]

With the joint bilateral filter, smoothing is also influenced by high-frequency
detail in a companion image. For example, we can use a high-quality flash image to
reduce noise in a no- flash image. The kernel influence in the no-flash image “stops”
at locations corresponding to the intensity edge in flash image. This enhances the
ability to find and preserve weak details (i.e., low confidence edges) in the presence
of noise. The basic idea is to smooth the no-flash image while preserving all edges
that are detected in the flash image. The spatial kernel remains the same within
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Figure 5.3: The process for reducing noise in a no-flash ambient-light image by
using an auxiliary flash image. A flash-illuminated image and a no-flash ambient-
light image are recorded. The image is decomposed into independent-color, large-
scale, and fine-detail channels using traditional bilateral filtering. Special processing
is used to treat cast shadows in the flash image. Finally, the various layers are
combined by using a joint bilateral filter. The final merged image preserves the
ambiance created in the no-flash image, while retaining the color and detail present
in the flash image. (Image courtesy Elmar Eisemann and Fredo Durand.)

Figure 5.4: Merging a flash/no-flash image pair to enhance image aesthetics. (top
left) A photograph taken in a dark environment; is noisy and/or blurry. (bottom
left) A flash photograph yields a sharp but flat image with distracting shadows
at the edges of objects. (middle) A scaled region shows the noise of the no-flash
ambient-light image. (right) The merge technique fuses the two images to transfer
the ambiance of the no- flash image. Note the shadow of the candle on the table in
the merged result. (Image courtesy Elmar Eisemann and Fredo Durand.)
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Figure 5.5: Comparison of Gaussian and bilateral low-pass filtering. The intensity
profile of a horizontal set of pixels is in black. (left) A Gaussian low-pass filter
blurs over sharp image discontinuities near edges, including intensity ridges and
valleys, and leads to high-frequency artifacts, such as halos in the“detail” layer.
(right) A bilateral filter is locally tuned to prevent smoothing across strong intensity
discontinuities, preserving sharp details and minimizing high-frequency artifacts
such as halos. [112]

the no-flash image, but the intensity similarity is measured with respect to the
corresponding flash-image pixels. Since the flash photo exhibits lower noise, a better
result is achieved and over- or under-blurring is avoided. [THIS PARAGRAPH
REPHRASES THE PRECEDING PARAGRAPH.]

Finally, to create a noise-free no-flash image, an edge-preserved low-frequency
component from the no-flash image, which preserves the overall lighting, is com-
bined with a high-frequency component from the flash image, which preserves sharp
details. The problem becomes challenging when dealing with errors due to overex-
posure or shadows in the flash image. Overexposure leads to a flat detail layer. In
this situation, the detail information is neither in the no-flash image (due to noise)
nor in the flash image (due to saturation) [105]. Similarly, special efforts must be
made to address cast shadows, which introduce artificial high-frequency content
into the scene, or light flares, which similarly introduce artificial high-frequency
content and brighten pixels in shadowed regions. Taking two photos requires a
static scene. However, the flash duration is usually just a few milliseconds, and
hence the second photo would add negligible time to the total joint capture time.

The process for reducing noise in a no-flash image using an auxiliary flash image.
A flash and no-flash image pair are recorded, using the flash and the available ambi-
ent light, respectively. Afterward, the image is decomposed into independent color,
large- scale, and fine detail channels using traditional bilateral filtering. Special pro-
cessing is used to treat cast shadows in the flash image. Finally, the various layers
are combined as shown using joint bilateral filter. Note that the final merged im-
age preserves the ambiance created in the no-flash image, while retaining the color
and detail present in the flash image. [105] [THE LAST FOUR PARAGRAPHS IN
THIS SECTION APPEAR TO BE SEPARATE DESCRIPTIONS OF THE SAME
FLASH–NO-FLASH TECHNIQUE.]
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5.2.2 Flash, Exposure, and Dynamic Range

Present-day digital cameras use built-in sensors and algorithms to approximate the
correct flash intensity and proper exposure setting for flash illumination. But these
estimates, based on aggregate measurements, often lead to underexposure or over-
exposure (saturation) of people or objects in the scene, depending on their distance
from the camera. A single setting for the flash intensity cannot simultaneously
illuminate distant or dark objects without simultaneously saturating, or “blowing
out,” nearby or bright objects. Image quality is also affected when the range of
light values in a scene exceeds the dynamic range of the camera. The individual
images in Figure 5.6 are examples of such an HDR scene. [A SEPARATE IMAGE
EXAMPLE MIGHT WORK BETTER HERE.] For such situations, Agrawal et
al. [120] suggest merging multiple images captured under varying flash intensities
and camera exposures to construct an accurate HDR image. Figure 5.6 shows an
example of this strategy in which the flash intensity and exposure parameters are
varied.

Given a three-dimensional scene, the requisite flash brightness is a function of
the scene depth, the natural or ambient illumination, and the surface reflectance
of the various scene elements. For example, a distant object with low reflectance
will require a bright flash, whereas a nearby point or an area well lit by the am-
bient illumination will be overexposed by a flash, even at a low flash intensity. In
addition, the scene might extend far into the distance and would not be illumi-
nated even with an intensely bright flash. Only a longer exposure for the ambient
light would properly capture such distant regions. To capture such challenging,
yet commonly encountered, scenes, we can collect multiple exposures, each at a
different setting along the exposure and flash intensity axes. Figure 5.6 tabulates
photos taken at six different exposure settings and at four different flash brightness
settings—a total of 24 exposures. Many consumer and professional cameras offer
manual setting of flash intensity. Though making 24 captures to achieve a single
image may be excessive, Agrawal et al. [120] present a greedy approach [DEFINE
’GREEDY’ HERE]; pixel values of each capture are analyzed for overexposure or
underexposure, which suggests the optimal exposure and flash brightness settings
for the subsequent capture. A greedy algorithm then makes the locally optimal
choice, before each new image is captured, in order to calculate the global opti-
mum. By using such adaptive sampling of the flash-exposure space, the number of
captured images required for any given scene is minimized.

As with any such greedy strategy, the resulting solution is not guaranteed to
be the globally optimal result—had all flash and exposure settings been sampled.
Furthermore, the proposed method requires multiple exposures to capture a single
HDR image, increasing the image capture time and limiting the solution to static
scenes. Chapter 6 describes how next-generation sensor technology that allows
HDR capture in a single exposure will reduce the number of required flash/exposure
sequences.
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Figure 5.6: Flash-exposure high dynamic range imaging is performed by sampling
the two- dimensional space of flash and exposure parameters. In a scene with large
variations in depth, illumination, and reflectance, multiple pictures are required
to estimate a high- dynamic range image. Instead of directly sampling along the
exposure and flash intensity axes, adaptive sampling is used to minimize the number
of required samples using a greedy sampling scheme [120].
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5.2.3 Removing Flash Artifacts

Flash images notoriously suffer from several problems, including overexposure of
nearby objects, poor illumination of distant objects, reflections from objects strongly
lit by the flash, and strong highlights produced by reflections of the flash on glossy
surfaces. Flash/no-flash image pairs, discussed previously, can also be applied to
address the particular artifacts introduced by strong highlights and reflections on
glossy surfaces.

Agrawal et al. [120] use a technique based on image intensity gradients. The
orientation of the image gradient vector, defined at each pixel in the rasterized
image, corresponds to the direction along which the change in image intensity is
maximum. The magnitude of this vector is the rate of that change. For example,
along an intensity edge the gradient vector orientation is perpendicular to the edge,
and the gradient vector magnitude is the strength of the edge. Agrawal et al.
observe that the orientation of image gradients due to reflectance or geometry
variation are illumination invariant, whereas those image gradients corresponding
to artifacts due to changes in lighting are not. Hence, a “gradient coherence” model
indicates that, in the absence of artifacts, the gradient vector orientation in the flash
and ambient (no-flash) images should be the same. On the other hand, a change in
gradient vector orientation between the pair of images indicates the presence of an
artifact. By exploiting this gradient coherence, they propose a gradient projection
scheme to decompose the illumination artifacts from the rest of the image.

Central to the gradient projection scheme is the ability to reconstruct an image
from its gradient vector field. For example, the gradient field G(x, y) for an array of
pixels I(x, y) can be discretized and represented simply as the forward difference;
i.e.

G(x, y) = (I(x+ 1, y)− I(x, y), I(x, y + 1)− I(x, y)).

Many techniques have emerged in the computer graphics literature since 2002 to
compute image I from the given gradient field G by using a 2D integration of
the gradient field with certain boundary conditions. This general problem has
been solved historically for photometric stereo and shape-from- shading but more
recently for mesh smoothing, HDR image compression, image editing, and multi-
image fusion. A key challenge in practice is that the provided gradient field is not
consistent; specifically, the integral of the gradient field along any closed path in
the image should be equal to zero, so that the reconstruction is independent of
the choice of integration path. As a result, the measured gradient field must be
rendered integrable by further processing. Agrawal et al. [42] present a survey of
such methods.

Figure 5.7 shows the flash and ambient light (no-flash) images of a painting. The
ambient light image is characterized by distracting reflections of the photographer
lit by room lighting. The flash image has a very short exposure duration which
overpowers the intensity of anything lit by ambient room lighting, including the
photographer’s reflection. The flash illumination, however, produces a hot spot
in which the reflection of the flash is clearly visible in the image. The gradient
projection scheme removes reflections in the ambient image by subtracting the
component of the ambient image gradient field perpendicular to the flash image
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Figure 5.7: Removing flash artifacts with gradient vector projection. (top) Unde-
sirable artifacts in photography can be reduced by comparing image gradients at
corresponding locations in a pair of flash and ambient images. (bottom) Ambient
and flash photos are captured in a museum setting. Ambient photo shows reflected
photographer while the flash photo suffers from highlights. The reflections are re-
moved in the ambient image by subtracting the component of the ambient-image
gradient field vector that is perpendicular to the flash-image gradient’s vector. Al-
ternatively, the reflection layer is recovered by integrating the subtracted (residual)
component. [28] [ARE THE ’TOP’ AND ’BOTTOM’ DESIGNATIONS IN THE
CAPTION NECESSARY, SINCE THIS IS A SINGLE FIGURE?]
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gradient field. Reconstruction from the projected gradients produces a reflection-
free image.

Interestingly, reconstruction from residual gradients recovers the reflection layer.
The gradient orientation is not available, however, when both images have co-
located artifacts (for example when the photographer’s reflection as well as the
hot spot from the flash are visible in the same part of the photo). In addition,
gradient orientation is unstable in homogeneous flat regions, so the photographer’s
reflection in such parts will be difficult to recover. In later research work, Agrawal
et al. [42] introduced a gradation projection tensor that is more robust compared to
the simple gradient projection procedure. This work also shows how to compensate
for the extinction of flash intensity along the optical axis by exploiting the ratio of
the flash and ambient light images.

5.2.4 Flash-Based Matting

The problem of extracting a foreground subject from its background, known as mat-
ting, can be made more precise by combining flash/no-flash imaging with Bayesian
matting [123]. Sun et al. [384] make the simple observation that the greatest dif-
ference between a flash image and an ambient (no-flash) image is the change in
brightness of the foreground subject, provided the background is sufficiently dis-
tant. Their approach is readily applicable to images produced by off-the-shelf flash-
equipped cameras. For example, a pixel-wise ratio of the flash and no-flash images
will be close to unity for distant points (background) but significantly higher for
near-field points (foreground). Using joint Bayesian matting, even foreground sub-
jects with complex shape boundaries, such as those made by fur or hair, can be
precisely extracted with an alpha matte and placed into a new image context (see
Figure 5.8).

Unlike traditional Bayesian matting, which works on a single input image, this
technique works even when the foreground and background have similar colors. The
technique fails, however, when the flash image does not encode the intensity fall-off
with distance in the expected manner. For example, when the background is not
sufficiently far away, or when the object is rounded. Furthermore, since matting
is typically applied to dynamic scenes, further efforts are required to allow single-
shot capture to eliminate distracting strobing sequences (for example, by using IR
flashes).

5.3 Modifying Color, Wavelength, and Polariza-
tion

The scene radiance is a product of incident illumination and reflectance. By chang-
ing the wavelength profile of the incoming light (often simplified as a color profile)
or by capturing specific wavelength channels, we can perform programmable color
manipulations of images.

By changing the spectrum of incident illumination, it is possible to probe a scene
and create multispectral photos or overcome confusion due to metamers (colors that
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Figure 5.8: Flash matting allows the extraction of foreground from background in
an ambient light image by using an additional flash image. (left to right) The (1)
flash and (2) no-flash images, (3) Bayesian matting results performed independently
on the no-flash image and (4) jointly on the flash/no-flash image pair, and (5)
compositing result using the joint Bayesian matte. (Jian Yin Sing and Shum “Flash
Matting” 2006)

have the same visual appearance for a given illuminant color). Fluorescence pho-
tography, commonly used in medical and scientific imaging, exploits the color shift
between incident illumination color and the resultant radiance. Many naturally oc-
curring substances fluoresce, including rocks and minerals, fungi, bacteria and most
body tissues. When the scene is illuminated with high-frequency (short-wavelength)
illumination, the resulting emission is in lower frequencies (longer wavelengths).

Thus, for example, subjects irradiated with ultraviolet light may release, green,
yellow or pink light, and subjects irradiated with visible light may emit infrared
fluorescence. Household fabrics are routinely treated with fluorescent dyes to make
them look whiter. When illuminated with ultraviolet light (in dimly lit discos, say),
clothes treated with fluorescent dyes emit lower frequencies and appear bright.
In most fluorescence photography, an ultraviolet-selective filter is placed at the
light source. Another filter of a different (visible) wavelength is placed over the
camera lens to absorb the reflected ultraviolet rays, permitting only the visible
light (fluorescence) from the object itself to be sensed.

Fluorescent marker dyes are used to image objects inside scattering media, such
as biological samples in microsocopy. By using a wavelength-rejecting optical filter
in front of a camera, all scattered light with the same wavelength can be rejected.
The induced fluorescence, however, has a different wavelength and can be imaged by
the camera. In these examples, fluorescence is exploited to capture otherwise unseen
or difficult-to-image phenomena, at the cost of additional photographic components,
including various wavelength-selective filters.

This wavelength manipulation can be done in the post-capture stage by using
conventional photographic equipment. Paul Haeberli [167] showed that using multi-
ple exposures of the same subject with different lighting schemes allows the lighting
of the scene to be modified after it has been photographed. Figure 5.9 shows the
technique with a scene lit with two lamps, one to the left of the subject and one
to the right of the subject, in addition to ambient lighting. Three photographs are
taken, the first with only ambient light, the second with only the lamp on the left
plus ambient light, and the third with only the lamp on the right plus ambient light.
The ambient light image is subtracted from each of the images lit by the lamps.

This technique creates an image that shows exactly what light is contributed
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Figure 5.9: Programmable combination of colors. (left) Scene illuminated by the
lamp on the left. (middle) Scene illuminated by the lamp on the right. (right)
Synthetic lighting achieved by linearly combining the image pair so that the left-
lamp image is tinted blue and the right-lamp image is tinted red. [167]

by which light source, allowing wavelength manipulation of each light. Figure 5.9
illustrates what a scene would look like if the lamp on the left was blue (for exam-
ple) instead of white. Applying a similar process to the lamp on the right in the
figure synthetically illuminates the scene with multicolored lamps. The technique
can be extended to any number of light sources to control brightness and color.
This strategy also allows for negative lighting by subtracting light coming from a
particular lamp.

As we describe in Section 5.4.2, this method can be extended to sets of pho-
tographs collected by using hundreds of individual light sources, allowing complex
environmental lighting conditions to be synthesized in post-processing. Such tech-
niques have found wide-application in the film and interactive entertainment in-
dustries, where environmental lighting can be applied in post-production so that
blue-screened performances can appear realistically lit in artificial environments.
As with many methods considered in this chapter, multiple exposures necessarily
limit the method to either static scenes or to situations in which high-speed cameras
are used with synchronized lighting.

5.4 Modifying Position and Orientation

Light sources don’t have to be static or in simple configurations. The placement
and orientation of lighting can be altered, thus modifying shadows and shading
throughout a scene. Note that changing the orientation of a light source will change
its absolute intensity at any given point in the scene, yet the angle of incidence
of light rays at each point will remain the same. Such invariant properties are
often exploited in computational photography and illumination, to facilitate novel
or efficient data capture and post-processing. The following examples show how
simple modifications of light source position and orientation lead to new techniques
for scene understanding and post-processing control.
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Figure 5.10: Multiflash camera for depth edge detection. (left) A camera with four
flashes. (top right) Multiflash image sequence produced by using four individual
flash exposures. A shadow-free image is computed by evaluating the per-pixel max-
imum intensity over the multiflash sequence. (middle right) Each multiflash image
is divided by the shadow-free composite to amplify cast shadows. Depth edges are
detected by using epipolar traversal; specifically, negative intensity transitions are
computed along the direction in each image from the corresponding flash through
the center of projection. (bottom right) The shadow-free photo and depth edge
image can be used to stylized deption and scene understanding. [329]

5.4.1 Shape and Detail Enhancement Using
Multiposition Flashes

A moving light source can be used to inspect and extract subtle surface details and
also to distinguish object silhouettes (the boundary curves separating the image of
a foreground object from the background). A traditional edge-detection filter can
detect reflectance discontinuities, such as those due to texture variation, but it does
a poor job in estimating edges due to shape discontinuities. Shape discontinuities
occur due to depth differences between a foreground and a background patch or
due to sharp changes in surface orientation (e.g., along an intensity ridge or valley).
By observing the sequence of images made while moving a light source, and noting
the variation in shading and shadows, we can distinguish such shape discontinuities
from reflectance discontinuities.

Raskar et al. [329] employed a camera equipped with multiple flashes to find the
silhouettes in a scene and create stylized or cartoon-like images. Their multiflash
camera employs four strategically placed flashes to cast shadows along the depth
discontinuities of a scene. Depth discontinues are edges in the scene formed at shape
boundaries or silhouettes, where the depth value of neighboring pixels is different.
More precisely, depth discontinuities are “depth edges” due to C0 discontinuities
in the depth map with respect to the camera. The flashes individually illuminate
the scene during image capture, creating thin slivers of shadow along the depth
discontinuities. The position of shadows is determined by the position of the flash
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on the camera. When the flash is on the right, shadow slivers are created on the
left; when the flash is on the left, shadows slivers are created on the right, and so
on. In Figure 5.10, we see how the shadows on the subject move in each of the
four positions, above, below, to the left, and to the right of the lens. The shadows
encode the position of depth edges.

The shadows visible in each image are detected by first computing a shadow-free
image, approximated with the max-composite image. The max-composite image
is assembled by choosing from each pixel the maximum intensity value from the
image set. Then the shadow-free image is compared with the individual shadowed
images identifying the shadow regions. The correspondence between the position
of light and shadow region boundaries produces the depth edges.

This technique fails to mark a depth edge when it is difficult to detect the
shadow slivers attached to the image of a depth edge. For example, the shadow
detection fails when the background is too far away, relative to the depth edge. If
the foreground object is too narrow (for example, a nail), the shadow observed in
the image is detached from the object. Since specularities from shiny surfaces can
confuse the max-composite image, a method using an intrinsic image (described
below in the subsection on natural illumination variation) can replace the max-
image.

The detected silhouettes are then used to stylize the photograph and highlight
important features. Raskar et al. [329] demonstrated similar silhouette detection
in video sequences by using a high-speed flash sequence. Since its introduction,
the multiflash camera has been applied to capture the 3D shape of objects from
turntable sequences by Crispell et al. [122]. Feris et al. [118] have also used a
video-rate multiflash system for decoding sign language input. Tan et al. [119] have
applied a similar multiflash camera to enhance laproscopic image sequences in sur-
gical environments. Alternate methods for active detection of depth discontinuities
using structured illumination have been proposed by Kim et al. [124].

By using a larger number of images captured with varying light positions around
the photographic subject in a studio or laboratory setting, we can enhance the
subtle surface features observed through grazing angle illumination, in shadows
due to complex geometry, and in specularities and subsurface scattering. Akers
et al. [116] use spatially varying image weights on images acquired with a light
stage similar to that in Debevec’s group [113]. A painting interface allows the
artist to locally modify a relit image as desired. Although the spatially varying
mask offers greater flexibility, it can also produce physically unrealizable results
that appear unrealistic. Anrys et al. [117] and Mohan et al. [121] used a similar
painting interface to help a novice in photographic lighting design. A target image
is sketched, and the system is allowed to find optimal weights for each input image
in order to achieve a physically realizable result closest to the target.

5.4.2 Relighting Using Domes and Light Waving

The goal of image-based relighting is to create arbitrary novel lighting through post-
capture editing. Instead of building an accurate 3D model of the scene, including
the material properties of each element, image-based relighting relies on the simple
observation that light interacts linearly with material objects [26, 166]. If the scene
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is lit by one light, then doubling the pixel intensities in a photo will achieve the
same effect as doubling the brightness of the light source. This of course assumes
that the camera response is linear, without underexposure or saturation.

As we saw in the work of Paul Haeberli earlier, adding two photos, each taken
with only one light illuminating the scene, is equivalent to capturing a photo with
two lights. More precisely, if a fixed camera records an image Ii from a fixed
scene lit only by a light Li, then the same scene lit by many lights, scaled by
weights wi, will produce an image Iout =

∑
i (wi Ii). Adjusting these weights

allows us to synthesize any output image corresponding to a linear combination of
lights. However, due to linearity, the effective output image is the same as if the
light sources had been modulated (turned brighter or dimmer). By using such a
data-driven approach, we can achieve flexible post- capture digital relighting of an
image.

In classic computer graphics, material properties and light transport are simu-
lated for a virtual scene (possibly modeled to correspond to a real-world environ-
ment). Data-driven approaches, on the other hand, can easily capture details that
are difficult to model, including global illumination, caustics, and the appearance
of human skin. Of course, such methods also generate enormous quantities of data.
Efficient storage and processing mechanisms are required to allow such methods to
be used in practice.

For accurate relighting of a scene to synthesize arbitrary virtual lighting condi-
tions, we ideally need to photograph the scene by moving the light through every
possible position of the lighting fixture. This is typically a challenging task. For
example, consider the case when the light positions are limited to a region within
a square flat. The data collection process involves taking successive photos as the
light is moved thought a discrete set of positions within the square. From this
dataset, we can synthesize photos only from virtual light sources lying within that
square. As with any discretely sampled signal, the sampling density of lighting
positions will determine the accuracy of synthesized results for arbitrary lighting
conditions.

To overcome this limitation and to reduce the number of lighting variations
required, we can exploit the fact that all light rays traveling within a bounded
volume can be geometrically parameterized by a 5D plenoptic function, defining
the irradiance along any given optical ray [35]. Conceptually, to capture the effects
of such a 5D function, we would need to record a photograph by illuminating the
scene one ray at a time. This is a daunting task, both in terms of the data storage
required as well as the prohibitively long time required to sample such a function. If
we limit ourselves to synthesizing novel light sources constrained to be outside the
convex hull of a given set of objects, the problem is slightly simplified. In this case,
we can represent the incident illumination by using a 4D ray-parameterization—
the “light field”—rather than the more general 5D plenoptic function. To explain
this insight, we need to consider the higher dimensional properties of incident and
scattered light and their impact on the recorded intensities in a photograph.

We discussed light fields earlier in Chapter 2. Light fields [240] and the lumi-
graph [162] reduced general 5D plenoptic functions to four dimensional functions
L(u, v, s, t) that describe the presence or absence of light in free space along any
given optical ray, ignoring the effects of wavelength and time. Here (u, v) and
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(s, t) are the parameters of intersection with two parallel planes, respectively, that
describe a given ray of light in free space. To represent an incident light field, a
slightly different parameterization can be used.

Imagine an object surrounded by a spherical dome with projectors aimed inward.
Parameters (θi, φi) describe the angular position of the projector on the unit sphere,
and (u, v) the pixel position in the projected image from a given projector. Thus,
the function Li(u, v, θ, φ) gives complete control over the incident light rays on an
object in free space. Similarly, an inward-facing array of cameras on the spherical
dome would capture the entire radiant light field created by an object, Lr(u, v, θ, φ).
Such a system would allow us to both capture and display the radiant and incident
light fields, respectively. To describe the full light geometric light transport in such
systems, Debevec et al. [113] introduced the 8D reflectance field, which describes the
irradiance recorded at a given camera pixel, due to any incident light ray displayed
by a given projector. An additional dimension of time is sometimes added to
describe the changing interaction of light with a moving object. Further dimensions
can be introduced by considering multiple color channels.

For image-based relighting, a fixed viewpoint is often used to reduce the di-
mensionality of the full 8D reflectance field, leading to a 2D radiant field captured
in a single photograph. Along with a general 4D incident light field, we are left
with the problem of estimating a 6D reflectance field. While the reflectance field
gives a complete description of the interaction of light with a scene, its acquisition
would require photographing the scene by turning on one ray at a time. This would
obviously require inordinate quantities of time and storage. Significant strides have
been made toward acquiring lower dimensional subsets of this function and using
it for restricted relighting and rendering.

Debevec et al. [113] developed a light stage, comprised of a light mounted on a
rotating robotic arm, to acquire the non-local reflectance field of a human face. As
previously mentioned, a data-driven approach for capturing human skin overcomes
the challenges of a model-based approach. In this case, the point-like light source
can be thought of as a simplified projector containing a single pixel and translated
over the surface of a sphere by the robotic arm. Thus the incident light field is
reduced to a 2D function. In total, the 2D projection of radiant field plus the 2D
incident light field requires capturing a 4D function. The authors demonstrate the
generation of novel images under arbitrary lighting conditions.

More specifically, image-based relighting was accomplished simply by adjusting
the weights wi to match the desired intensity of illumination from various direc-
tions, corresponding to positions of a point light on the virtual dome. Going beyond
relighting, the authors added a small number of temporally synchronized cameras
to capture images of the object from neighboring viewpoints. By using the cap-
tured data, and by exploiting the linearity of light, they were able to simulate small
alterations of viewpoint with a simple model for skin reflectance. Hawkins et al.
[Hawkins et al. 2001] employed a similar configuration to digitize cultural artifacts
by capturing reflectance fields. In contrast to previous cultural heritage preserva-
tions efforts, such as the Digital Michelangelo Project [237], which used 3D scanners
and model-driven approaches for relighting, such methods can capture challenging
translucent materials. As a result, they argue for the use of reflectance field cap-
ture in digital archiving, rather than geometric models and reflectance textures.
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Figure 5.11: The light stage for light-aware matting. Novel lighting conditions can
be synthesized by using a linear combination of basis-lighting images collected with
a set of translated point sources. (left) A set of high-lumen LEDs are positioned at
the vertices of a rigid dome. (center) A performance is captured while the LEDs
are continuously strobed to capture the basis-lighting imagery. (right) The actor
is inserted into a synthetic scene by using the estimated background matte. Con-
sistent lighting is achieved by weighting the basis lighting by the environment map
for the virtual scene. [115] [THE CAPTION TALKS ABOUT BASIS-LIGHTING
IMAGES, BUT THE TEXT DOESN’T.]

Koudelka et al. [114] captured a set of images from a single viewpoint as a point
light source rotated around the photographic subject, and estimated the surface
geometry by using two sets of basis images. From their estimation of the apparent
BRDF for each pixel in the images, they could render the subject under arbitrary
illumination.

In subsequent years, Debevec et al. [115] proposed enhanced light stages. For
example, a later-generation light stage contained a large number (156) of inwardly
oriented LEDs distributed over a spherical structure approximately two meters in
diameter around the photographic subject—in this case an actor (Figure 5.11, left).
Each light was set to an arbitrary color and intensity to simulate the effect of a real-
world environment around the actor (Figure 5.11, center). The images gathered
from such a light stage, together with a mask of the actor captured under infrared
sources and detectors, were used to composite the actor seamlessly into a virtual
set, while maintaining consistent illumination (Figure 5.11, right).

Malzbender et al. [254] employed 50 inwardly oriented flashes distributed over
a hemispherical dome, together with a novel scheme—called the polynomial texture
map—for compressing and storing the 4D reflectance field (see Figure 5.12). They
assumed that the color of a pixel changed smoothly as the light moved around the
object, and they stored only the coefficients of the biquadratic polynomial that
best modeled this change for each pixel. Such a highly compact representation
allows for real-time rendering of the scene with arbitrary illumination, and works
fairly well for diffuse objects. Specular highlights, however, are not modeled well
by the polynomial model and result in visual artifacts. While efficient light field
compression was considered in the initial publication [239], it remains an open
problem in the field. MPEG standardization efforts are currently underway to
compress the large multi-view datasets produced by closely spaced camera arrays.

To avoid the mechanical complexity of a light stage, we can employ a more
flexible setup and use, say, a handheld light source freely moving around the pho-
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Figure 5.12: Polynomial texture maps store the material appearance under vary-
ing illumination by using just six coefficients at each pixel. A user can perform
interactive relighting for desired visual effects [254].
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Figure 5.13: The light-waving approach can capture a 4D reflectance field for post-
capture relighting without a lighting dome [431].

tographic subject (see Figure 5.13). In this case, the task is to estimate the light
positions directly from the recorded imagery. The free-form light stage [27] pre-
sented a strategy in which the position of lights was estimated automatically from
four diffuse spheres placed near the subject in the field of view of the camera.
Data acquisition time was reported as 25 to 30 minutes. Winnemöller et al. [431]
used dimensionality reduction and a slightly constrained light scanning pattern to
estimate light source position without the need for additional fiducials in the scene.

Winnemöller et al. [431] argued that accurate calibration of light positions is
unnecessary for the application of photographic relighting. They proposed a novel
reflector-based acquisition system. They inserted a moving-head gimbaled disco
light inside a diffuse enclosure, together with the subject to be photographed. The
spot from the light on the enclosure acts as an area light source that illuminates
the subject. The light source is moved by simply rotating the light and capturing
images with various light positions. The concept of area light sources is also used
in Bayesian relighting [29]. In both of these cases, an inexpensive gimbaled disco
light is used in place of more expensive robotic arms or lighting domes employed in
previous systems. The primarily limitations of such designs, excluding long capture
times, is the inability to capture sharp shadow details and specularites, since the
efficient point light sources created by such designs are larger than the point sources
used in the competing systems.

The key disadvantage of many of these reflectance field capture techniques is
that they can be used mainly for scenes that are static while multiple photos are cap-
tured under varying lighting conditions from a fixed camera viewpoint. Any relative
motion among the three elements—the scene, the camera, and the lighting—will
introduce artifacts. Some of these limitations can be addressed by using motion
compensation via image registration. but often the motion of any one of the ele-
ments creates two different relative motions. Thus it is quite challenging to use such
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methods for traditional photography. Nevertheless, in many controllable settings
these methods can be applied successfully.

5.4.3 Toward Reflectance Fields Capture
in 4D, 6D, and 8D

The most complete image-based description of a scene for computer graphics ap-
plications is its 8D reflectance field [93]. The measurement of reflectance fields is
an active area of research. The 8D reflectance field describes the transfer of en-
ergy between a light field of incoming rays (the illumination) and a light field of
outgoing rays (the view) in a scene, each of which is 4D. As we saw earlier, this
representation can be used to synthesize images of the scene from any viewpoint
under arbitrary lighting, subject to sampling constraints. The synthesized results
accurately capture global illumination effects such as diffuse interreflections, shad-
ows, caustics, and sub-surface scattering, without the need for an explicit physical
simulation.

Most of the prior research, however, has focused on capturing meaningful lower
dimensional slices of the 8D reflectance field. We saw examples earlier of capturing
4D datasets for relighting from a fixed viewpoint and variable lighting. If the
illumination is provided by an array of video projectors and the scene is captured as
illuminated by each pixel of each projector, but still as seen from a single viewpoint,
then we obtain a 6D slice of the 8D reflectance field. If we use k projectors, each
with a million pixels, we need to capture k-million photos for this 6D dataset, since
we can measure the impact of only a single projector pixel in each photo. Masselus
et al. [260] captured such datasets by using a single moving projector positioned in
the k positions.

Sen et al. [362] exploited Helmholtz reciprocity to develop a “dual photography”
approach. The Helmholtz reciprocity allows them to interchange the projectors and
cameras in a scene. Instead of one camera and k projectors, they used k cameras
and one projector. Unlike an array of (lights or) projectors, an array of cameras
can operate in parallel without interference. By turning on each projector pixel,
one for each photo, but simultaneously capturing k photos, the authors improved
on the capture times of these datasets. An earlier method for capturing the full 8D
reflectance field [148] exploited the data-sparseness of the 8D transport matrix to
represent the transport matrix by local rank-1 approximations. With the sparsity
observations, the authors developed a hierarchical parallelized acquisition technique
that significantly sped up the process for capturing the reflectance field.

More recently, Peers et al. [315] and Sen and Darabi [363] have used compressive
sensing to rapidly acquire reflectance fields by using structured illumination. Sen
and Darabi capture a 6D transport matrix by photographing a static scene illumi-
nated by a single projector displaying a sequence of Bernoulli noise patterns. Peers
et al. project a similar set of high-frequency noise patterns. In their case, however,
the patterns are first projected into a compression basis (e.g., wavelets). In both
cases, the compressibility of the reflectance field is exploited to reduce the number
of observations required to estimate the elements of the corresponding transport
matrix.
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At the moment, such efforts to exploit compressibility in light field and re-
flectance field capture are just beginning to emerge, particularly because of the
introduction of compressed sensing itself during the last decade [87]. We expect
such efforts will be necessary to reduce the prohibitive capture times currently re-
quired for data-driven image-based relighting. Whether light field and reflectance
field capture occurs best through clever optical configurations, such as dual photog-
raphy, or through insightful uses of compressive sensing remains an issue for future
research.

5.5 Modulation in Space and Time

The capacity to modulate the flash intensity over both space and time provides
additional control of the resulting image. An intelligent camera flash would behave
much like a projector. A projector allows modulation of ray intensities in each di-
rection by changing pixel intensities, and is an ideal programmable spatio-temporal
light emitter. Hence projectors are commonly used in computational illumination
research, although they are inconvenient for incorporation in a practical camera.
Using a projector-like light source as a camera flash, which allows for varying not
only the overall brightness but also the radiance of every emitted ray, is a powerful
alternative to a conventional flash. As a result, an ideal next-generation camera
flash would provide similar control over the full 2D set of emitted rays via manip-
ulation of pixel intensity.

Shree Nayar coined the term “CamPro” to designate a projector that supports
the operation of a camera [294]. A projector can project arbitrarily complex illu-
mination patterns onto the scene, capture the corresponding images, and compute
scene information that is impossible to obtain with traditional flash. Captured im-
ages are optically coded by the patterned illumination of the scene. In the future,
the unwieldy projector may be replaced by smart lasers or light sources with highly
programmable mask patterns.

5.5.1 Structured Light Projection

For scanning the 3D surface of opaque objects, coded structured light is considered
one of the most reliable techniques. This technique is based on projecting a set of
coded light patterns and imaging the illuminated scene from one or more cameras.
Such a scenario can be used to simplify the well-known “correspondence problem”
in stereo photography. Given a pair of images of the same 3D scene, captured from
two different points of view, the purpose of the correspondence problem is to find a
set of points in one image identical to points in another image. For an arbitrary 3D
point, its projection in the two images is defined by a pair of corresponding pixels.
In turn, given the pair of corresponding pixels in two images, we can compute
the 3D location of that point by triangulation (see Figure 5.14). Of course, such
methods rely on accurate calibration of the cameras, including the lens distortion,
projection matrices, and relative position and pose of each camera with respect to
a world coordinate system.

In the case of projected structured light, a single camera view can be used along
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Figure 5.14: Structured light scanning using triangulation between camera and
projector.

with a single projector view. By using temporal multiplexing, the projected pattern
is coded so that over time each projector pixel is assigned a unique code. Because of
this temporal coding, correspondences between camera image points and points of
the projector pattern can easily be decoded. In practice, Gray codes are routinely
used, yet even simple binary encoding would be sufficient. By triangulating the
decoded points, 3D information is recovered in a manner equivalent to stereo trian-
gulation with a pair of cameras. In place of a second passive camera, the projector
actively encodes the space via illumination. Hence, this is known as active stereo
triangulation.

Coding schemes continue to evolve. The number of projected patterns required
to encode the projector pixel can be reduced by exploiting color. Rusinkiewicz et al.
exploited modest assumptions about local smoothness of surface and reflectance,
and derived a new set of illumination patterns based on coding the boundaries
between projected stripes. [349]. In practice, both spatial (within a frame) and
temporal (between frame) modulation has been proposed. While the introduction
of structured light with binary codes was proposed by Posdamer and Altschuler in
1981 [323], the field of structured lighting remains an active area with new codes
emerging every year, tailored for specific applications. The table in Figure 5.15)
from Salvi et al. [351] provides a good overview of pattern codification strategies
in structured light systems. A good survey is available at www.cs.cmu.edu/∼seitz/
course/Sigg00/notes.html.

5.5.2 High Spatial Frequency Patterns

Active illumination approaches have been used to analyze multipath light scatter-
ing, and to compute the inverse of the light transport. Consider a scene lit by a
point light source and viewed by a camera. The brightness of each scene point
has two components: direct and global. The direct component results from light
received directly from the source. The global component results from light received
from all other points in the scene. It turns out that individual materials exhibit
unique and fascinating direct and global illumination properties. A traditional cam-
era receives a sum of the two. But a programmable flash can be used to separate a
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Figure 5.15: Pattern codification strategies in structured light systems, which have
evolved over the last twenty years. Simple temporal sequences, such as binary
and Gray codes, have been enhanced by using N-ary, phase shifting, and colored
sequences. Single- shot methods, including spatial coding with M-arrays, have been
used for scanning dynamic scenes. (Table is from Salvi et al. [351].)
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Figure 5.16: Fast separation of direct and global illumination using high-frequency
projected patterns. (left) The projector is used as a programmable camera flash.
A sequence of shifted high-frequency checkerboard patterns illuminates the scene.
(middle) Direct and global illumination components can be easily extracted from
the shifted checkerboard sequence. (right) Altering the colors of the peppers in the
global component image allows novel image synthesis.

scene into its direct and global components. The two components can then be used
to edit the physical properties of objects in the scene to produce novel images.

The image on the left side of Figure 5.16 shows a scene captured by using a
checkerboard illumination pattern. If the frequency of the checkerboard pattern
is high, then the camera brightness of a point lit by one of the white squares
includes the direct component and exactly half of the global component because
the checkerboard pattern lights only half of the remaining scene points.

Now consider a second image captured by using the complement of this checker-
board illumination pattern. In this case, the point does not have a direct compo-
nent but still produces exactly half of the global component. This occurs because
the complementary checkerboard pattern lights the remaining half of scene points.
Since the above argument applies to all points in the scene, the direct and global
components of all the scene points can be measured by projecting just two illumi-
nation patterns. The middle image in Figure 5.16 shows separation results for a
scene with peppers of different colors. The direct image includes mainly the spec-
ular reflections from the surfaces of the peppers. The colors of the peppers come
from subsurface scattering effects captured in the global image. Altering the colors
of the peppers in the global image and recombining it with the direct image yields
a novel image, like that shown on the right in Figure 5.16.

In addition to subsurface scattering, this separation method can be applied to a
variety of global illumination effects, including inter-reflections among opaque sur-
faces and volumetric scattering from participating media. Thus we can distinguish
the first bounce direct illumination effect from the multipath scattering caused by
global illumination. In practice, additional shifted checkerboard patterns can be
used to improve the accuracy of the direct-global separation achieved with this
method. As with many examples in computational illumination we’ve reviewed
in this chapter, this leads to a natural trade-off in separation accuracy versus the
number of frames. For dynamic scenes, only a few projected patterns could be used
in practice, unless special efforts are made to allow high frame rates. Thus the
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results are best for static scenes.
Direct-global separation is only one such decomposition that can be performed

to understand the properties of reflected light fields. Seitz et al. [361] go beyond this
partial inversion of light transport. They developed a mechanism to represent the
impact of individual bounces of an optical ray. For a purely diffuse scene they also
devised a practical method to capture and invert the light transport. They used
the same 4D transport matrices we discussed above to model the light transport
from a projector to a camera, but their work provides a theory for decomposing
the transport matrix into individual bounce light transport matrices.

5.5.3 Modulation in Time

As with the early work in multiflash imaging, the pattern of the flash can also be
changed over time. We can synchronize strobes with activity in the scene. For
example, high temporal frequency strobes can be used to “freeze” periodic motion.
The idea is to create a new low “apparent frequency” for a high-frequency periodic
motion. When the periodic scene motion and strobed flash have slightly different
frequencies, the perceived rate of periodic motion is the difference between the two
frequencies.

For example, vocal folds moving at 1000 Hz can be viewed with a laryngoscope
with auxiliary lighting.1 If the strobe is also at 1000Hz, the vocal folds appear
frozen, as long as the person maintains a continuously pitched sound. If the strobed
frequency is 999Hz, the strobe creates a 1 Hz apparent frequency so that the vocal
folds appear to move only once per second. This makes it easy for the observing
physician to see and evaluate the correctness of vocal fold movement. In addition,
he can detect any distortions of the vocal fold shape. Sometimes the strobes are
colored with different phase delay, or with different frequencies. If anything is static,
the two colors just add up. If the object is moving, the moving object appears to
have colored trails. [THIS SHORT SECTION COULD USE OTHER EXAMPLES
OF MODULATION IN TIME.]

5.6 Exploiting Natural Variations in Illumination

Sometimes we cannot actively change the illumination of a scene for photography,
usually because of limited access or proximity to the scene. We can still exploit
natural variations such as changes in sunlight throughout the day.

5.6.1 Intrinsic Images

With intrinsic image decomposition, the goal is to decompose the input image I
into a reflectance image and an illumination image.

An image is produced because of additive or multiplicative components of a
scene. Two of the most important components of the scene are its shading (due
to incident illumination) and reflectance (due to material). The shading of a scene
is the interaction of the surfaces in the scene and its illumination. The reflectance

1Optiview System; www.divop.com/downloads/SS109BOV.pdf
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Figure 5.17: An image can be decomposed into a multiplicative combination of a
reflectance (intrinsic) layer and an illumination (shading) layer. Such decomposi-
tions, like the example of direct-global separation, can be used for applications in
computer vision, where illumination variation can confuse recognition algorithms.
They can be used as well for computer graphics applications, where the reflectance
layer can be edited to insert synthetic objects.

Figure 5.18: Intrinsic images from a webcam sequence. A sequence of 35 webcam
images captures the natural variation in illumination through the course of several
hours. The maximum-likelihood (ML) reflectance image, free of cast shadows, can
be estimated from such sequences [423].
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Figure 5.19: A night-time photo is enhanced by using a day-time photo. (left) The
input night-time photo. (right) The enhanced photo created by using gradient-
domain fusion to enhance the visibility of the night-time photo. [330]

of the scene describes the pattern and material and how each point reflects light
(see Figure 5.17). The ability to find the reflectance of each point in the scene and
how it is shaded is important because interpreting an image requires the ability to
decide how these two factors affect the image. For example, segmentation would
be simpler given the reflectance of each point in the scene.

Yair Weiss [423] showed a method to compute the reflectance components, or
the intrinsic image by using multiple photos where the scene reflectance is constant,
but the illumination changes. Even with multiple photo observations, this prob-
lem is still ill-posed, and Weiss suggests approaching it as a maximum-likelihood
estimation problem. He computes the gradient (forward differences) in each photo.
The median of gradient over time at each pixel gives the estimated gradient of the
intrinsic reflectance image. The intrinsic image is estimated by performing 2D in-
tegration of the 2D gradient field. He also shows that such a reflectance-only layer
can be manipulated by inserting new materials. By multiplying by the illumination
layer, augmentation of real scene photos can be done. In the example of a webcam
sequence shown in Figure 5.18, a novel image decomposition can be achieved, but
because natural illumination is exploited, the data collect time can be prohibitively
long. In this case, several hours may be required to observe sufficient gradient
variation to estimate an intrinsic image.

5.6.2 Context Enhancement of Night-Time Photos

Natural illumination changes are most prevalent over the day-night cycle. Night-
time images such as the one shown in Figure 5.19 (left) are difficult to understand
because they lack background context due to poor illumination. If this photo is
taken from an installed camera, we can exploit the fact that the camera can observe
the scene all day long and create a high-quality, well-illuminated background. Then,
we can simply enhance the context of the low quality image or video by fusing the
appropriate pixels, as shown in Figure 5.19 (right).

Raskar et al. show that an image fusion approach is based on a gradient domain
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Figure 5.20: Gradient domain fusion for context enhancement. [330]

technique that preserves important local perceptual cues while avoiding traditional
problems such as aliasing, ghosting and haloing [330]. They first encode the pixel
importance based on local variance in input images or videos. Then, instead of
a convex combination of pixel intensities, they use linear combinations of the in-
tensity gradients where the weights are scaled by pixel importance. The image
reconstructed from integration of the gradients achieves a smooth blend of the in-
put images, and at the same time preserves their important features. The dark
regions of the night image in Figure 5.19 (left) are filled in by day image pixels but
with a smooth transition. Figure 5.20 illustrates the steps in the gradient domain
fusion process.

Similar to other time-lapse methods, data collection can be prohibitively long
for some applications. The results would be difficult to achieve, however, by using
active programmable illumination or direct vision-based approaches, given the scale
and complexity of outdoor environments.



Chapter 6

Modern Image Sensors

Digital image sensors convert incident photons, which contain a wide spectrum
of intensities and colors, into arrays of electric charges. These charges are then
processed into image pixels that are perceived by the human eye as photographs.
We begin this chapter with a description of the parameters of digital image sensors,
followed by an examination of the human retina. We then return to the subject of
image sensors for a summary of more sophisticated sensor operations.

The physical design and software processing of modern sensors contribute greatly
in solving important challenges in photography. In the following sections we ex-
amine a sensors basic ability to record dynamic range, resolution, color, depth
estimation, and motion. We then discuss how enhanced sensor design and soft-
ware can improve image output. These enhancements include varied pixel layouts,
additional color filters or transparency filters, structured masks and lenses on the
sensor surface, and irregular integration time of the photon intensities. Additional
enhancements can include sampling from neighboring pixels and synchronization
with active illumination.

6.1 How Image Sensors Work

The surface of a digital sensor contains millions of photosensitive diodes, or pho-
tosites, which are designed to capture photons. The accumulated photons at each
photosite generate electrons in the semiconductor material of the sensor, and these
electrons represent the relative brightness of the incident light at that site. The
more light that hits a photosite, the more photons it records. Photosites capturing
highlights in a scene will absorb many photons, while photosites capturing shadows
will absorb few photons. When the exposure is complete, the accumulated electrons
at each photosite are counted, processed, and converted into a digital number that
represents the intensity and color of that pixel in the digital image. [Reference is
www.shortcourses.com/sensors/)

Sensors that use this process, called photo detection, are classified by the fol-
lowing parameters: pixel size, fill factor, full well depth, dynamic range, spectral
quantum efficiency, sensitivity, and noise.

191
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Pixel Size

Larger photosites allow more light to be collected in an exposure interval. A typical
photosite size in a commercial digital camera is 3–10 µm. For special applications
such as astronomy the photosite size can be as large as 20 µm, while smaller and
cheaper sensors with photosites as small as 2 µm are currently in demand for cell
phones and compact digital cameras. Unfortunately, sensor miniturization can go
only so far. At a certain point, diffraction-limited optics in a given camera and lens
system, not the pixel size and overall sensor resolution, becomes the limiting factor
in image quality.

Fill Factor

This parameter, also know as the optical fill factor, is the percent of the photosite
area that actually captures photons. In current sensors it is well below an ideal
value of 100% and typically close to 25% because of the space required for non-light-
gathering substrate material and additional circuitry. Microlens arrays (also called
microlenticular arrays or lenslet arrays) on the surface of some sensors can increase
the fill factor. These tiny lens systems focus photons onto the active photosite area
instead of allowing them to fall on non-light-gathering areas where they would not
be collected. [from learn.hamamatsu.com/articles/microlensarray.html]

Full Well Depth

Text to be added.

Dynamic Range

This parameter specifies the maximum achievable signal strength divided by the
camera noise, where the signal strength is determined by the full-well capacity, and
camera noise is the sum of dark and read noises. Dynamic range is further defined
as intrascene and interscene. As the dynamic range of a device is increased, the
ability to quantitatively measure the dimmest intensities in an image (intrascene
performance) is improved. The interscene dynamic range represents the range of
intensities that can be accommodated when detector gain, integration time, lens
aperture, and other variables are adjusted for differing fields of view. The full-well
capacity, which corresponds to the saturation charge and depends on the pixel size,
limits dynamic range. In case of CCDs, once the finite charge capacity of the well
fills up, accumulation of additional photo-generated charge results in overflow, or
blooming, of the excess electrons into adjacent sensor photosites.

Spectral Quantum Efficiency

This parameter is the number of electron-hole pairs created and successfully read
out by the sensor for each incoming photon. It is especially important for low-
light imaging applications. In addition, conversion gain defines volts per electron.
Sensor sensitivity, which is quantum efficiency × conversion gain, is often measured
in volts/lux, where lux is measured in watts/m2 (watts per meter squared).
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Sensitivity

Text to be added.

Noise

Text to be added.

6.1.1 CCD and CMOS Image Sensors

[Material below is from www.shortcourses.com/sensors/sensors1-1.html] All image
sensors capture light by exposing a grid of small photosites on the sensor surface.
The two primary types of sensors—CCD and CMOS—differ from each other in how
they are manufactured and how they process the image.

CCD Image Sensors

A charge-coupled device (CCD) is characterized by how the charges on its photosites
are read after an exposure. Charges in the photosites are transferred, one row at
a time, to a sensor storage unit called the read-out register. The charges are then
amplified and sent to an analog-to-digital converter. After conversion, the charges
in the read-out register are deleted and the next row is processed. In this manner
all the rows in the sensor grid are processed in sequence. Each row of charges is
thus ”coupled” to the row above it, and each row of image pixels is determined one
row at a time.

CMOS Image Sensors

Image sensors are manufactured in wafer foundries, or fabs, where tiny circuits
are etched onto silicon chips. The biggest problem with CCDs is that they use
specialized manufacturing processes that are costly and dont allow economies of
scale. Larger foundries use a more efficient process called complementary metal
oxide semiconductor (CMOS), which is the most widespread and highest yielding
chip-making process in the world. Millions of computer processors and memory
chips are made yearly as CMOS devices. By adapting the CMOS process and
equipment to make CMOS image sensors, manufacturing costs are dramatically
reduced because the fixed costs of fabrication are spread over a larger number of
devices. As a result of these favorable economies of scale, the cost of fabricating a
CMOS wafer is significantly less than the cost of fabricating a similar CCD wafer.
Overall costs are further lowered because CMOS image sensors can have processing
circuits on the same chip, while CCD sensors require processing circuits on separate
chips.

Regardless of their manufacturing differences, CCD and CMOS sensors can
produce excellent images, and both types of sensors are found in successful cameras
from major camera companies.
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6.1.2 Noise and Resolution Limits

astro.union.rpi.edu/documents/CCD%20Image%20Sensor%20Noise%20Sources.pdf
theory.uchicago.edu/∼ejm/pix/20d/tests/noise/

(From www.dpreview.com/learn/?/key=noise) Each sensor photosite contains
light-sensitive photodiodes that convert incoming photons into an electrical signal
that is subsequently processed into the intensity and color value of the pixel in
the final image. If the same pixel is exposed several times by the same amount
of light, the resulting color values would have small statistical variations, called
noise, in the final intensity and color values. Even when no light is striking the
sensor, the inherent electrical activity of the sensor generates some background
signal, equivalent to the faint hiss of audio equipment that is on but not playing
music. This additional noise signal, called the noise floor, varies over time from
pixel to pixel, increases with temperature, and adds to the overall noise of an
image. Clearly, the output of a photosite has to be larger than the noise floor in
order to distinguish the signal from noise.

[Resolution Limits. Add a paragraph here on this topic, since it is in the section
subheader.]

6.2 The Human Retina

(Most text below is created by taking individual sentences spread throughout the
article at faculty-web.at.northwestern.edu/med/fukui/Human%20eye.pdf )

The interscene dynamic range of photoreceptor cells in the human eye is more
than ten decades, ranging between 10−6 and 105 lumens/m2 (lux) of light intensity.
Cones in the retina are responsible for photopic vision (color vision in the upper
seven decades of photoreception), while rods are responsible for scotopic vision
(grayscale vision in the lower three decades). Photopic color vision occurs because
of a photochemical reaction of red, green, and blue pigments, while scotopic vision
is caused by the presence of rhodopsine. In general, the human eye requires about
thirty minutes of adaptation to adjust from photopic vision to scotopic vision. Dur-
ing the interval of time before full adaptation is acquired, the intrascene dynamic
range is only about four decades.

Spatial Resolution

In the center of the retina (the central fovea), the distance between adjacent cones
is 1.5 to 2 mm. By taking the Nyquist factor of two, we would need a separation of
3–4 mm for stimuli to be accurately resolved. In contrast, if we assume the diameter
of the pupil is 2 mm, then the estimated radius of the first-order diffraction pattern
for a 555-nm point light source formed at the retina would be 4.6 mm. The visual
accuracy is closely related to the ability of involuntary rapid movement of eyes.
Once scanned, the signal is processed by a complex neuron network. The threshold
for photo sensitivity is 100–150 photons (measured at 507 nm light entering a pupil
with a diameter of 2–8 mm), which is equivalent to a luminance of smaller than
10−6 cd/m2. The wavelength of light we are sensitive to changes with the eyes
adaptation to light levels in bright or dark scenes. Light-adapted eyes are sensitive
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to 400–700 nm (peak at 555 nm, or yellow light), while dark-adapted eyes are
sensitive to 380–650 nm (peak at 507 nm, or green light). In terms of contrast, for
reasonably high luminance and for a test object that is fairly large, human eyes
can detect about a 2% difference in gray levels. However, at very low luminance, a
contrast of 100% (double the luminance) or more is needed to be distinguished.

According to the Rose model [345], the human eye as a sensing device has
the following properties: storage time = 0.2 seconds; signal-to-noise (S/N) ratio
= 5; quantum efficiency at low luminance = 5%; and quantum efficiency at high
luminance = 0.5%. A quantum efficiency of 5% indicates that only five out of
a hundred photons that enter the eye are detected by the retina. Modern digital
sensors have a much higher quantum efficiency (around 30%) and a higher signal-to-
noise ratio. Despite these two parameters, however, digital image sensors still dont
come close to the capability of the human eye in dynamic range, spectral wavelength
range, noise performance, and other parameters. Perhaps this is true because the
evolution of the human eye has tuned these parameters more effectively, so that the
eye is much more compatible (compared to digital sensors) with the natural limits
of optics, sensing and processing.

We now look at how modern sensors deal with issues such as dynamic range,
resolution, color, and motion (e.g., camera shake by the photographer and object
motion in the scene). We also examine how modern sensors enable a new range of
capabilities, such as 3D range sensing.

6.3 Extended Dynamic Range

Creating accurate high dynamic range (HDR) images from natural scenes remains a
major challenge for solid-state image sensors. The human eye can perceive a much
greater range of scene intensities than any current sensor can record, which means
digital images can only approximate human vision. Scenes observed by the human
eye span over eight decades of illuminance, ranging from 10−3) lux in starlight to 103

lux for indoor lighting, 105 lux for bright sunlight, and even higher illuminance levels
for specularities or direct viewing of bright sources (such as oncoming headlights or
the sun) [20]. At any one moment in time, within this range, the human eye can
perceive illuminances spanning five decades. Typical APS-sized linear CCD and
CMOS sensors in most consumer cameras can capture three decades of dynamic
range, while logarithmic CMOS sensors can capture over five decades.

Human perception roughly approximates Weber’s law, which states that the
threshold to sense a difference between the illuminance of a fixation point and
its surroundings is a fraction, about 1–10%, of the surrounding illuminance. It
would take 23 bits to quantize illuminance on a linear scale with 1% accuracy
throughout a five-decade range. This is currently beyond the capability of most
solid state sensors, which typically record only 8 to 12 bits. At the sensor level,
various approaches have been proposed for high dynamic range imaging. These
will be summarized in the subsections that follow. In general, high dynamic range
imaging sensors must typically solve two main challenges in creating additional
digital levels: (i) adding quantization bits to highlights and (ii) adding quantization
bits to shadows.
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6.3.1 Space Domain: Multisensor Pixels

One approach to high dynamic range imaging uses multiple sensing elements with
different sensitivities within each photosite cell [381, 171, 424, 168]. Multiple scene
measurements of different light intensities are made by the sensing elements, and
these measurements are combined on-chip to produce a high dynamic range im-
age. Unfortunately, because of the presence of these multiple elements, the spatial
sampling rate is lowered in these devices, and spatial resolution is sacrificed in the
final image. Research in improved high dynamic range sensor design is currently in
progress, but the implementation is usually costly.

A novel approach called assorted pixels has been proposed by Nayar and Narasimhan [293,
?]. In this design the effective exposure varies across the spatial dimension of the
imaging sensor. A pattern with varying sensitivities is applied to the photosite ar-
ray. This pattern resembles the Bayer color mosaic pattern, but rather than using
color filters, the pattern changes exposure sensitivity instead. The particular form
of the sensitivity pattern, and the methods of implementing it, are both quite flexi-
ble. One implementation places a mask with cells of varying optical transparencies
in front of the sensing array. Here, just as with a Bayer mosaic, spatial resolution
is somewhat sacrificed and aliasing can occur. Measurements under different expo-
sures (sensitivities) are accumulated and spatially interpolated, and then combined
into a high dynamic range image.

Unfortunately, a major limitation of creating spatially varying sensitivity by
manipulating pattern transparency is that the pattern reduces the amount of light
striking the photosites, and we lose photons. A current series of implementations
in a commercial camera, the Fuji Super CCD (HR, SR, and SR II) [144], uses two
photosites per image pixel, where one photosite is larger than the other. The pixels
are octagonal rather than rectangular with the larger photosite at the center of the
pixel and a set of smaller photosites between the other pixels. [****NOTE: insert
a figure here to illustrate this configuration.] The larger photosite accumulates
photons more quickly than the smaller sites, and hence it saturates more quickly
and provides greater quantization in the highlight areas of the scene.

6.3.2 Time Domain

Another approach to high dynamic range imaging adjusts the well capacity of the
sensing elements during photocurrent integration [217, 353, 95]. Unfortunately, this
approach produces higher noise [****NOTE: Why?]. In a different approach [67],
the time needed for each photosite to reach saturation is measured by a computation
element attached to each sensing element. This time encodes high dynamic range
information because it is inversely proportional to the brightness at each pixel
[****NOTE: explain further?].

Brightside Technologies [18] exploits the interline transfer of a CCD sensor to
capture two exposures during a single mechanical shutter timing. [****NOTE: more
description of this sensor is needed here. Plus, according to Wikipedia, Brightside
was acquired by Dolby Systems in 2007, and is no longer operating under the name
Brightside. Their website no longer exists.]

Pixim Digital Pixel System (DPS) cameras use a unique chipset consisting of
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a CMOS image sensor and a companion image processor at each photosite. The
key innovation in the sensor is the digital pixel read-out technology. Analog-to-
digital conversion is achieved directly at the photosite by using a scheme that
processes the conversion immediately at the moment of light capture [Pixim 1999].
Because the readout is all digital, and it is performed in parallel for the entire array,
very high frame rates are possible. The Pixim’s first 0.18 µm implementation of
this DPS design included 4 MB of embedded memory, allowing multiple reads
to be buffered on chip (up tp 370k bitplanes/sec). For video generation, high-
speed LVDS (low-voltage differential signaling) processing moved the data off-chip
during the vertical blanking interval. The DPS sensor captures high dynamic range
video by sampling each frame multiple times for each global reset, and saving pixel
data before saturation at the highest SNR. The Pixim D2500 sensor achieves high
sensitivity partially because of the high fill factor (50% in a 7 × 7 µm pixel) and
the decorrelated nature of the noise. Fixed pattern noise is the dominant noise,
and the companion chip performs a two-point noise correction for each pixel, plus
dark signal non-uniformity (DSNU) scaling and subtraction.

The companion image processor generates standard definition video (NTSC or
PAL) by decoding the HDR sensor data, converting it to a linear base, and process-
ing it through the HDR color image pipeline. Automatic control of white balance
and exposure is achieved by an algorithm running on an embedded advanced RISC
machine (ARM) processor. Unlike most conventional capture systems, exposure
control is performed by changing the rendering of the HDR data, and not by chang-
ing the capture. The DPS chipset is capable of up to 17 bits (102 dB) of dynamic
range at video rates, which is the practical limit of most 1/3 inch optics.

Pixim Eclipse cameras achieve complete ambient light rejection by subtract-
ing successive frames taken with and without synchronized illumination (provided
typically by LEDs). Because the frames are computed directly on the Pixim DPS
sensor, the two exposures can be made short (global shutter) and can be read out
with a very short interval because of the in-pixel analog-to-digital converter and
on-chip memory. The typical exposure time is 500 µsec, and the exposure interval
is 50 µsec.

6.3.3 Logarithmic Sensing

Sensors with a logarithmic response [359], which roughly approximates human per-
ception, have also been proposed to increase dynamic range. Linear-response CCD
and CMOS sensors integrate the charge produced by photon absorption over an
interval of time, which results in images characterized by about three decades of il-
lumination. In contrast, logarithmic sensors continuously convert incident photons
into a voltage that is proportional to the logarithm of the light intensity, which
results in images characterized by over five decades of illumination. The expanded
dynamic range is achieved by exploiting the logarithmic currentvoltage relationship
of a MOS transistor operating in the weak inversion region. This design creates
signal compression at the pixel level, but it loses the benefit of integrating the small
photocurrent over time. Unfavorable consequences include low voltage swing (0.2–
0.3 V), poor resolution, low signal-to-noise ratio, and a difficult back-end design
for the analog-to-digital converter. In effect, logarithmic sensors increase dynamic
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range as they sacrifice resolution, because a large input range is encoded into a
limited voltage swing.

Using fewer bits than required by Webers law could result in a failure to capture
perceptible detail, especially at dim illuminances. A good solution is to encode
illuminances on a logarithmic scale so that a fractional threshold becomes a constant
threshold, suitable for uniform quantization over a high dynamic range. On a
logarithmic scale, capturing five decades of illuminance with 1% accuracy requires
only ten bits of quantization. (Note that, normally, the dynamic range of a linear
pixel is taken to be the ratio of the maximum voltage signal to the noise voltage
level, whereas the dynamic range of a logarithmic pixel is taken to be the ratio of the
maximum to minimum current signal in between which the pixel circuit maintains
a logarithmic current-to-voltage relationship.) The disadvantage of logarithmic
sensors is that this preserves details in low intensity regions, but washes out details
in high intensity regions because of quantization.

[NOTE IN MS: This paragraph originally came from www.ee.ust.hk/∼eebermak/
papers/logPixel.pdf.]

6.3.4 Gradient Camera

Tumblin, Agrawal and Raskar proposed a gradient camera that measures the dif-
ference in intensities between neighboring pixels rather than absolute intensities at
each pixel [?]. The concept is similar to differential encoding used in signal compres-
sion, where fewer bits are required to represent difference values than are required
to represent absolute values. For the gradient camera, the difference is measured
even before it is converted into quantized values. By quantizing the sensed intensity
differences between adjacent pixel values, an ordinary analog-to-digital converter
can be used to measure detailed high dynamic range scenes.

Two solutions have been proposed; one is based on gradients (i.e., forward dif-
ferences) of intensities and the other is based on gradients of intensities measured
by a logarithmic sensor. In images of natural scenes, the distribution of the gra-
dients has a strong peak at zero. Thus most of the gradients in natural images
are low valued. By measuring these differences and summing them up (in 1D) we
can measure the entire dynamic range. In 2D, we perform a 2D integration of the
estimated gradients by solving a Poisson equation.

By taking differences, the quantization levels are optimally used. A disadvantage
of logarithmic sensors (or linear sensors with few quantization bits) is that fine
details (corresponding to small intensity variations) in high intensity regions are
washed out by large quantization steps. In a gradient camera the zero of the
analog-to-digital converter is tied only to the intensity of the neighboring pixel.
Thus we don’t have to increase the quantization step to measure a high dynamic
range signal. By mimicking the differential nature of the human retina, a gradient
camera can accurately capture fine details in both high and low intensity regions.

To compute difference values and produce the best exposure the gradient camera
must take two photos. One photo is for differences in the vertical direction and the
other photo is for differences in the horizontal direction. This exposure dilemma is
solved by creating alternating mphcliques, or small groups, of sensors that locally
determine their own best exposure, and then reconstructing the image by using a
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Poisson solver.

6.4 Resolution

Engineers continually strive to increase the resolution of digital sensors. For exam-
ple, the field of superresolution is a collection of processing techniques that improve
image resolution by combining multiple low-resolution images to recover higher spa-
tial frequency components that would otherwise be lost to undersampling. Some of
these techniques estimate the relative motion between the camera and the scene,
and then register all images to a reference frame, after which images are fused by
interleaving filtered pixels to obtain a high-resolution image. Keren et al. [212]
and Vandewalle et al. [411] used randomized or jittered sensor positions that were
estimated by using sub-pixel image registration (one commercial example is Sinar).
Komatsu et al. [219] integrated images taken by multiple cameras with different
pixel apertures to get a high-resolution image. Joshi et al. [209] merge images
taken at different zoom levels, and Rajan et al. [327] investigate the use of blur,
shading, and defocus for achieving superresolution of an image and its depth map.

Most authors also applied modest forms of deconvolution to boost the images
high spatial frequency components, which were reduced by the box filter convolution
induced by square pixels. Park et al. [314] and the book by Chaudhuri [80] provide
a unified survey and explanation of current superresolution methods.

Recent superresolution research has raised significant doubts about the usability
of reconstruction-base superresolution algorithms (RBA) [335] in the real world.
Baker and Kanade [52] showed that the condition number of the linear system and
the volume of solutions both grow quickly as the magnification factor increases
incrementally. Lin and Shum [246] provided a comprehensive analysis of RBA and
showed that the effective magnification factor can be at most 5.7.

An approach that overcomes some of these limitations is to design a sensor that
uses non-square photosites rather than square photosites. Some implementations
of this technique include Fuji Finepix Super CCD cameras [144] and Penrose tiles
by Ben-Ezra. Penrose tiling is an aperiodic tiling of the plane, first presented by
Roger Penrose in 1973. Rhombus Penrose tiling consists of two rhombuses, each
placed at five different orientations by specific rules. The ratio of the number of
thick-to-thin rhombuses is the Golden Number (1 +

√
5)/2, which is also the ratio

of their area. Unlike regular tiling, Penrose tiling has no translational symmetry; it
never repeats itself exactly. For superresolution it is theoretically possible to inte-
grate and sample the infinite Penrose-tiled plane indefinitely without repeating the
same pixel structure. In practice, this design allows the capture of a significantly
larger number of different images than is possible with a regular grid. Moreover,
all images can be optimally displaced approximately half a pixel apart and still
be different. In contrast, a regular square tiling forces the maximal delta between
different displacements in x and y to be at most M , where M is the linear mag-
nification factor. The rhombus Penrose tiling is a good candidate for hardware
color sensor realization because it is 3-colorable (for an RGB color space) and has
simple tiles. This is the primary reason we selected this particular aperiodic tiling.
[****NOTE: Who is “we” here? And what were the rhombus Penrose tiles selected
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Figure 6.1: The deep iridescent cyan colors of the morpho butterfly are visible to
the human eye but difficult to capture with a digital sensor.

for? This last sentence needs clarification.]

6.5 Color Sensing

We start by summarizing how color is determined in the human visual system. Then
well discuss three techniques of digital sensing: Bayer mosaic, Foveon, and 3ccd,
along with an earlier scheme of sequential color. Well look at some of the limitations
of these digital sensing techniques, and then explore some computational approaches
that are seen mainly in satellite line scans and tomography-based systems.

Rods in the retina are responsible for human vision; they respond to color by
using three pigmentsat red, green, and blue wavelengthsas the basis wavelengths for
photopic (color) vision. How do modern digital sensors compare with the human
retina? Digital sensors mimic the 3-rod design by creating red, green, and blue
sensor photosites rather than sensors that measure a full spectrum of colors. This
approach is sufficient to capture a majority of typical images in photography, but it
cannot reproduce all the colors perceived by human vision. Because of a mismatch
between wavelength profiles of rods in the retina and corresponding red, green,
and blue sensor photosites, many vibrant colors are difficult to capture accurately.
A good example is a morpho butterfly with deep iridescent cyans, as shown in
Figure 6.1.

The photosites on an image sensor capture brightness, not color. Digital camera
sensors typically use a color mosaic pattern, or Bayer pattern, of red, green, and blue
filters to sense three separate spectral bands, which then form the basis for color
reproduction. So-called demosaicing methods, which are widely varied and often
proprietary, convert raw interleaved color sensor values from the Bayer mosaic grid
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into red, green, and blue estimates for each image pixel, while including as many
luminance details and as few chrominance artifacts as possible. Unfortunately, the
demosaicing process is not perfect; its limitations force designers to make tradeoffs
that affect image quality. The search for improvements in the demosaicing process
is an ongoing area of design and innovation.

Sony’s four-color CCD adds emerald pixels that correct defects in the rendition
of red tones at certain frequencies. The novel Foveon sensor, used in some Sigma
digital cameras, avoids the Bayer mosaic pattern entirely. It stacks three layers
of photo detectors in a figurative sandwich, with each layer above, below, or in
between the others. This design, which detects wavelength bands for color according
to photon penetration depths, eliminates the potential errors and artifacts of the
demosaicing process, and substantially reduces post-processing requirements.

Current color sensors are not only limited in how they represent visible wave-
length profiles, such as the cyan in the morpho butterfly or certain ocean colors.
They also cannot capture light in ultraviolet and infrared frequencies. This under-
representation of color values causes metamers, color bleeding, and color quantiza-
tion contouring artifacts.

6.6 Three-Dimensional Range Measurements

The goal of range-sensing cameras is to estimate the depth, or distance from the
camera, of a scene point at each pixel in an image. Several companies offer 3D
cameras that determine these values. All range-sensing methods used in 3D cam-
eras can be grouped into either of two fundamental techniques: time of flight and
triangulation.

6.6.1 Time-of-Flight Techniques

Systems by Canesta and Zcam precisely measure the time of flight required for
modulated infrared illumination to leave the camera, reflect from the scene, and
return to fast camera sensors. Several earlier laser-based time-of-flight systems
(e.g., Cyberware) used flying spot scanning to estimate depth sequentially. With-
out scanning, newer systems apply incoherent light (e.g., from infrared LEDs) and
electronic gating to build whole-frame depth estimates at video rates. Systems
from Canesta include the emitters in the same chip substrate as the detector,
enabling a compact single-chip sensor unit. The Zcam device is an augmented
professional television camera unit that provides real-time depth keying and 3D
reprojection. This approach is similar to how radar works in RF and ultrasound
works in the audio domain. Unfortunately, the active illumination used in time-of-
flight techniques is significantly limited. It will not work outdoors, it could impact
the scene [****NOTE: you could explain how it impacts the scene], and it depends
on scene reflectance. Specular or mirror-like surfaces may not reflect any illumi-
nation at all (a principle used in designing stealth aircraft). In addition, because
of distance-albedo ambiguity [****NOTE: explain this further], these illumination
techniques require a normalizing second image to nullify the effect of varying albedo.
[****NOTE from Dan Raviv for this paragraph: ”add resolution reframe rate.”
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6.6.2 Triangulation Techniques

When our eyes observe a scene point in 3D space, our human vision system uses
triangulation to process the parallax and estimate the distance to the point. This
distance is defined as the difference between the image coordinate of the scene
point in the left eye and the image coordinate of the scene point in the right eye.
Triangulation-based range sensors use the same technique. If we photograph a
scene with two cameras and back-project the light rays from the two pixels that
correspond to the same 3D scene point, the distance to the point can be estimated
by triangulation (i.e., by creating a triangle formed by the centers of the two cameras
and the two light rays to the scene point).

Unfortunately, triangulation is not an easy problem to solve. The challenge
is finding the corresponding scene points in a pair of images captured from two
different points of view. Matching a pixel in one image to a pixel in another
image is quite challenging. This requirement leads to the need to solve the well-
known correspondence problem. Given a pair of images of the same scene, captured
from two different points of view, the correspondence problem requires we find a
set of points in one image that are identical to points in the second image. The
projection of an arbitrary 3D scene point in the two images is defined by the pair
of corresponding pixels. In turn, given the pair of corresponding pixels in the two
images, we can compute the 3D depth of that point by triangulation.

Depending on the content of a scene, the correspondence problem can be dif-
ficult, time consuming, or impossible. For example, matches are missed when a
scene point in one of the images is partially occluded, or when regions with no
texture or repeated texture cannot be matched easily. Some of these problems can
be overcome by using active illumination, or by projecting a random texture to
improve the likelihood of finding a unique match. Structured-light techniques get
around the correspondence problem by projecting a set of coded light patterns and
imaging the illuminated scene from one or more cameras. Other depth estimation
procedures involve image phase estimation (which is also used in autofocus), depth
from defocus or focus, and light-fieldbased depth recovery.

6.6.3 The Importance of Accurate Range Measurements

How will depth recovery impact computational photography? If ordinary cameras
could use triangulation or time-of-flight techniques, the shape of the scene would
be easy to determine. Most current depth-estimation schemes are cumbersome,
however, which is why these techniques havent been implemented in consumer
photography products. Even a 3D camera that only approximates depth at each
pixel would revolutionize computational photography because it would allow the
insertion of objects with virtual geometry. Such a 3D camera would be popular
in video gaming and interaction, and would lead to better estimates for regions
of focus. With a measure of depth we could also compensate for the fall-off in
flash intensity as the square of the distance by simply amplifying pixel intensities
proportionally to the square of the distance. Finally, with more precise depth
estimation, we could take multiple 3D photographs and merge multiple estimates
to create a 3D model.
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6.7 Encoding Identifiable Information

Determining the identity of objects in an image is useful in creating labeled photos.
The Sony ID CAM camera system [****NOTE: I can find no information online
about ’Sony ID’ cameras, as originally written, but I did find a link to the ID CAM]
consists of beacons, which are high-speed blinking light sources, and an ID camera
that decodes the blink pattern of the beacons by analyzing all the pixels [261].
An ID camera is called a smart camera because it decodes beacon IDs and also
captures a scene image like an ordinary camera. Beacons blink at high speed and
transmit IDs as a packet via a blink pattern (Figure XXX) [****NOTE: the MS
states this is “Figure 2,” but no such figure is available]. The ID camera captures
the image with an array-like image sensor operating at a higher speed than the
blink frequency of the beacons for every frame, and then outputs the beacon IDs
in each frame. Because all the photosites of an image sensor can independently
decode the blink pattern, even if two or more beacons are blinking simultaneously,
the ID camera can recognize every blink pattern. Accordingly, any beacon can
blink asynchronously with an ID camera.

The ID CAM contains an EVIS chip, developed by Sony and the Sony Kihara
Research Center, which functions as a fast CMOS image sensor [379]. The chip
can quickly detect a change in brightness in both visible and infrared light. With
a resolution of 192 by 124, it can detect a change in the brightness of individual
pixels as well as capture scenes like an ordinary camera. Each pixel of the EVIS
chip contains a photo diode, four analog memories, and a simple comparator. A
pixel detects a change in brightness by comparing analog memories that save the
output of the photo diode without an analog-to-digital converter. The pixel then
outputs the binary result of the comparison as HI/LO data. This function makes it
possible to detect weak differences in light faster than with ordinary image sensors
that use an analog-to-digital converter.

6.8 Handling Camera and Object Motion

An ongoing problem in photography is how a camera handles the relative motion
between the camera and objects in a scene. The most traditional solution is to
use a very short exposure interval, which freezes the motion, but which in many
circumstances results in an underexposed and noisy image. Other solutions include
reducing the relative motion between an object and the camera, either by image
stabilization in camera hardware or by decoding the blurring image in software.

6.8.1 Line-Scan Cameras

High-speed narrow-view or line-scan cameras, designed exclusively for critically
timed sporting events such as track meets and horse races, offer more opportuni-
ties for capturing accurate visual appearance. The FinishLynx camera from Lynx
System Developers, Inc., is an example. It views the finish line of a race through a
narrow vertical slit, and assembles an image whose horizontal axis measures time
instead of position (see Figure 6.2). Despite occasionally strange distortions of the
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Figure 6.2: The line scan camera takes an image whose horizontal axis measures
time instead of position.

racers, the camera reliably depicts the first body part to cross the finish line as the
right-most feature in the time-space image.

6.8.2 Image Stabilization

A hand-held camera in unsteady hands is subject to camera shake, which leads
to blurry photographs, especially at long focal lengths. Modern cameras can com-
pensate for camera shake by including optical-mechanical systems that correct for
camera motion and reduce image blur. Note that these mechanisms are not the
same as steady-cam video systems, for example, which stabilize the camera body
so that successive frames are taken on a smooth trajectory. These steady-cam sys-
tems do not prevent motion within an individual frame. For any camera that is
subject to shake during an exposure interval, optical-mechanical stabilization can
be achieved by two methods: displacement of the optical elements in the lens or
displacement of the sensor in the camera.

Optical image stabilization in the lens works by using electromagnetic sensors
to move a floating lens element orthogonally to the optical axis of the lens. Two
piezoelectric angular velocity sensors, or gyroscopic sensors, detect horizontal cam-
era movement and vertical camera movement, respectively. Note that this kind
of image stabilization, implemented primarily in Nikon and Canon lenses, corrects
only for pitch and yaw axis rotations, and not for rotation around the optical axis.
Some lenses have a secondary mode that counteracts only vertical camera move-
ment, which is particularly useful when a photographer pans the camera. How
this secondary mode is activated depends on the lens design; sometimes it is done
automatically and sometimes it is done manually by a switch on the lens. Many of
Nikon’s recent vibration reduction (VR) lenses have an active mode that is designed
for shooting from moving vehicles. This mode is designed to correct for larger de-
grees of camera movement than the normal mode of VR operation. Unfortunately,
using the active mode in normal shooting conditions often results in poorer image
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quality than using the normal mode of VR operation.

Most camera manufacturers recommend that photographers should turn off im-
age stabilization when a lens is mounted on a tripod, primarily because stabilization
is erratic and unnecessary when a camera platform is fixed. Some image stabiliza-
tion lenses (such as Canon’s IS lenses) can measure extremely low vibration readings
and automatically detect when the camera is mounted on a tripod. The lens then
disables image stabilization and prevents a reduction in image quality. In general,
image stabilization is an important feature, but it isn’t perfect. The addition of
two or more gyroscopic sensors to a lens obviously increases the cost of the lens.
Also, light passing through a floating lens element shifts from its true optical path
when it projects onto the sensor, resulting in poor Bokeh. This visual look of out-of-
focus areas in an image is a subjective and subtle experience that is strongly sought
by professional photographers, and more difficult to achieve with image-stabilized
lenses.

Optical image stabilization in the image sensor, rather than the lens, avoids some
of the problems of lens-based stabilization. In this technique, the sensor’s physical
position in the camera, not the path of the light, is moved in order to counteract
camera motion. This technology is called mechanical image stabilization. As a
camera moves, gyroscopes encode movement information to an actuator that moves
the sensor and maintains the proper projection of the image onto the image plane.
This stabilization method is implemented differently by different manufacturers.
Konica Minolta uses a technique called ”anti-shake,” which is now marketed as
SteadyShot in some Sony cameras and shake reduction (SR) in several Pentax
cameras. This technique uses a precise angular-rate sensor to detect camera motion.
Olympus introduced mechanical image stabilization with a system called Supersonic
Wave Drive in their E-510 digital SLR body. Other manufacturers use digital signal
processors to analyze the image on the fly, during camera motion, and then move
the sensor appropriately.

The primary advantage of sensor stabilization is that the image is always stabi-
lized, regardless of the choice of lens. This allows stabilization to work with any lens
a photographer chooses, including older lenses, manual lenses and lighter lower-cost
lenses. One disadvantage of sensor stabilization is that the image projected to the
viewfinder is not stabilized. (Cameras with electronic viewfinders do not have this
problem because the image projected on the viewfinder is taken directly from the
image sensor.) A second disadvantage of sensor stabilization is that the imaging
sensor is moved but the autofocus sensor is not moved. Camera shake can therefore
lead to lower performance of the autofocus system in low light. Note that this prob-
lem occurs only with digital SLR cameras that have a dedicated phase-detection
autofocus sensor. It is not a problem with smaller cameras that use the main sensor
itself for contrast-detection autofocus. Note also that sensor stabilization does not
function in digital SLR cameras that can record video because the sensor must lock
in place during video recording. Lens-based stabilization systems don’t have this
limitation, and they can function in all imaging modes.

(The Wikipedia site en.wikipedia.org/wiki/Image stabilization is the original
source text for the four highly modified paragraphs above.)
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6.8.3 Hybrid Imaging

Motion blur due to camera movement can significantly degrade the quality of an
image. Since camera movements are typically arbitrary, and follow a random path,
computational attempts to remove motion blur can be difficult and problematic.
Previous methods to correct motion blur have included blind restoration of motion
blurred images, optical correction with stabilized lenses, and use of special CMOS
sensors that limit the exposure time in the presence of motion. Ben-Ezra et al.
exploited the fundamental trade-off between spatial resolution and temporal reso-
lution; they constructed a hybrid camera that can measure its own motion during
image integration [57]. The acquired motion information was used to compute a
point-spread function (PSF) that represents the path of the camera during integra-
tion. This PSF was then used to deblur the images made by using long exposure
and complex camera motion paths in several indoor and outdoor scenes.

A hybrid imaging system proposed by the author [****NOTE: which author?
Ben-Ezra? Nayar? Raskar? Tumblin?] consists of a high-resolution primary detec-
tor and a low-resolution secondary detector. The high-resolution detector records
the image information while the secondary detector computes the motion infor-
mation and the PSF. The motion between successive frames is limited to a global
rigid transformation model, which is computed by using a multi-resolution iterative
algorithm that minimizes the optical-flow-based error function. The Richardson-
Lucy algorithm is then used to process the resulting continuous PSF to remove
motion blur. The authors used a 3-megapixel Nikon digital camera as the primary
detector and a Sony digital video camcoder as the secondary detector. The two
detectors were calibrated offline. Deblurred results were demonstrated on several
real sequences with exposure times ranging from 0.5 seconds to 4 seconds, and with
blur ranging up to 130 pixels.

Recently, Fergus et al. have shown that, in case of camera shake, the point
spread function can be estimated from a single image [132]. They exploit the nat-
ural image statistics on image gradients and then use the probability blur function
[****NOTE: do you mean probability density function?] to deblur the image.

Blur due to camera shake is different from blur due to object motion. While
camera shake can be estimated by on-board accelerometers, it is difficult to estimate
object motion from a single frame. Let us study some recent approaches for linear
object motion.

6.8.4 Coded Exposure via Fluttered Shutter

In a conventional single-exposure photograph, the movement of objects in the scene
or the movement of the camera by the photographer can both contribute to motion
blur in an image. The exposure time interval defines a temporal box filter that
smears the moving object across the image by convolution. This box filter destroys
important high-frequency spatial details so that deblurring via deconvolution be-
comes an ill-posed problem. Raskar et al. have proposed to flutter the cameras
shutter open and closed with a binary pseudo-random sequence during the chosen
exposure time interval, instead of leaving the shutter open for the entire interval,
as in a traditional camera [331]. The flutter changes the box filter to a broadband
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filter that preserves high-frequency spatial details in the blurred image, and the
corresponding deconvolution becomes a well-posed problem.

Results were presented for several challenging cases of motion-blur removal,
including extremely large object motions in outdoor scenes, with textured back-
grounds and with partial occluders. The authors assume that the PSF is given or
can be obtained by simple user interaction. Since changing the integration time
of conventional CCD cameras is not feasible, an external ferro-electric shutter is
placed in front of the lens to code the exposure. The shutter is driven alternately
opaque and transparent according to the binary signals generated from PIC [de-
fine this acronym] using the pseudo-random binary sequence. The code is chosen
to minimize the deconvolution noise, assuming a specific amount of motion blur
in the image. Unfortunately, a coded exposure also reduces the light entering the
camera. The chosen code was 50% on/off, so half the light was lost, compared to a
traditional camera with the same exposure time.

6.8.5 Motion Invariant Photography via Sensor Motion

In motion invariant photography (MIP) as presented by Levin et al., the motion
blur (or motion PSF) is invariant to object speed within a certain range [235].
Thus objects moving with different speeds within that range would result in the
same motion PSF. To deal with motion in a known direction, you must move the
camera with a constant acceleration during a single image exposure. Knowing the
direction of the object motion is important, since the camera should be moved
accordingly, but knowing the magnitude of the object motion is not required. An
obvious disadvantage of MIP is that the static parts of the scene are also blurred
during capture, which leads to deconvolution noise on those scene parts.

If the direction of object motion is exactly known, and the motion magnitude
is unknown within a range, MIP should be the solution used for capture. However,
if the direction of object motion is unknown, then coded exposure is the optimal
choice. In addition, as the object speed and direction differ from assumed values,
performance degrades slowly for coded exposure but sharply for MIP. For MIP,
estimation of the PSF is not required for static scene parts, but they are also
blurred due to camera motion, leading to degradation in SNR [41].

Sensor motion is useful for some other applications. Instead of x-y motion in the
sensor plane, motion in the direction of the optical axis during a single exposure
produces a rubber-focus [****NOTE: describe this effect more clearly, and link
the concept of optical axis motion to your next sentence]. Wavefront coding [75]
modifies the defocus blur to become depth-independent by using a cubic phase plate
with lens, while Nagahara et al. [284] move the sensor in the lateral direction during
image capture to achieve the same [modification?]. [****NOTE: slim paragraph
could use some expansion]

6.8.6 Performance Capture via Markers

Motion capture is an increasingly important component in film and television spe-
cial effects, as well as in the development of accurate motion-based user inter-
faces and the analysis of body movement for injury rehabilitation. Optical sys-
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Figure 6.3: Communication choices between light sources and receivers, plotted in
terms of complexity of receivers (x-axis) versus complexity of transmitters (y-axis).

tems are typically more effective at motion capture than magnetic, acoustic or
mechanical systems because optical systems experience lower latencies and pro-
vide greater accuracy and precision in recording motion. Motion capture systems
used in movie studios commonly employ high-speed cameras to observe passive
visible markers or active light emitting diode (LED) markers. These expensive
camera-based systems have special high-bandwidth sensors, and they require a
controlled environment to maintain high contrast between the marker and its back-
ground. [343, 415, 24, 30, 25, 309, 79]

For example, the Vicon MX13 camera can record 1280× 1024 full-frame grayscale
pixels at frame-rate speeds up to 484 frames per second, with onboard processing
to detect the marker positions. These cameras, which have been developed over the
last three decades, provide highly reliable output data for special effects. Expensive
high-speed motion-capture cameras, however, dont always scale easily as demand
for more precise data increases. Bandwidth restrictions limit image resolution as
well as frame rate. Higher frame rates (i.e., shorter exposure times) require either
brighter controlled scene lighting for passive markers or the use of power-hungry
active LED markers. To segment the markers from the background as robustly as
possible, these systems also use methods for increasing marker contrast, which usu-
ally requires an actor to wear dark clothing and perform under carefully controlled
lighting.

Update rate is affected by camera frame rate. Active beacons must use time
division multiplexing [25] so that only one LED can be turned on at a time. Each
additional tag requires a new time slot. [****NOTE: Update rate should be clarified
here. Also, are beacons and tags identical to active markers? If so, the terminology
should be consistent. If not, the new terms should be defined.] Hence, the total
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update rate is inversely proportional to number of tags. Such systems are ideal
for applications requiring high-speed tracking of a small number of tags, e.g. head
or hand tracking in virtual reality systems. Passive markers need to resolve cor-
respondence to avoid the marker swapping problem. [****NOTE: slim paragraph
could use some expansion. Where does callout for Figure fit in?]
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Chapter 7

Processing and
Reconstruction

The previous chapters focused primarily on system-level solutions, combinations of
new optical hardware and novel algorithms that together help us overcome some of
the limitations of traditional photography. As our goals are more ambitious than
simply taking better pictures, we can broaden the processing steps to incorporate
more standard techniques and recent advances in image processing and computer
vision. For example, as “cheaper, faster, and better” digital cameras and storage let
even the most casual photographer gather abundant collections quickly, novice and
professional users alike must confront the daunting task of organizing and browsing
massive personal and on-line photo collections. Current methods are quite varied
and disjoint; most people patch together their own haphazard mix of methods and
competing software packages, and resort to some combination of building hierar-
chies of directories, manually renaming each photo, tagging individual photos or
each group of photos with thoughtful metadata, uploading, downloading to online
repositories, and using images as raw materials for website-building tools. Can’t
we find a better, more forward-looking approach? How might we adapt existing
and new image-processing methods to computational photography tasks?

Several image processing and computer vision techniques already provide new
ways to interact with existing photos, such as automatically generated suggestions
for metadata. Some recent ‘smarter’ camera designs adopt fast image filtering,
recognition and metering methods to adjust their settings automatically to match
the scene content, detect smiles, and make sensible low-level decisions to let photog-
raphers devote more of their attention to a photo taken in less time. Advances in
geometric operations on large sets of photos now allow even novices to explore their
image content in 3D. In such a data-rich environment, in which millions of photos of
any object can be archived and retrieved at little cost, automatic processing must
become a central feature of computational photography.

211
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7.1 Filtering and Detection

The traditional field of image processing is primarily concerned with image-based
object detection and recognition. In part because classic film-like cameras dupli-
cate the lens-and-sheet-like sensor arrangement of the human eye, researchers have
been inspired to further replicate the performance of the human visual system,
starting from simple low-level image acquisition all the way through high-level un-
derstanding of the scene. For example, human’s quick and robust text-reading
abilities have long inspired optical character recognition (OCR) systems in image
processing. These systems optically scan or photograph printed characters to cap-
ture their image, and then convert the printed characters from noisy bitmaps to a
machine-readable format, typically in the form of an ASCII character sequence.

Despite decades of active study, image-based object recognition also remains a
challenging area of computer vision research, due in part to the visual complexity
of the physical world. In practice, changes in illumination, shading, occlusion, and
inter-reflections as well as the position and pose of objects in a world are difficult
to detect and assess reliably. As a result, systems that perform even the most basic
visually guided tasks by using a camera to control a robotic arm, remain tailored
to niche applications, where the visual complexity of the environment is kept small
and manageable (e.g., under controlled lighting and known viewing conditions).

All of these new and previous software-based methods can be seen as maximizing
the information content that can be achieved with a given imaging system. With
additional information supplied from novel devices for optics, illumination, sensors,
and with active communication between these devices, what additional capabilities
are possible? Our exploration is organized into (1) filtering to reduce the impact
of noise, (2) detection to localize desirable or important image features, and (3)
recognition of these features to categorize images with discrete sets of higher-level
labels.

7.1.1 Detection and Recognition

Image-based methods for object detection and recognition are too numerous and
varied for a comprehensive survey here, but a few promising methods recently ap-
peared in innovative digital camera designs, including face detection system in both
the Sony and Fujifilm point-and-shoot camera lines (see Figure 7.1). As amateur
photographers sometimes have difficulty choosing the best aperture, exposure, and
focus settings, many cameras now include pre-set modes for portraits, night-time,
sports, back-lit or other scenes where well-chosen settings make good pictures more
likely. Detecting human faces in the scene allows such cameras to make better
choices for settings to ensure everyone’s face is properly focused, color-balanced,
and well exposed in the final photograph. Going even further, Sony recently in-
troduced their “smile shutter” mode that defers triggering the shutter until the
system determines that everyone is smiling. As the quality of results depends on
the quality of the underlying computer vision algorithms, we must note that face
detection is a notoriously difficult problem, in which even lighting changes, such as
illumination from multiple light sources, can confuse many existing methods. While
the current generation of camera-based face detection has difficulty detecting faces
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Figure 7.1: Automatic face detection in consumer digital cameras. (Left): Sony’s
smile shutter feature (from their Cyber-shot DSC-T200) delays the shutter release
until the main subject smiles. (Right): FujiFilm FinePix S600d camera’s Face
Detection Technology, identifies up to 10 faces to prioritize its focus and exposure
settings. (sources: tinyurl.com/4sl8xc and facedetection.fujifilmusa.com/)

in profile or when partially occluded, and cannot currently distinguish a printed
2D face from a live human subject, the results are still quite suitable and helpful
for casual photography of friends and family. Like any ‘automatic assist’ function,
smile detection might not always be appropriate, as sometimes an enigmatic ex-
pression is more desirable than a smile; a broad smile would not improve Leonardo
da Vinci’s work on the Mona Lisa.

As nearly every mobile phone now includes both a small built-in digital camera
and growing computation and storage, both users and manufacturers are adapting
them to new everyday uses. Several vendors have begun offering automatic mobile
translation software; for example, Linguatec’s “Shoot & Translate” software com-
bines four key technologies: optical character recognition, automatic translation,
voice output, and a dictionary [247]. When confronted with a sign in an unfamil-
iar language, users just take a picture of it: the phone then extracts the text via
OCR, identifies the language, performs simple machine-translation to the user’s
language, displays the translated text, and even reads aloud the translation using
text-to-speech conversion. Already included in several Nokia phones and slated
for release for others, this and related translation features from Moka LLC, Ec-
taco Inc., and Transclick Inc. (see en.wikipedia.org/wiki/Mobile translation) may
aid greatly anyone visiting an unfamiliar city or cultural region. As with face de-
tection software, these systems apply decades-old computer vision research, but
adapted to new uses and very lightweight platforms. These photo-assisted mo-
bile translation systems can trace their origins to similar text-to-speech systems
designed for assisting the visually-impaired, such as the K-NFB device invented
by Ray Kurzweil (see news.bbc.co.uk/1/hi/technology/5088464.stm). In these sys-
tems, simple compositional transformations are fairly straightforward, but transla-
tions that accurately interpret idioms and that provide suitable responses to slang
and culturally-dependent idioms remain difficult. While at first these image pro-
cessing applications to consumer electronics may appear as gimmicks, each address
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a new problem in a new way and suggests entirely new directions and everyday
applications for computing and photography.

7.1.2 Noise Reduction

Digital image sensors in their current form may never entirely escape from noise
or the need for noise removal: as Chapter 6 explains, even a perfect noise-free
electronic system will still suffer from photon-arrival noise in low-light conditions
(from limited light in the scene, limited exposure time, and limited apertures and
lens’ ability to gather enough light for each pixel). However, if we can assume
that the underlying noise processes are spatially-uncorrelated (or at least high in
frequency) and the underlying image is slowly-varying, then filtering methods can
help us remove or hide that noise without unduly damaging the image content. For
example, we might apply a low-pass filter to pixel values in a small neighborhood
in an attempt to preserve the original features while ‘smoothing away’ most of the
noise.

However, this method can fail badly at sharply detailed texture edges, and has
inspired many ingenious approaches to developing visually suitable edge-preserving
filters, including multi-scale, PDE-based, histogram-based, iterative and non-iterative
approaches. Inspired by early scale-space work, Perona and Malik’s work in anisotropic
diffusion [319] found wide application and development of many variants. This
method iteratively reduces the differences between each pixel and its four neigh-
bors, but weights those reductions according to a local ‘edginess’ measure, which
they chose as a function of gradient magnitude. High gradients earned weights
at or near zero, ‘freezing’ these edge-like features in place on every iteration,
while low gradients gained high weights, smoothing away these small differences.
In addition, anisotropic diffusion exhibits ‘shock-forming’ behaviors that, with
enough iterations, smooth images towards piecewise-constant results. Shocks are
the self-reinforcing formation of discontinuities, where smoothing on either side of
a preserved edge sharpens a previously smooth step-like feature into a discontinu-
ity. Many follow-on papers present improvements or refinements, examine shock-
forming and its consequences, accelerate convergence, and identify mathematical
links with other PDEs and the bilateral filter. While well understood, this and many
other iterative PDE-based methods have limited practical utility for real-time noise
reduction.

As presented in Chapter 4, the bilateral filter has emerged as one of the most
popular methods for non-iterative edge-preserving image smoothing. This rather
simple but very effective idea was invented independently several times, perhaps
first by Aurich and Weule in 1995 [48], then again by Smith and Brady [374] as part
of their SUSAN framework, then again by Tomasi and Manduchi [22] who gave it
its current name.

The bilateral filter can be viewed as an adaptive low-pass filter: it replaces each
pixel with a weighted sum of its neighbors, but those weights depend on both the
intensity and position of that neighbor. The key idea is to take an ordinary Gaussian
filter that assigns weights to neighbors according to their spatial domain filtering,
and multiply it by a second Gaussian filter, one that filters intensity differences
with neighbors. This second, range filtering assigns large weights to neighbors
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with intensities similar to the central pixel, but low weights to neighbors with very
different, ‘outlier’ intensity values.

As defined by Tomasi and Manduchi, a bilateral filter can be applied to an
image f(x) as

h(x) = k−1(x)

∫ ∞

−∞

∫ ∞

−∞
f(ξ)c(ξ,x)s(f(ξ), f(x))dξ

with this normalization to ensure all weights for a pixel sum to 1.0:

k(x) =

∫ ∞

−∞

∫ ∞

−∞
c(ξ,x)s(f(ξ), f(x))dξ,

where c(ξ,x) measures the geometric distance between the neighborhood center x
and a nearby point ξ and s(f(ξ), f(x)) measures the photometric similarity between
points x and ξ in the image. As shown in Figure 7.2, a typical choice for the
similarity functions corresponds to shift-invariant Gaussian filtering, in which

c(ξ,x) = e
− 1

2

(
|ξ−x‖
σd

)2

and s(f(ξ), f(x)) = e−
1
2 ( |f(ξ)−f(x)‖

σr
)
2

.

Note that the geometric and photometric standard deviations, given by σd and σr,
control the amount of averaging in the spatial and range dimensions, respectively.

The bilateral filter has proven useful for a wide variety of computational photog-
raphy applications beyond image filtering, and recent acceleration methods make
it suitable for interactive image editing on multi-megapixel images (for more infor-
mation see the SIGGRAPH course notes on the subject [312]). As noted by Paris
et al., applying the bilateral filter independently to individual R, G, B channels
can cause unusual visual anomalies; strong but nearly isoluminant edges preserved
in one color channel might be smoothed away in another. Bilateral filtering in
CIE-Lab color space, or applying cross-bilateral filtering from luminance to each
chrominance channel, will keep the same edges sharp in all color channels. While
non-iterative and visually appealing for many applications such as tone mapping
and multi-scale image-detail editing, the bilateral filter still has notable limitations
for noise reduction, as outlined by Buades et al. [70].

Video noise reduction presents a substantially different problem. Similarities
between adjacent frames provide more opportunities to distinguish between the
photographed scene and the noise that obscures it, but camera motion or move-
ment of objects in the scene makes identification of these frame-to-frame similarities
far more difficult. As described in Chapter 3, most video cameras currently cap-
ture a low dynamic range (LDR) sequence, consisting of a set of uniformly-exposed
digital images. In practice, a high dynamic range (HDR) sequence is required to
capture natural scenes. Bennett and McMillan [59] proposed “virtual exposures” to
enhance underexposed, low dynamic range videos using adaptive spatial and tempo-
ral post-processing. As shown in Figure 7.3, the algorithm begins by estimating the
exposure setting using a spatially-uniform tone mapping for each pixel. They then
synthesize a corresponding gain ratio by combining uniformly-exposed frames for
each pixel via averaging temporal samples of static scene elements and spatial sam-
ples of dynamic elements. Such virtual exposures reduce sensor noise and enhance
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Figure 7.2: Bilateral Filtering [22]. (Top) The bilateral filter is centered on a pixel
on the “bright” side of a step edge. The geometric distance function exponentially
decreases from the center pixel, whereas the photometric similarity function only
includes points on one side of the discontinuity. As a result, the bilateral filter kernel
only averages values on the bright side of the edge. (Bottom) From left to right, an
input image, the output after one iteration of bilateral filtering, and the output after
five iterations. Note that a cartoon-like appearance results when multiple iterations
are applied, corresponding to the elimination of shading variation between sharp
intensity discontinuities. (sources: tinyurl.com/c8l92a and tinyurl.com/cnxsuy)
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Figure 7.3: Video Enhancement using Per-Pixel Virtual Exposures [59]. (source:
ericpbennett.com/VideoEnhancement/index.htm)

previously unseen details in shadowed regions, under the assumption of zero-mean
underlying noise processes. The proposed system enhances raw uncompressed video
streams off-line and cannot currently operate in real-time, as it requires about one
minute of processing time per 640×480 frame. Furthermore, the performance de-
pends on the systems’ ability to track objects in the video, and artifacts may result
from independently-moving regions that are too complex, occluded or numerous
for accurate tracking. This paper’s promising results suggest that further work on
computational methods for denoising videos could prove fruitful.

7.1.3 Colorization and Color-to-Gray Conversion

“Colorization” or “colorizing” describes any process that adds color to an exist-
ing monochromatic image or video, usually by adding hue and saturation without
modifying luminance. Adding color has deep historical roots: hand-tinting methods
perfected for postcards, advertising, figures and prints in books hundreds of years
ago, and included everything from crude color washes to meticulous water-painting
after printing. For example, John Jay Audubon’s landmark “Birds of America”
books, first printed in 1827, include 435 of the huge ‘double-elephant folio’ (26 x 39
inches) versions. Each page was a printed engraving then water-colored by hand
by teams of artists supervised by Audubon himself.

Few manual colorization methods were as meticulous as Audubon’s, but many
were adapted to even the earliest of photos, including Dageurreotypes, ‘tin-types’.
Usually applied as a soft ‘wash’ of color to make cheeks look bright and rosy and
skies look blue, these methods showed that even very faint amounts of color greatly
enhanced the appeal of the photos. Very broad, gentle blobs of faint color with
very blurry transitions of hue and saturation gave pleasant results, as the lumi-
nance edges in the photo would suffice to indicate visually important scene bound-
aries. With the advent of offset printing capable of half-toning and precisely aligned
multiple inks, hand-tinting disappeared rapidly in the early 1900s.

Widespread colorization for films began in the 1980s as computer-assisted color
video processing, editing, digital film scanning, and digital film-printing became
practical. Printing became practical. In the mid-1980s companies such as American
Film Technologies in San Diego, CA began computer-assisted colorization for black-
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and-white films, including parts of the MGM back-catalogue of films purchased at
that time by Ted Turner, who became a strong advocate for film colorizing (though
many film critics such as Roger Ebert and many directors such as John Huston
protested these modifications: Huston specifically prohibited colorization of his
own works).

Methods for computer-assisted colorization were at first very closely-held trade
secrets and were quite labor-intensive, requiring manual selections from hue/saturation
color palettes, automatic image segmentation with motion tracking whose results
were manually verified and corrected frame-by-frame by artistically skilled opera-
tors using pen-like user interfaces. Most, but not all early colorization methods
used intentionally under-saturated images to help minimize visual distractions, in-
cluding occasionally jarring color choices, ambiguous segmentation at complex or
transparent boundaries (fog, feathers, fur) inconsistencies between scenes, or track-
ing mistakes where moving colors did not match moving objects exactly. Results
improved greatly in the 1990s with the advent of 3D texture-tracking methods
and better tool-automation and user-interfaces for finding and correcting mistakes.
Some movie colorization projects such as Frank Capra’s “It’s a Wonderful Life” were
quite meticulous, using historically researched color palettes, and incorporated a
broad range of film-restoration techniques that accounted for the film’s sensito-
metric response curves, suppressed film noise, removed film scratches, corrected
frame-to-frame mis-registrations, and restored contrast lost in aging film stocks.

Computer graphics researchers have been investigating stroke-based, manually-
guided and semi-automatic colorization methods since the late 1990s. At present,
state-of-the-art colorization uses computer vision algorithms to segment and track
individual scene components. Users typically provide coarse color strokes in their
target regions to initialize an iterative color-filling process (e.g., see Figure 7.4).
Levin et al. [233] use a quadratic cost function to identify neighboring pixels in
space-time (i.e., throughout a given video sequence) and automatically propagates
users’ initial color strokes throughout the space-time volume by solving a well-
formulated optimization problem, with object boundaries automatically detected
and tracked over the image sequence. In their work, as in other state-of-the-art
colorization algorithms, the ability to preserve color boundaries depends on the
quality of the space-time segmentation, and the color-strokes act as a form of man-
ual assistance to the method’s semi-automatic image segmentation. By casting
colorization as an optimization problem, Levin et al. enables this sub-field to bene-
fit from advances in other computer vision problems, including more sophisticated
affinity functions for segmentation and faster optimization techniques.

Black-and-white or grayscale printing is still much cheaper than color and usu-
ally offers both higher resolution and better shading results. However, many black-
and-white renditions of color images do not adequately convey all the visual infor-
mation of the original, because the color-to-grayscale conversion process still imi-
tates black-and-white photographic film. Like modern ‘panchromatic’ film, these
well-established methods compute an approximation to luminance (spectral power
of light weighted by the luminosity curve of Figure 2.13 in Chapter 2), but are not
required to do so—they do not share the restrictions of film. Complex chemistry
determines the spectral response curves of photographic film during manufacturing,
but digital color-to-gray conversions are free to use any method we can devise that
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Figure 7.4: Colorization by Optimization [233]. (Left): Users annotate a grayscale
with a sparse set of target-color scribbles. (Right): Propagating those user strokes
to fill the space-time volume creates a fully colorized image. (source: www.cs.huji.
ac.il/∼yweiss/Colorization/)

might produce better results.

By far the most common grayscale renditions for printers are made by simple
luminance conversions meant to approximate the ‘luminosity’ spectral response
curve of Section 2.2.4). Conversions range from averaging (L = 1/3(R + G + B))
to misuse of the now-obsolete NTSC analog television standard: L = 0.299 ∗ R +
0.587 ∗ G + 0.114B, or the more suitable gamma-corrected version: L = 0.3086 ∗
R+0.6094∗G+0.0820∗B (from www.graficaobscura.com/matrix) or by using only
the luminance (L) channel of the CIE La*b* color space. Each of these methods
are only projections; they discard two of the three dimensions we have available
to describe human-perceivable colors. Not surprisingly, this discarded information
often held important visual features and distinctions that were plainly visible in the
original color image. For example, in Figure 7.5, the background sky and fading
dusk-orange sun are isoluminant; they differ only in hue and saturation, and if we
display only luminance information, the sun vanishes.

Pioneering work by Gooch et al. [160] introduced the “Color2Gray” algorithm to
reduce such losses by attempting to preserve the salient features of a color image.
They present a 3-step process: (1) conversion of RGB inputs to a perceptually
uniform CIE-Lab color space, (2) use of chrominance and luminance differences
to assign scalar distance values to all their neighboring pixels, using metrics that
combine spatial and color-space differences, (3) solving an optimization problem to
determine the grayscale values for each pixel whose differences from their neighbors
best match the originals in the least-squares sense. (see Figure 7.5).

Their approach works well to preserve visible details on a wide range of chal-
lenging images, but can be quite slow to compute due to the large and slow O(N4)
optimization required, and the method needs a small amount of user-intervention
to decide which hues should split the hue-circle into two portions, and which one
should map to darker and which to lighter tones. As this and several follow-on
methods attempt to map three dimensions of color variations to just one dimension
of luminance, it cannot guarantee that all marginally-visible color variations in an
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Figure 7.5: Color2Gray [160]. A color image (Left) often reveals important visual
details missing from a luminance-only image (Middle). The Color2Gray algorithm
(Right) maps visible color changes to grayscale changes. (Image: Impressionist
Sunrise by Claude Monet, courtesy of Artcyclopedia.com). (source: tinyurl.com/
d4f2df)

image will still be visible in the grayscale rendition (especially for images with a
very broad distribution of colors and color differences), but does ensure a reasonably
proportional mapping, where the size of the color differences between pixels in any
local neighborhood correspond to the size of the luminance pixels in the same neigh-
borhoods in the result. It also guarantees that the result fits the available contrast
abilities of the display without over- or under-exposed regions. Contemporaneous
work by Rasche et al. [328] addressed the same problem using multi-dimensional
scaling (MDS) on a set of 256 colors found by quantizing the source image, mapping
these to display luminance, and then mapping scene colors onto them. In addition,
they presented a very worthwhile expansion of the problem into visual prosthetics;
how can we re-map all the color differences of an ordinary color image to differences
that people with color-perception deficiencies (e.g., deuteranopes) could discern re-
liably? For both tasks their method provided substantial improvements, and also
showed promise as an aid for viewers with color-deficiencies. However, the method’s
performance degrades for images with very broad, uniform color distributions and
is insensitive to spatial variations included in the Gooch approach. Both papers in-
spired a steadily improving sequence of methods, both faster and more perceptually
valid; for a good overview see [373].

7.1.4 Motion and Defocus Deblurring

As described in Chapter 2, digital imagery is often blurred due to two factors: (1)
motion of the camera or scene objects during the exposure, and (2) defocus of ob-
jects located outside the camera’s depth of field. Image processing methods have
been proposed to sharpen such imagery by compensating for these sources of blur
in post-processing. As previously described, the imaging process can be modeled
as a linear shift-invariant (LSI) system, in which a lens creates a magnified copy
of distant scene planes. Each scene plane is subject to defocus blur which can be
modeled by convolution by a spatially-invariant kernel whose width is proportional
to the distance from the plane of focus. Similarly, camera and object motion can
be modeled as a linear superposition of images, corresponding to the instantaneous
frames captured over the exposure time. The cumulative result of motion and de-
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Figure 7.6: Removing camera shake from a single image [132]. (Left) An image
degraded by camera shake. (Middle) Result after applying Photoshop’s unsharp
mask. (Right) Result from the blind deconvolution method of Fergus et al. [132],
with the inset showing the recovered PSF. (source: people.csail.mit.edu/fergus/
research/deblur.html)

focus blur is to produce a single point spread function (PSF). This PSF defines a
depth-dependent convolution kernel that approximates the image blur under the
LSI model. As a result, image deblurring involves inverting that process by decon-
volving the point spread function. Motion and defocus deblurring algorithms can
be classified as either blind or non-blind; the ‘blind’ methods begin with little or
no knowledge of the point-spread function, and the non-blind methods begin with
accurate a priori estimates. The Richardson-Lucy algorithm, perhaps the best-
known non-blind deconvolution method, calculates the most likely image given the
observed pixel values, the known point spread function and the ‘non-negative con-
straint’ that all pixel values are greater than zero. In practice, iterative methods are
often used to find a maximum-likelihood deconvolution result. The more challeng-
ing blind image deconvolution methods must simultaneously estimate a deblurred
image and the point spread function.

Image deconvolution is a well-studied topic in image processing and computer
vision, but most approaches assumed that both the PSF and the camera’s aper-
ture are unavailable for manipulation to help in the deblurring process. As we saw
in Chapter 4, recent coded aperture methods broke these assumptions, and show
that simple masks and shutter modulations ensure that the point spread function
is invertible—eliminating strong ringing artifacts typically produced from decon-
volving PSFs from an unmodified circular aperture. In recent years, several new
approaches emerged for deconvolution without masks, methods that exploit image
pairs and the statistics of natural imagery.

Fergus et al. [132] addressed the problem of removing motion blur due to camera
shake in casual photographs, where they know neither the camera’s lens PSF nor
its trajectory. They assume the camera shake is pure translation in the plane of
the camera’s sensor, and describe its effect on the image as convolving the desired
unblurred image with a single shift-invariant blur kernel that resembles a scribble—
a thin, curved, possibly tangled tracing of the camera’s displacement measured
against the sensor’s image plane. The goal of their blind-deconvolution method
is to simultaneously determine the motion-blur kernel and find an estimate of the
blur-free image that, when convolved with the blur-kernel estimate, will faithfully
recreate the blurred source image.

As they note, this problem is severely under-constrained, with far more un-
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Figure 7.7: Image Deblurring with Blurred/Noisy Image Pairs [438]. (Far left) An
image degraded by camera shake (with a 1 second exposure and ISO 100), (Center
left) Noisy image (with 1/100 second exposure and ISO 1600). (Center right)
Noisy image after levels adjustment and gamma correction. (Far right) Deblurred
result from Yuan et al. [438]. (source: research.microsoft.com/en-us/um/people/
jiansun/)

knowns (pixels in the blur kernel and pixels in the de-blurred result) than known
values (pixels in the given blurred image). To make the problem tractable, they im-
pose new sets of ‘image priors’; while previous methods usually imposed constraints
in the frequency domain that sometimes admitted strong ringing artifacts in the
solutions, they imposed two new priors. First they noted that a histogram of gra-
dients for photographs of natural outdoor scenes as well as many others is sharply
peaked at zero and has distinctive statistics; they require that their resulting ‘de-
blurred’ images match those statistics. Second, they build on work by Miskin and
MacKay [273], applying a Bayesian approach that takes into account uncertain-
ties in the unknowns. (see: people.csail.mit.edu/fergus/papers/deblur fergus.pdf).
While quite elaborate to implement, the results showed substantial improvement
over long-standing previous methods, and have inspired follow-on works that fur-
ther improve and simplify the approach; for a current survey, see the recent work
by Levin et al. [230]

Figure 7.6 shows typical deblurring results from Fergus’ pioneering efforts. While
effective for a broad class of photos, the method does not address camera rotations
or out-of-plane motions, but these are small and mostly-uncommon errors for hand-
held cameras. In addition, some artifacts of camera shake remain too difficult to
reverse by this method, including blur from bright glints and light sources that
caused saturated pixels along their trajectories, additional blur from object motion
within the photographed scene, and distinguishing between artifacts from camera
shake and unrelated errors from aggressive image compression (e.g., JPEG ringing).
Furthermore, they assume a linear sensor response after inverse gamma-correction,
which is not entirely correct in practice (see Chapter 6). Finally, the method relies
on a simple additive Gaussian noise model with zero mean and statistically indepen-
dent from the image. As we have seen before, accurately modeling the sensor noise
process can lead to new insights on the benefits and limitations of a computational
photography technique (e.g., see multiplexed illumination in Chapter 5).

Motion blur from camera shake is often the result of dim lighting conditions
and/or long focal lengths (telephoto) that force an auto-exposure camera to choose
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a long exposure time. During this time, even the steadiest hand may let the camera
shake enough to create large and complex point spread function shapes. Reducing
the exposure time severely can capture an image without significant shake, but
would yield a dark and noisy image; boosting gain to brighten the image would
further increase noise in the captured image.

As shown in Figure 7.7, Yuan et al. [438] proposed using the best of both, fusing
a blurred and noisy image pair to synthesize one single high-quality image. Each
captured image complements the other: the blurred image has low noise, but lacks
high-frequency content, edges, or a known PSF. The noisy image has a simple, sharp
PSF and thus contains the scene’s high-frequency content, but corrupted by noise.
First, the method uses both images to estimate an accurate blur kernel. Next, they
devised a residual convolution method that uses components of both image pairs
to suppress most the ringing artifacts that usually result from deconvolution, and
finally apply a gain-controlled deconvolution in smooth image regions to further
suppress remaining ringing.

Capturing a pair of images is a great help to reducing the under-constrained
nature of the deblurring problem, but it imposes rather severe practical limitations.
Many compelling hand-held photos capture transient moments that pass too quickly
for a second photo, such as a child’s reaction to surprise, or a bird pausing in a
birdbath. However, it may hold promise for new, more suitable hardware that might
capture the photo pair simultaneously, and the method captures more exploitable
information: the blurred/noisy pair might also be sufficient to estimate space-
variant blur from camera rotations or objects with simple movements within the
scene. As we will see in Section 7.6, such image fusion methods have become a
reoccurring theme is computational photography research.

7.2 Geometric Operations

In this section we review methods to manipulate the geometric composition of
image elements, rather than their photometric appearance. Such methods include
image warping, recent advances in context-aware image resizing, and passive scene
analysis. As in the previous section, none of these methods require customized
image-capture hardware, but instead rely only on post-processing of conventional
images.

While a single, flat 2D image contains no explicit depth information, humans
easily interpret its contents as a complete 3D world. Even without recovering depth
explicitly, this section will show that clever algorithms and careful priors on the
scene structure permit us to perform a wide range of visually plausible deformations,
3D modifications, and transformations from 2D image manipulations.

7.2.1 Image Warping

Image warping algorithms can deform individual image regions into novel user-
defined shapes. These geometric image manipulations can correct errors from op-
tical aberrations in cameras, such as severe radial lens distortion from ‘fish-eye’
lenses. Warping can straighten curved lines in a photograph to match the known-
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parallel lines in the 3D scene. Similarly, warping lets us simulate the appearance
of fisheye lenses from ordinary lenses or from panoramas constructed from multiple
images. We can apply simple warping methods to recover synthetic imagery, cor-
responding to that produced under an ideal pinhole projection model, even with
highly-distorted fisheye lenses. Implementing stand-alone image warping that in-
cludes high-quality image filtering can be dauntingly tedious; we recommend a
simpler approach that exploits 3D graphics rendering hardware available on almost
any computing device. Through either the OpenGL or DirectX API, first create a
uniform mesh of quadrilaterals or triangles, attach the source image to that mesh
as a simple texture map without lighting or shading, enable the hardware’s best
built-in texture-filtering capabilities (e.g., MIP-maps, bilinear or trilinear) and then
render the textured mesh on-screen. To warp the image, simply compute new posi-
tions for each vertex in the mesh, and permit the 3D rendering hardware to create
the new warped image on-screen. These warping results are not only quick to
render (usually available at interactive rates), but are also visually-accurate if the
barycentric coordinate are invariant for the underlying image deformation process.
To improve fidelity, simply increase the density of the underlying mesh (smaller
quadrilaterals or triangles, and more of them) until the residual error between ver-
tices is small. Most desktop computers now provide sufficiently powerful graphics
hardware to render million-vertex regular meshes at interactive rates, enabling full-
screen renderings that map no more than one or two pixels to each mesh element.
[****NOTE: comment from Dan Raviv, regarding this paragraph: ”why not discuss
the methods”?]

As described in Chapter 3, panoramic imagery is commonly synthesized by
stitching together many individual photos with moderately overlapped fields of
view. Creating panoramic mosaics requires accurate registration and blending of
the individual images. Calibration involves correcting for variations in perspec-
tive, radial distortion, vignetting, and other image aberrations due to the variation
of camera parameters. Image registration requires estimating the aiming direc-
tion, orientation and focal length for each photograph. Finally, blending registered
photos involves color correction and exposure compensation to ensure photometric
consistency between overlapping images and throughout the entire panoramic as-
semblage. In recent years commercially-produced motorized pan-tilt systems have
automated and simplified gigapixel panorama capture. One such system was re-
cently described by Kopf et al. [220] (see Figure 7.8). As they show, image warping
must be performed to not only composite images, but also to view the final mosaic.
Unlike QuicktimeVR [81], they show that very large panoramas are best viewed
by seamlessly transitioning from a perspective projection for narrow fields of view
to a cylindrical or spherical projection as the field of view widens past nominal
values. While their system explores the benefits of interactive gigapixel mosaics, it
requires long capture times (many hours). Illumination changes as the sun moves
and large moving objects such as ships and trucks can cause inconsistencies between
overlapping photos that complicate the panorama assembly process. In contrast to
such scanning sensors, single high-resolution gigapixel images may one day be-
come possible, though a few pioneering systems such as the GigaPxl Project (see
www.gigapxl.org/) found adequate lens designs were expensive and very difficult to
implement, and required well-lit scenes for best results.
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Figure 7.8: Gigapixel image capture and viewing [220]. Gigapixel imagery can be
interactively viewed at multiple scales. Wide-angle views, when the scene is zoomed
out, are viewed under cylindrical or spherical projection, whereas close-up views
are rendered under a local perspective projection. (source: research.microsoft.com/
en-us/um/redmond/groups/ivm/HDView/)
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Figure 7.9: As-Rigid-As-Possible Shape Manipulation [191]. The system first cre-
ates a triangular mesh to match an input drawing, then the user defines a set of
control handles and moves them to any desired new position. The system applies
local“as rigid as possible” deformations to each triangle to satisfy the new positions
of the control handles. (source: tinyurl.com/cmhqwh)

Nomura et al. [304] use flexible camera arrays to recorder dynamic scene collages.
Similarly, catadioptric imaging systems (en.wikipedia.org/wiki/Catadioptric) can
be used to achieve the necessary wide field of view for recording large panoramas;
for a thorough survey, see [23].

Image morphing is a special effect that creates an animated transition between
two images. In early motion pictures such transitions were usually cross-fades
implemented by re-photographing each frame on an optical printer, to combine
two shots matched as carefully as possible in-camera. Careful registration was
necessary because optical printers offered no image warping capabilities, and any
mismatches would appear as mis-registration between the “before” and “after”
image of actors. With the advent of digital compositing hardware in the 1980s,
such as the Pixar Image Computer, simple cross-fades were improved to include
matched geometrical warping to minimize mismatches between blended frames,
guided by feature points matched for both images (e.g., the position of the eyes,
nose, and mouth of two actors). Recently, similar morphing techniques have been
applied to allow general user-defined animations. Igarashi et al. [191] present a
freeform deformation tool, in which a given shape is manipulated by defining the
translation of a sparse set of control points (see Figure 7.9). The system finds
the position of the remaining vertices by minimizing the distortion of each triangle
using a two-step algorithm, which first refines the rotation and then the scale of each
triangle to satisfy the transformed control points. Their algorithm achieves real-
time deformations, but yields physically-implausible results for some control point
transformations. A similar method for shape interpolation proposed by Alexa et
al. [43] offered aesthetically different results. As they observed, no one best solution
may exist for such deformations, making a completely automated system neither
desirable nor practical. Instead, such systems can find their greatest usefulness
by offering intuitive, easy-to-use controls that permit users great flexibility when
needed, and a wide variety of easily accessible styles that permit both prompt
results and quick explorations to find it.
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Figure 7.10: Detail Preserving Shape Deformation in Image Editing [126]. (Left)
The input image. (Middle) User-drawn feature curves shown in blue. (Right)
Final deformed image with user-specified feature curves shown in yellow. (source:
graphics.cs.uiuc.edu/∼huifang/deformation.htm)

Image warping remains an active area of research. While hardware-assisted
textured-mesh rendering schemes are sufficient for some warping and morphing
algorithms, such schemes tend to unrealistically stretch or compress texture detail.
Fang et al. [126] propose an image editing system that preserves such details while
allowing extensive deformations. As shown in Figure 7.10, their method preserves
details in deformed regions by synthesizing textures that maintain texture frequency
content as well as texture orientation. While the state-of-the-art of image morphing
has moved well beyond cross-fading, image morphing has begun to emerge as an
enabling technology for both interactive animation design and image editing.

7.2.2 Smart Image Resizing

Important small features in large images intended for large, high resolution displays
(e.g., motion-picture screens) may vanish when shown on very small ones, such as
a mobile phone or hand-held display device. Cropping these images can focus the
viewer’s attention on a desired subject, and cropping might be required to display
that subject with sufficient resolution to discern its smaller features, or to display
an image with a wildly different aspect ratio. Cropping is one of only a select
few image manipulations permissible in modern photojournalism, together with
content-preserving operations such as color correction and sharpening. Cropping
can also be applied to video sequences, producing the “pan and scan” conversions
typically used to display widescreen films (typically 2:1 or 16:9 aspect ratios) on
standard aspect television screens (4:3). Recently Golub [158] introduced Pho-
toCropr to assist novices to select image crops using various heuristics, including
the “Rule of Thirds” and the “Golden Mean”. Such expert systems, however, have
difficulty handling general scenes and are inconvenient to apply to video sequences.

Cropping is most appropriate for scenes dominated by a single element or area
of interest. With widely-spaced multiple elements, we may need to remove im-
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age content from the middle of the image instead of the edges, ‘retargeting’ the
scene content for a different display. Successful retargeting may require multiple
operations, including scaling, shifting, and re-sizing individual scene elements to fit
within a target aspect ratio (e.g., to display a family portrait on a mobile phone
screen). As shown in Figure 7.11, several methods have recently emerged in the
computer graphics and vision communities for automatic image retargeting. Setlur
et al. [365] follows a multistep remove-and-replace process: first segment an image
into regions, identify the most-important regions and remove them temporarily.
Next, fill any resulting gaps via texture synthesis, resize the remaining image, and
re-insert the important regions atop the result. Their solution resizes regions inde-
pendently based on their estimated saliency, but sometimes may convey inconsistent
relative proportions between these regions. Furthermore, the run-time of their im-
plementation may make it impractical to complete on a mobile device, as desktop
processing times ranged from 5 to 40 minutes for test images.

Seam carving, a popular and conceptually simple image retargeting algorithm
recently proposed by Avidan and Shamir [49] may help address such run-time prob-
lems. They observe that the aspect ratio of an image can be adjusted by removing
or appending minimum energy seams, defined by an optimal 8-connected path of
pixels on a single image from top to bottom, or left to right, where optimality is
defined by an image energy function (e.g., saliency can be approximately by the
gradient magnitude). The selection and order of seam removal/insertion is designed
to protect the content of the image, as defined by the energy function. Furthermore,
object removal can be achieved by modifying the energy function to penalize seams
that pass through a user-selected region. A multi-size image can be resized in real-
time, by storing a pre-computed ordering of seam deletions. Recent enhancements
to seam carving extended the method to video retargeting [348], as well as mesh
retargeting [221], and general extensions for any spatial media [366].

7.2.3 3D Analysis

Traditional photography destroys information because it collapses a 3D world onto
a 2D image plane. Recent methods in computational photography have explored
the ways to capture or preserve more 3D information to permit re-composing the
image of the scene, or to capture usable 3D geometry from the scene to enable new
methods to improve its depiction. Freeman and Zhang [140] introduced shape-time
photography to synthesize novel images that summarize the spatial and temporal
characteristics of an interesting motion. For example, the odd-looking (and strange-
sounding) acceleration of a spun coin rolling on its serrated edge as it falls flat
Figure 7.12 is difficult to convey with just one or even a series of conventional
photographs. While a video with sound might depict it well, we can’t put the
video in a book or on a billboard: how could we adequately convey this motion
in a single image? Earlier photographic innovators such as Harold Edgerton and
Eadweard Muybridge made multiple-exposure images with strobes or time-release
shutters, but these summaries don’t work well for in-place rotations. Overlapped
exposures that are too numerous or too complex form a jumble that doesn’t reveal
depth or temporal relationships between the overlapped photos. Instead, Freeman
and Zhang captured their photo series with a stereo camera and estimated a depth
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Figure 7.11: Image retargeting [365] and seam carving [49]. (Top) Image retargeting
methods segment, transform and re-assemble salient scene features to fit smaller
displays or adapt to different display aspect ratios while preserving visually salient
features. (Bottom) Instead of re-sampling, “Seam carving” changes image size or
aspect ratio by deleting/inserting low-energy 8-connected pixel curves connecting
opposite image edges. The energy function assigns high (or low) values to user-
selected salient image features to preserve (or remove) them. (source: www.faculty.
idc.ac.il/arik/SCWeb/imret)
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Figure 7.12: Shape-time Photography [140]. (Left) A sequence of images of a coin
rolling on its edge as it falls on its side. (Middle) A multiple exposure summary
made by averaging the frame sequence. (Right) Shape-time photo is a composite
of images layered by depth and time to convey both shape and motion in a single
image. (source: people.csail.mit.edu/billf/freemanw shapetimeRef.pdf)

map for each stereo pair. From these, they created novel “shape-time photos” by
compositing the photos in both temporal and depth order, creating a simpler, multi-
instant photo that conveys both shape and movement in a more comprehensible
form.

No truly robust, reliable, economical and accessible method yet exists for en-
tirely passive 3D photography, despite decades of effort in computer vision and
photogrammetry. While humans make qualitative shape assessments quickly and
easily, we seem to rely on massive amounts of a-priori knowledge, and learn these
3D assessment skills as we reach out and touch the world around us, and remem-
ber surprising results and exceptions. While many researchers have pursued fully-
independent systems, others have shown that just a little guidance from interested
users can guide mostly-automatic 3D shape, illumination, and reflectance estima-
tors to reliable solutions, even from a single input photograph. As Figure 7.13
shows, the Façade system devised by Debevec et al. [92] creates 3D architectural
models from a small set of input photographs. The method is straightforward;
first, users electronically mark a few corresponding corner points and dominant
lines shared among photos taken from multiple viewpoints, gathered casually by
walking around the building and taking sets of overlapping photos. The system
uses the corresponding 3D feature marks to estimate the photographer’s original
3D positions and construct a coarse 3D geometric model from those marks, using
projective texture-mapping to assign the photograph’s colors and textures to the
model. The system then refines the coarse model, adding finer depth details via
conventional stereo techniques at any locations where overlapped projected textures
show mismatches or inconsistencies that depth modifications can resolve. Inspired
in part by earlier image-based modeling projects such as the “Tour Into the Picture”
project by Horry et al. [188] that formed simple but explorable texture-mapped 3D
models from uncalibrated photos or paintings that exhibit perspective. To build
these models, users marked easy-to-find features such as wall corners, parallel lines
or vanishing points, and the system constructed a 3D model as an explorable “spi-
dery mesh”. Later systems, including “Automatic Photo Pop-up” by Hoiem et
al. [186], further automated the geometry extraction process and are reviewed in
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Figure 7.13: Modeling and Rendering Architecture from Photographs [92]. A syn-
thetic rendering constructed from just a few overlapped images taken from view-
points that surround the building. With modest user assistance, Debevec’s system
matches corresponding points and lines in the photos to construct a coarse 3D
model, applies the photos as texture-maps to that model, then further refines the
model by stereo reconstruction for regions where overlapped textures show con-
sistent misalignment. View-dependent textures applied to the refined 3D model
ensure users see surface colors from the nearest-available source photo. (source:
www.debevec.org/Research/)

more detail in Section 7.4.

7.3 Segmentation and Tracking

Digital images stored as nothing more than pixels badly complicate the fundamental
task of robust segmentation. Human beings assess the world around them as an
assembly of distinct objects, moving, separate or in contact, on, in, around or
disjoint from each other, but segmenting a grid of pixels in these same ways remains
an unreasonably challenging task, even with substantial user assistance. In new
forms of computational photography, we would like to see lights, optics, sensors
and processing methods that collaborate to supply us with more information in
a picture, information that would dramatically simplify and enhance our ability
to segment photographs and other visual records of a scene. What might assist
us in identifying connected components and correspondences in images or sets of
images? How might we identify individuals, specific physical objects, the material
types, their illumination, and the distances to objects or between objects?

In this section we review recent and historic works that address the central
problems of foreground/background segmentation which decomposes a scene into
at least two distinct depth layers. Essential for automatic scene understanding, this
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segmentation extracts moving objects close to the camera for separate processing.
As demonstrated by many of the works we cover in this section, robust segmentation
allows rapid, intuitive and interactive image editing, as well as the synthesis of novel
imaging results.

7.3.1 Matching

Chapter 3 describes how to construct a panoramic mosaic by spatial alignment
of many photos taken from a fixed viewpoint in a scene. With good geometric
registration and a sequence of progressively longer exposure times, we can also
construct HDR composites or capture and combine multiple lighting conditions.

Sand and Teller [352] introduced “Video Matching” as a technique for spatio-
temporal alignment of multiple video sequences. Their approach matches and
merges two different video sequences from spatially-similar camera trajectories (i.e.,
trace a similar set of spatial viewpoints, although at differing temporal rates) as
shown in Figure 7.14. The output consists of a warped version of the second video
that is both temporally and spatially aligned with the first. They begin by search-
ing the second video to find a candidate frame that matches the first frame in the
primary video. They accelerate this search by testing only a subset of frames (e.g.,
one frame, two frames, or five frames forward/backward in time at each step). Next,
they apply robust image matching and warping to spatially align the image content
of the chosen pair of the two video frames, and measure their image similarity as
well. Their matching criterion assesses large-scale image differences (e.g., addition
or removal of scene components); unlike traditional video registration systems using
optical flow [63], their approach handles large scale scene changes well.

Such video matching algorithms have great potential for assisting users in com-
plex image- and video-editing tasks, including removal of support wires (e.g., in
special effects sequences where actors are suspended from wires), composition of
multiple exposure or lighting conditions, and replacement of stand-ins or other
undesired scene elements.

7.3.2 Matting from Colored Backgrounds

Used for everything from inserting a weather map behind a TV announcer to flying a
super-hero through the skyscraper canyons of New York City, foreground/background
segmentation and compositing for still pictures and video sequences permit us to
‘cut out’ an actor or an object from one photographed setting and composite it
into another, to achieve the appearance of editing locations rather than just video
sequences. The ability to robustly segment a scene into one or more depth lay-
ers allows us to then modify each photographed object separately, and merge or
‘composite’ it with other, independently captured objects or background video se-
quences.

Such segmentation and compositing has been achieved by many different pro-
cesses by many different names. In film, they began as ‘matte paintings’ on glass
sheets placed between the camera and the scene or movie set to replace static back-
grounds. Foreground extraction and compositing, known as a ‘travelling matte,’
was first developed at RKO Radio Studios in the 1930s. A film-based blue-screen
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Figure 7.14: Video Matching [352]. (source: people.csail.mit.edu/sand/vid-match/
index.html)
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process developed by Larry Butler for The Thief of Bagdad helped the film win an
Academy Award for Best Visual Effects in 1941. Further developments included
blue-screen and UV advances in 1950 by Larry Widmer at Warner Brothers, refined
optical printers by Richard Edlund in the 1970s (synchronized film camera and pro-
jector aimed at each other, mounted on a milling-machine bed and aimed at each
other to permit re-photographing film and compositing by multiple exposures), dig-
ital camera-motion control in the 1980s by Petros Vlahos, and many others. More
information on this topic can be found at the Wikipedia article on Chroma key.

In television, ‘keying’ and ‘chroma-keying’ apparently originated as a minor fea-
ture first included in a commercial video master-control switcher product for early
color-television production. The system switched between two live-video streams
depending on a thresholded chrominance value of one of them, but was notoriously
difficult to adjust for flawless results, leading to many jokes about TV weathermen
with holes in their heads from bluish specular reflections from hair, foreheads, wet
lips, pocket-pens, or glasses. In addition to ‘chroma-keying’, and ‘keying’, the term
‘matting’ is also fairly widespread.

In video, segmentation and compositing techniques began as analog chroma
keying methods. Video cameras photographed actors performing in front of a fixed,
uniformly-lit background with strong, easily identified chrominance (e.g., a blue or
green scene) values detected independent of luminance values to avoid influence
from shadows or lighting changes. Background colors were chosen for high signal-
to-noise ratio, high resolution (fine film grain) and large, easy to detect differences
from all foreground colors. For NTSC television, strongly saturated blue ensured
greatest difference from human skin hues, and in motion pictures, blue or UV films’
smaller film grain also aided good matting results. As high-resolution digital video
cameras augmented film for special effects, green-screens provided better signal-
to-noise ratios than blue. Simple thresholding of hue and chrominance can often
separate foreground and background, but without great care the results are often
contain a heavy burden of artifacts. Specular reflections from the foreground (a
shiny watch, a glinting forehead forms a ‘hole’ in the foreground), glass objects,
transparency, translucency or fuzzy boundaries can make high-quality blue-screen
results very challenging to achieve. Skilled, experienced technicians, a growing
folklore of tricks and tips, and specialized studios, equipment and software from
companies such as Ultimatte Corporation, Primatte, and others now provide the
best-quality segmentation results from single-color backgrounds for TV and motion-
picture production.

In 1996, James Blinn and Alvy Ray Smith presented a principled analysis of
colored-background matting, and showed that foreground-background segmenta-
tion against a single-color background is under-constrained, and also explained
why additional ad-hoc techniques are both necessary and successful. Further,
they showed that capturing an object twice, with two different-colored background
enables a simple, well-posed foreground background separation that can capture
opaque, translucent, and transparent objects, as well as the shadows they may
cast on those backgrounds. [371]. While colored-background matting remains a
popular and low-cost segmentation solution, more recent methods permit matting
of foreground objects against unstructured backgrounds that may include moving
objects. More recent work by Levin et al. [234] extends the hard-edge assumptions
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Figure 7.15: Trimap-based matting [418]. From left to right: input image; user-
defined trimap; estimated foreground/background matte; extracted foreground col-
ors; background replacement. (source: www.juew.org/publication/mattingSurvey.
pdf)

of conventional matting to include soft-edged objects, and may prove suitable for
fully-automatic spectrally-guided foreground/background separation.

The matting problem was formally defined for digital computing in 1984 by
Porter and Duff [322]. Under their definition, an image Iz, for z = (x, y), is modeled
by the convex combination

Iz = αzFz + (1− αz)Bz,

where Fz and Bz are the foreground and background images, respectively. In their
formalism, αz ∈ [0, 1] is the alpha matte which defines the local mixing between
the foreground and background images. In practice, many modern systems use a
coarse user-defined trimap to define an initial solution for the alpha matte (see Fig-
ure 7.15). The trimap is an auxiliary image, provided by the user, which labels each
pixel as either definitely foreground, definitely background, or uncertain. Provided
with a trimap, many algorithms can be used to obtain an accurate alpha matte,
several of which we briefly review in the following paragraphs.

Chuang et al. [83] proposed Bayesian Matting in 2001. Given a trimap that
identifies definite foreground and definite background, and uncertain pixels, they
showed that Bayesian methods can be used to model the statistical distribution of
colors in these regions. Furthermore, in parametric methods, a low-order model
can be fit to these color distributions in each region. Bayesian matting can be
classified as a parametric method, which fits a Gaussian distribution mixture to the
color histograms of the foreground and background regions bordering an unknown
region. Next, they find a maximum a posteriori (MAP) solution for the alpha matte
by comparing the color histogram of local patches within the unknown region to
the estimated foreground and background models. In practice, Bayesian matting
produces accurate segmentations when the trimap is conservative and well-defined
(e.g., the unknown regions are thin and accurately labeled). But as a parametric
method, Bayesian matting often does not capture high-frequency details well if the
foreground and background regions are highly textured, due to the use of low-order
Gaussian models.

In contrast to parametric color-sampling methods that directly model the alpha
matte, such as Bayesian Matting, affinity-based algorithms attempt to recover the
gradient of the alpha matte. Such affinity-based methods include Poisson Matting,
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introduced by Sun et al. [385] in 2004. By taking the gradient of the matting
equation, we obtain

∇Iz = (Fz −Bz)∇αz + αz∇Fz + (1− αz)∇Bz.

If we assume the underlying foreground/background images are smooth, then we
can reasonably approximate the gradient matte as:

∇αz =
1

Fz −Bz
∇Iz.

And thus recognize the matte gradient as linearly proportional to the image gradi-
ent. In unknown regions of the user-provided trimap, Poisson Matting assigns the
gradient magnitude (Fz − Bz) using the closest available foreground/background
pixels. To find the complete matte from its gradients, the authors use a conven-
tional Poisson solver. While quite successful on ambiguous transparencies with
simple shapes such as cigarette smoke, Poisson Matting tends to have difficulties
with complex shapes; accordingly the method includes tools for user-assistance to
improve results in troublesome regions, such as long fur and sparse, feathery hair.
Figure 7.15). In addition, Poisson matting tends to be computationally-intensive
and may impede practical interactive uses, especially on these troublesome cases.

7.3.3 Smart Region Selection

Image editing that applies interactive segmentation is already widely available in
digital image editing software such as Adobe Photoshop and the GIMP (GNU Im-
age Manipulation Program). As Figure 7.16 shows, several available interactive
segmentation algorithms can extract foreground, background, and alpha mattes.
In Photoshop(c) from Adobe Systems, Inc. the “Magic Wand” tool starts at a
user-selected point and finds a closed boundary around a region of connected pixels
whose boundary shares similar color statistics. Intelligent Scissors, introduced by
Mortensen and Barrett [283] and implemented as the “Magnetic Lasso” in Photo-
shop, allows the user to select an object boundary by tracing with the mouse. As
the user moves the mouse cursor, the system iteratively computes the minimum cost
path from the curve’s initial point to the current cursor position. Users can also
specify additional seed points in the image if the path makes unwanted deviations.

Recent advances in interactive image segmentation such as ‘GrabCuts’ allow
incomplete specification of trimaps, as well as greatly simplified user interaction.
As proposed by Rother et al. [347] in 2004 and shown in Figure 7.16, this iterated-
graph-cut method often needs little more than a rectangular bounding box around
the foreground object to initialize the segmentation and matte construction.

An alternative segmentation method related to both Support Vector Machines
and Bayesian Matting introduced Gaussian Mixture Models (GMMs) to find ap-
proximations to the underlying statistical distinctions between the foreground and
the background colors. The method corrects most segmentation errors by a second
phase of user interaction to provide additional background, foreground, or uncertain
strokes.

Given the importance of segmentation and matting methods to image editing
and the generality needed for their solutions, we expect to see further simplifications
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Figure 7.16: GrabCut: Interactive Foreground Extraction using Iterated Graph
Cuts [347]. Unlike other recently proposed methods (from left to right: ‘Magic
Wand’, ‘Intelligent Scissors’,‘Bayesian Matting’, ‘Knockout2’, ‘Graph Cut’), the
iterated graph cut or ‘GrabCut’ method can construct a suitable matting re-
sult with substantially less user interaction–just specifying an enclosing rectan-
gle in this case–compared to multiple selected points, tri-map specification, and
labeled strokes. In addition, the quality of the resulting foreground separation
is in many cases comparable or better on particularly difficult source images
such as this one. (source: research.microsoft.com/en-us/um/cambridge/projects/
visionimagevideoediting/segmentation/grabcut.htm)

to the user-interactions required, and may eventually see stroke-based and trimap
interactions replaced by eye-tracking systems that provide seamless user assistance
to segment image features that attract the user’s closest attention in displayed
images and video.

7.3.4 Tooning

Over the past 100 years, the styles of print, film, and video ‘cartoons’ and ‘graphic
novels’ have evolved into a clean, streamlined, simple style. Its large, washed
regions of constant color chosen from a very limited color palette, separated by
thick but deftly-shaped black lines that suggest much more scene content than the
artist depicts directly. Cartooning styles that emerged in the early 1900s were
at first motivated by necessity: motion picture cartoons pushed artists toward
styles they could codify for large teams to draw and paint thousands of anima-
tion cels quickly. Cartoons printed on cheap paper pushed artists’ towards styles
that would ensure their work would remain legible when printed as small panels
on coarse, absorbent newsprint in black, or with just a few poorly-aligned color
inks and coarse half-toning. Even as low-cost printing quality improved greatly
from the 1960s onwards, the styles remained popular and flexible enough to in-
clude individual expressiveness. With such objective rules and simple renderings,
computer-assisted cartooning seemed a natural fit with computer graphics meth-
ods, and Marc Levoy pioneered such a system used for the first computer-assisted
cartooning at Hanna-Barbera Inc. in the late 1970s, automating previously hand-
drawn pen-and-ink processes. The Levoy-developed system remained in everyday
use for producing cartoon shows at Hanna-Barbera until its retirement in 1996, well
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after better-known computer-animation studios such as Pixar, Rhythm-and-Hues,
and PDI-Dreamworks devised new 3D cartooning styles for motion pictures.

As an offshoot of research on non-photorealistic rendering publications that
has proliferated since the late 1990s, some researchers have explored both the
automatic- or semi-automatic restoration of classic pen-and-ink film cartoons (see
Sykora et al. [387]), and others developed systems to construct cartoon-style ren-
derings from video.

After successful experiments in a few commercials and short special-effects se-
quences in earlier movies, several moviemakers have adapted ideas from earlier
non-photorealistic rendering methods to new digital forms of traditional rotoscop-
ing (in which artists painted or inked directly on film frames to modify its content)
as shown in Figure 7.17. Digital rotoscoping permits particularly accurate ab-
straction and easy creation of cartoon-like drawings from live-action footage. Done
skillfully, it permits artists to capture the complexities of human and animal motion
from actual film footage of performances, and to focus more directly on the spa-
tial aspects of shading and lighting, and frees them from the serious challenges that
conventional pen-and-ink animators face ensuring natural appearance and temporal
consistency for a given motion.

Rotoscoping was used to great effect in Snow White and the Seven Dwarfs in
1937, using live-action footage to capture the complex and varied performances of
suitably-sized actors and actresses, as well as the mannerisms of animals adapted to
animated characters. Historically, rotoscoping requires the intensive efforts of large
animation teams, because artists must paint every frame. More recently, computed-
assisted digital rotoscoping methods allow animators to specify keyframes, and
spline-based interpolation and tracking of painted regions automatically completes
the intermediate frames (see Figure 7.17).

More recently, Winnemöller et al. [432] presented a method for fully-automatic
video abstraction, including video summarization into strips of cartoons complete
with speech bubbles showing text extracted from closed-caption data streams, and
GPU-assisted real-time conversion of video streams to cartoon-like renderings. The
video abstraction method performs a sequence of fast image operators on a sequence
of frames to simplify low-contrast regions while enhancing high contrast regions, ap-
ply thresholding, apply color quantization, apply quantization smoothing to avoid
posterization-like effects, and smooth black-inked edge features in a manner con-
sistent with image content—operations that mirror the production steps of comic
illustrators. As Figure 7.18 shows, they first compute an abstracted color image
using a bilateral filter. They then optionally quantize the luminance into a small
number of levels, and blur their free-space boundaries to remove the appearance of
color contours. Finally, they compute edges by thresholded Difference-of-Gaussian
filtering and a subsequent smoothing step, and apply them to the abstracted images
to emulate a cartoonist’s India ink strokes. While fully-automatic, we observe that
their approach does not significantly alter the composition of an image or video se-
quence, as it lacks the understanding and interpretive abilities that an artist might
apply in manual cartooning.

Cartoon motion has evolved its own idioms that help emphasize the story and
engage the audience even as they only approximate, exaggerate, or completely
ignore laws of physics. Expert animators use motion to guide viewers’ perceptions
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Figure 7.17: Manual rotoscoping in A Scanner Darkly. From left to right: an
input live-action frame with initial animator strokes; after the addition of ad-
ditional strokes; final rotoscoped image. (source: Warner Independent Pictures
www.usatoday.com/life/movies/news/2006-08-01-rotoscoping x.htm)

Figure 7.18: Real-Time Video Abstraction [432]. (Top row) Abstraction examples.
(Bottom row) Abstraction framework. (source: videoabstraction.net/)
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and make the entire scene depicted seem lively and responsive. As outlined in
Thomas and Johnston’s “The Illusion of Life” [206] and repeated by Lasseter [227],
skilled animators use techniques that help direct the viewers eye and attention,
and add emphasis through techniques such as “squash and stretch” distortions to
shapes that move or are about to move. These skills are not innate: cartoonists
and 3D animators learn these grammars and conventions of cartoon movement
through study, example, and hard-won experience. While anyone can learn to
use keyframing tools for computer animation now widely available, few of us have
gained the animators skills needed to produce high-quality cartoon-style animation.

To make such idioms more accessible to a broader set of users, Wang et al.
introduced the “Cartoon Animation Filter” to convert physically accurate motion
capture data to cartoon-like movements. Mathematically, their filter output x∗(t)
is a second-derivative filter:

x∗(t) = x(t)− x′′(t),

where x(t) is the input signal (e.g., the position of motion capture vertices over
time or the coordinate of an image element) and x′′(t) is a smoothed and possibly
time-shifted second derivative of x(t) with respect to time. As shown in Figure 7.19,
this simple filter automatically synthesizes many traditional animation techniques,
including anticipation/follow-through and squash and stretch. Though the results
lack the quality and refinement of work by a professional animator, the method does
synthesize a plausible result consistent with basic animation rules. In the future
we expect to see similar “expert filters” for a wider variety of tasks. In the spirit
of image analogies described in Section 7.4.3, automatic learning and synthesis of
artistic techniques may extend computer-aided animation just as it has extended
image editing and manipulation.

7.4 Data-driven Techniques

Consumer data storage and transmission systems have grown so steadily and so
quickly over the past decade that terabyte hard drives and multi-gigabyte USB
flash memory-drives are commonplace and easily affordable. With cheap, abundant
storage and computing, computer graphics and vision researchers can now explore
‘brute-force’ and data-driven techniques previously considered too inefficient or too
extravagant. For example, early light field capture and rendering experiments in
the mid 1990s struggled to manipulate hundreds of megabytes of image data, but
demonstrated the utility of data-driven rendering. Simply re-binning these images
allowed complex optical phenomena to be accurately depicted, including variation
of surface materials, scattering, translucency, lighting and inter-reflections. Such
light field imagery is unmatched by any real-time results of classic model-based
rendering that uses storage in far more ‘sensible and efficient’ ways; however, with
the advent of cheap storage and computation, such savings offer little added utility.
Researchers are now exploring other data-driven methods that may provide com-
pelling new answers to long-standing, challenging graphics problems using massive
on-line image collections, image metadata, and probabilistic inference algorithms.
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Figure 7.19: The cartoon animation filter [419]. Left: (a): Abrupt start to constant-
velocity ball translation and rotation looks unnatural, because it begins with infinite
acceleration. (b): Wang et al. filter applied to the ball’s centroid emulates cartoon
animators’ ‘anticipation’ and ‘follow-through’ conventions due to filter under-shoot
and overshot at start and end of ball motions. (c): Applying the same filter to
the positions of the ball’s outermost vertices induces ‘squash’ and ‘stretch’ effects.
Right: animator-like interpolation between offset small and large image files curves
transitional images at start and end of the motion. Bottom: filtering a ball that
translates and spins at a constant rate creates a smooth movement that begins
with an anticipatory pull-back, and ends with a smooth overshoot and correction.
(source: www.cs.washington.edu/homes/juewang/juew/JueAniFilter.pdf)
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Figure 7.20: Scene summarization for online image collections [369]. (Top rows)
A random subset of 32 images of the Pantheon. (Bottom row) A set of output
“canonical views” computed using the proposed clustering algorithm on the to-
tal set of thousands of similar images. (source: grail.cs.washington.edu/projects/
canonview/)

7.4.1 Image Collections

Inexpensive digital photography, while convenient, has given rise to a new problem:
how can we organize and view our large personal photo collections? The higher cost
of film-based photography encouraged caution and care, and most people’s photo
collections were precious, accumulated slowly, and could fit neatly into bound,
hand-annotated photo albums or boxes of slides. Digital photography imposes
no discipline—photos cost us almost nothing but the time required to transfer
them from our camera’s memory. Instead of a few rolls of film, many amateur
photographers may return from vacation with many hundreds of photos to select,
label, and organize, a task than can take hours or days.

How to select the most important photos to summarize a vacation, a day, or
tell a story? Such editorial decisions require a higher-level understanding of the
emotional context of a photo. However, recent advances have been made in (semi-
)automatic image collection analysis by applying spatial and temporal constraints
derived from computer vision algorithms.

Simon et al. [369] address the problem of scene summarization; as shown in
Figure 7.20, the system must represent adequately, but concisely, the important
visual contents of a frequently photographed scene (e.g., the Pantheon in Rome) by
selecting a small set of exemplar photos, or “canonical views”, that capture the key
sites of interest (e.g., the Oculus, the entrance of the Pantheon, and various views of
its interior). The system divides this task into three sub-problems; first, partition
the image set into groups of images that depict a similar scene feature, by finding
sets of shared image features using SIFT feature co-occurences and applying a fast
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clustering algorithm. Second, identify an exemplar member from each group by
applying a likelihood measure to co-occurrences within the group. Third, extract a
metatag that summarizes the content of each canonical image to assist in browsing
and image search. As we will review in Section 7.4.4, such metadata is critical for
presenting readily machine-readable content (e.g., ASCII text strings) for organizing
and browsing massive image collections.

A wide variety of competing photo management applications have emerged in
recent years, including iPhoto (Apple), Picasa (Google), and Photoshop Album
(Adobe). These applications often handle direct I/O from a camera or storage
media, allow basic resizing, cropping, and retouching operations, and offer orga-
nization and navigation services. Recently, some of these applications added au-
tomatic face detection and metadata tagging prompting publications that propose
new paradigms for photo navigation such as Bederson et al. [56].

Bederson’s ‘TreeMaps’ are an interactive visualization method that presents
large amounts of hierarchical data of any kind very efficiently on-screen. It’s lay-
out algorithms encourage smooth, continuously variable on-screen display, and are
suitable for dynamically-changing hierarchies that gain or lose nodes over time,
including very large, dense trees and also highly uneven or unbalanced trees. In-
stead of conventional plots of on-screen nodes connected by edges, which often
leave large portions of a rectangular screen empty and unused for large trees, the
TreeMaps algorithm subdivides the screen efficiently into rectangular regions, nest-
ing child-node subregions inside their parent regions, keeping node size large and
empty space low. It also controls the aspect ratios (height/width) of these regions
to avoid any sub-regions that are too narrow, thus ensuring easy visibility and
effective use of that space for text, images, or other annotations. TreeMaps are
particularly well-suited for large collections of photographs held in nested directo-
ries, and is available as both stand-alone software and applied in the “PhotoMesa”
browser (see: www.photomesa.com/).

Treemaps supply users with interactive, continuously variable ‘zoom’ and ‘move’
controls. Zoom permits them to see more or fewer sibling nodes, and/or more or
fewer levels of the tree, and ‘move’ lets users scroll across the tree to explore tree
portions too large to fit on-screen at the current zoom setting, and can permit users
to annotate and rearrange nodes and their positions within the tree. Treemaps
can provide an easy, intuitive browser for endlessly vast image collections; it does
not require any metadata tagging for source photos, but can respond to them if
desired, and can permit easy tagging of individual photos, groups of photos, or
nested groups of photos. When coupled with face detection and recognition, it
forms a good framework for automatically grouping photos according to the people
within them. Treemaps limitations seem to arise mainly from describing photos in
a single hierarchy; users may wish to form multiple hierarchies or organize photos
in a database-like arrangement that can respond to queries such as ‘find all Florida
Keys vacation photos that show Aunt Martha near the water but not studying for
her real-estate exams’. While TreeMaps might maintain multiple trees with the
same nodes, currently it does not organize nodes into a database. (from: www.
cs.umd.edu/hcil/photomesa/). We expect that the development of such interfaces
will continue to evolve, especially as automatic metatagging, such as face and place
detection, becomes commonplace both in-camera and in browsing applications.
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Figure 7.21: Photo Tourism: Exploring Photo Collections in 3D [376]. (Left): An
input collection of unstructured photographs of a single scene found by on-line
image search. (Center): Structure-from-motion on corresponding points from all
pairs of photos in the collection creates a sparse 3D point-cloud of the scene, along
with automatic camera viewpoint recovery for each photo. (Right): Interactive 3D
image browsing permits users to navigate smoothly among photos by indicating
a desired viewpoint or selecting a portion of the 3D point cloud, providing the
impression of freedom of movement to tour and explore the scene in 3D. (source:
phototour.cs.washington.edu/Photo Tourism.pdf)

7.4.2 On-line Photo Collections

In recent years, massive on-line photo and video collections such as Flickr, Google
Image Search, and YouTube began offering free access and storage for anyone’s
photos and videos in exchange for viewing advertisements while browsing these
collections. While welcome and simple for anyone willing to share their works freely
with everyone, these sites greatly complicate legal questions of ownership of images,
fair-use versus copyright violations, and protection of valuable works sold for profit,
such as clips of television shows, photographs by Ansel Adams, and motion pictures.
Several new licensing methods such as the Creative Commons licenses allow novices
to contribution to these collections in a manner consistent with their wishes (i.e., to
either allow, restrict or prohibit derivative works or noncommercial applications).
The advent of such large, legally-accessible image repositories has facilitated data-
driven approaches in computer vision and graphics. In this section we examine the
more immediate task of organizing and navigating such collections, and in the next
we examine how image collections can be used to resolve long-standing challenges
in the field.

As most people encounter scenes they photograph by walking around and exam-
ining it as a 3D environment, Snavely et al. [376] realized that interactive browsing
that recreates the impression of exploring or ‘touring’ the 3D scene might offer
a particularly attractive and intuitive way to explore well-photographed scenes.
While no one person might take enough photos of an interesting location to per-
mit 3D reconstructions, many thousands of people visit many popular historic sites
and tourist attractions and each take their own set of photos. If enough of these
are available on-line and the photos capture the scene from a sufficiently varied
set of viewpoints, Snavely et al. reasoned that 3D reconstruction might be still
possible even without any other camera calibration, pose, or a-priori knowledge
of the scene itself, and developed a novel system for browsing large unstructured
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image collections in 3D. Now known as Photosynth, available as a free download
from Microsoft Live Labs, their system is the first to apply structure-from-motion
methods to large community photo collections. While traditional image browsing
software uses directory-based hierarchies and slideshows, their viewer presents users
with a 3D scene and an interface that lets viewers explore by clicking on anything
they’d like to see. As shown in Figure 7.21, their ambitious multi-step optimization
process iteratively recovers sparse scene geometry and camera viewpoints simulta-
neously, and encourages navigation and 3D exploration using an interface similar
to current-generation 3D games.

The authors also describe extensions that automatically cluster and group pho-
tos, that extract canonical views [369] and that recommend popular walking paths
through the scene [375]. Their system relies on SIFT for automatic feature detec-
tion, sparse bundle adjustment to recover the 3D scene points, and an aggressive
RANSAC strategy to encourage convergence with suitably low error for navigation.
Currently, their system’s best results require very dense and numerous photo sets
with substantial overlap between photos, but on-line photo collections for attractive
single-site monuments such as the Statue of Liberty, Eiffel Tower, or Notre Dame
Cathedral routinely provide thousands of suitable photographs. They apply camera
settings from EXIF data embedded in photos when available, but even then the
system sometimes must discard as many as 30 percent of the input photos to find
a suitably converged solution, and early versions of their software reportedly took
up to a week to assemble the 3D models for photo sets presented in the original
paper. Authors noted that corresponding point pairs were deemed too sparse to
permit lens distortion corrections, and that the proposed method only constructs
maps of sites whose photos’ shared features form a single connected component,
rather than multiple disjoint groups of photos. However, these limitations may fade
quickly as GPS-enabled cameras supply absolute 3D position in their EXIF data,
reducing the optimizers’ reconstruction errors.

7.4.3 Probabilistic and Inferential Methods

In this section we review data-driven probabilistic and inferential methods that gain
leverage from massive on-line photo collections. Such databases let us solve prob-
lems by simply searching for suitable answers or examples, copying them instead
of computing them. The genuinely massive example-photo databases now available
online (and growing quickly) can help us solve classically intractable problems such
as ‘hole-filling’ or scene completion, 3D geometry estimation from a single photo
from an unknown camera, and physically plausible texture synthesis and interpo-
lation.

Scene Completion

The novel user-guided image completion method by Hays and Efros [178] shown in
Figure 7.22 demonstrates several strong advantages to data-driven methods. Unlike
previous image-repair or completion methods this method can suitably ‘fill in’ or
repair tremendously large holes cut out of an image. It does not rely on example-
guided texture-synthesis, image quilting, or image inpainting using Beltrami-flow
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Figure 7.22: Examples from “Scene completion using millions of photographs” [178].
(Far left): The input image and (Middle left): marked region we wish to replace.
(Middle right): Searching a large on-line image collection finds several closely-
related scenes, (Far right): Use graph-cuts to find suitable boundaries for re-
placement regions in the source and destination photos, and then combine the
pieces using Poisson editing methods to blend them without visible seams. (source:
graphics.cs.cmu.edu/projects/scene-completion/)

PDEs, and does not cover those holes and gaps by improvising or copying textures
from small nearby texture patches in the same image. Instead, the method searches
vast numbers of other images to find a large, directly-substitutable region (see
Section 7.4.3), uses graph-cuts to snip out a properly-oriented, well-matched piece
of that region big enough to cover the hole, and then fuses it into the original
image using Poisson editing methods (gradient-domain image fusion [317]) to hide
the seams. As Figure 7.22 demonstrates, any search that finds regions that match
enough of the basic image features (e.g., colors, gradients, edges, textures, surface
normals, lighting, etc.) is likely to find regions that match more difficult, higher-
level semantics as well (e.g., ocean, not lake; calm sea, not stormy) and form a
visually plausible substitution.

The paper presents a two-stage approach. First, the system searches the image
database using low-level descriptors to find approximately 200 matching scenes,
then asks the user to choose semantically appropriate substitutes to fill the image
hole. Then they compute a SIFT-like ‘gist descriptor’ (introduced by Torralba
et al. [400]) for the selected patches that describes its aggregate oriented edge
responses at multiple scales, sorted into very coarse spatial bins. Second, they
create a seamless composite by graph-cut and Poisson editing.

Database size and processing time both limit the systems’ current practical
abilities: the database size may never grow enough to hold a high quality solution
for all possible image completion tasks, yet their preliminary system still requires
about one hour on one CPU to complete one image: typically 50 minutes for
matching, 20 minutes for local context matching, and 4 minutes for compositing.
Continually growing on-line photo databases, multi-core computers and distributed
search methods may help make the system more practical soon.

In a similar vein, Lalonde et al. [224] devised a “Photo Clip Art” system to
insert new objects into existing images a simple query-based interface. Users choose
3D location for the new object in the image, select an object to insert from an
hierarchical menu (e.g., with entries for people, places, household objects, etc.),
and then uses gradient domain fusion methods (Poisson editing) to merge a pre-
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Figure 7.23: Automatic Photo Pop-ups [186] construct a rough 3D model from a
single input image (far left). The system automatically detects and labels individual
scene planes, such as the foreground, ground, and sky “folds” them to create a 3D
pop-up shape, and then applies image textures to the 3D shapes. The system then
synthesizes novel views interactively by texture-mapped rendering of the 3D pop-up
shapes. (source: www.cs.uiuc.edu/homes/dhoiem/publications/popup.pdf)

stored picture of that object with the target image. The system does not render an
explicit 3D model for each object, but instead maintains a large database of object
photographs. As it also computes and matches automatic scene lighting conditions,
and refines the object segmentation to match any scene-specific occlusions, the
final compositing results look quite convincing. As with scene completion, the
results replace elaborate synthetic objects whose subtle flaws may lack ‘realism’
with actual photographs instead; if we can gather enough photographs and access
them promptly, we can simply bypass difficult synthesis problems. While results
are remarkably good, they cannot entirely replace synthesis because we may never
have ‘enough photographs’ online to represent all objects under all possible viewing
conditions.

Coarse Geometry Estimation

While the recovery of dense 3D models from image sequences remains difficult
for arbitrary scenes, sometimes coarse geometry is sufficient for simple scenes of
man-made objects. As we saw with “Photosynth” and “Tour Into the Picture”,
just a few well-chosen points are planes can supply enough visual information for
convincing 3D navigation, and we do not need dense geometric or photometric
models except to render much more geometrically complex scenes. Similarly, Hoiem
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et al. [186] introduced “Automatic Photo Pop-up” that enables users to move freely
in a 3D environment constructed from a single photo. Though limited to scenes with
vertical walls, right-angle corners between walls, and flat or geometrically simple
floors, their system is suitable for building interiors and exteriors, cityscapes, oceans
or lakes and docks, and a very limited subset of natural scenes.

Building on the pioneering work ‘Tour Into the Picture” by Horry et al. [188],
their system identifies commonly-encountered planes within a scene (e.g., ground,
vertical, or sky regions) by integrating multiple geometric and photometric cues.
They create a “pop-up”, similar to those in children’s books, by partitioning the
image into a set of texture-mapped billboards. They identify each billboard region
by finding line-segments in the image that trace along the boundaries between
vertical walls and the local ground plane, construct a vertical wall there, and then
‘fold’ along the floor seam to form a level ground plane, or a floor consistent with
other floor seams in the image, as shown in Figure 7.23. Unlike the manual marking
and segmentation required by “Tour Into the Picture”, edge-finding in the image is
enough to construct a coarse 3D model; users simply load the image, and after the
system automatically constructs its system of 3D “pop-up” billboards, users can
explore the scene in 3D immediately. While reliable for photos with clear and simple
geometric boundaries, the system relies on automatic image segmentation that may
fail for some images due to (1) edge labeling errors, (2) polyline fitting errors, (3)
model assumption errors, (4) occlusion within the image, and (5) erroneous horizon
estimation. However, users can easily identify most of these problems and correct
them with manual editing of the segmentation results.

As with many examples seen in this section, computer vision methods are some-
times fragile, and may require manual intervention to correct errors and ambiguities.
With suitable user interfaces, these corrections are easy and quick, but might be
eliminated altogether as our cameras advance to capture more information about
a scene than just a pixel map of the image formed behind the lens.

Texture Synthesis

Inpainting restores missing or damaged portions of images or videos, and borrows
its name from centuries-old techniques developed by painting conservation experts
(and abandoned in the late 19th century in favor of preserving the artists’ original
work by preventing new deterioration). When cleaning was not enough, when bugs
ate holes in the canvas or the wooden backing, or when old paint curled, blistered,
or fell away, early conservators would often maintain works of art by applying color-
matched paints to “in-paint” the missing or damaged areas, restoring the painting’s
original appearance as accurately as their skills permitted, and inferring the miss-
ing brushstrokes from their surroundings and from a high-level knowledge of the
original artist’s method and style. Since the 1980s, researchers have developed
semi-automatic digital methods to remove film scratches, repair damaged photo-
graphic prints, and remove text, grime or graffitti from digitized images. As these
algorithms lack higher-level knowledge of the scene content they can only supple-
ment the work of experts, but these semi-automatic methods may prove suitable
for casual users to clean up old photos, typically plagued by scratches, water-spots,
tears, cracks, creases and other artifacts. This section briefly reviews some of the
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Figure 7.24: Image quilting for texture synthesis and transfer [103]. Image quilting
synthesizes large textured regions from a small textured patch by merging multiple
patch copies that were offset, overlapped, aligned, and trimmed to fit the region’s
boundaries and geometric constraints. (left) The input texture, with its small source
patch outlined in red. (right) Synthesized result region, made from randomly chosen
input blocks. Each block is added in raster order (i.e., from left-to-right and top-to-
bottom). Overlapping regions between blocks are blended by finding a minimum
cost path through the overlapping region (e.g., minimizing gradient magnitude
similarity). (source: graphics.cs.cmu.edu/people/efros/research/quilting.html)

key recent works in inpainting and data-driven texture synthesis.
As defined by Efros and Leung,

The problem of texture synthesis can be formulated as follows: let us
define texture as some visual pattern on an infinite 2D plane which, at
some scale, has a stationary distribution. Given a finite sample from
some texture (an image), the goal is to synthesize other samples from the
same texture. Without additional assumptions this problem is clearly
ill-posed since a given texture sample could have been drawn from an
infinite number of different textures. The usual assumption is that the
sample is large enough that it somehow captures the stationarity of the
texture and that the (approximate) scale of the texture elements (texels)
is known [104].

A wide variety of texture synthesis algorithms have been proposed over the last
decade. Early on, parametric model-driven approaches were used. For example,
the inpainting approach by Bertalmio et al. [61] numerically solves a PDE in or-
der to extend image curves that arrive at a boundary into the empty region while
preserving their angle of arrival. In contrast, Efros and Leung [103] use a non- para-
metric, data-driven approach. Their algorithm functions by “growing” a texture,
pixel by pixel, outwards from an initial seed by using the seed’s surrounding colors
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Figure 7.25: Image analogies [184]. An “analogous” image synthesizer makes B′

similar to B in the same way that A′ is similar to A. (source: www.mrl.nyu.edu/
publications/image-analogies/)

as an index into a large, pre-constructed dictionary. For each set of surrounding
colors found in the texture sample, the dictionary holds a histogram of the pixels
that actually have those surrounding colors. We will choose a color from that his-
togram at random, but not all colors are equally probable; we set the likelihood of
choosing each one to match the histogram, so that as we synthesize new pixels we
will not change the histograms in the dictionary.

While effective for textures with small unstructured features, this pioneering
texture synthesis approach is quite slow compared to follow-on efforts: within a few
years, Ashikhmin [46] devised a simple fast method that could synthesize texture
at interactive rates and permitted users to ‘paint’ textures on-screen with mouse-
strokes. In addition, the size of the dictionary grows very rapidly with the size of the
neighborhoods it catalogues, and the the time required to create these dictionaries
can easily stretch to hours as the neighborhood size exceeds a few tens of pixels.
Unsurprisingly, the synthesis method does not work well for textures with features
substantially larger than the neighborhood used for that dictionary. In addition,
their algorithm occasionally “slips” into the wrong part of the search space and
starts growing garbage or repetitive structures. Extensive later works addressed
most of these limitations, such as the early follow-on work using a multi-scale
synthesis by Wei and Levoy [422].

While texture synthesis methods generate more texture area from one small
example of the texture we want, Hertzmann et al. [184] proposed “Image Analogies”
to generate more stylized images from a single example of a style. As shown in
Figure 7.25, image analogies emulate linguistic analogies: given an image A and
a stylized version of that image A′, find the similarly stylized image B′ given an
image B. Successful image analogies permit us to emulate what appear to be
‘high level’ abstractions with statistical processes alone, and let us experiment with
transferring styles from famous artists to photographs, or even ‘reverse’ stylistic
changes by swapping A and A′.

While texture synthesis ‘learns’ the likelihood of various pixel colors given its
neighbors, texture analogies learn the likelihood of changes to a neighborhood, given
its neighbors. Hertzman et al. measures similarity between input image pair A and
A′ by approximating a Markov random field model of variations in pixel values
and the responses of a multi-scale hierarchy of direction-sensing (steerable) filters.
They estimate and store the joint statistics of these values over small neighborhoods
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around each pixel in the input image pair. To construct the stylized image B′ they
begin with a copy of B and then modify each pixel with a random perturbation
that enables B and B′ to satisfy the joint statistics recorded for the A and A′ image
pair.

7.4.4 Indexing and Search

Metadata tags are added bits of machine readable information that describe digital
image features that we can’t extract directly from its pixel grid. Just like the
digital image formats themselves, metadata tags lack any standards or conventions
for formats, tag names and values, or even where to store the metadata tags. Some
systems store metadata as part of the image file itself (e.g., EXIF, TIFF), others
create a companion file with the same name as the image file but with a different
extension, others create a ‘thumbnail’ file to store tags for all images in a single
directory (e.g., Canon cameras), others create a single database of tags that describe
sets of images in selected directories, drives, computers, or networks (e.g., Google’s
Picasa system).

However, nearly all modern digital cameras manufacturers support metadata
tagging within the EXIF standard, and their cameras create image files that hold
machine-readable detailed information on the camera’s settings. In the late 1990s
the Japan Electronic Industries Development Association (JEIDA), a forward-
looking consortium of digital camera manufacturers, established committees to
devise a single industry-wide file format that would ensure compatibility and inter-
operability for digital photos. Together they devised the ‘Exchangeable Image File
Format’ (EXIF) specification that augments the existing JPEG, TIFF (revision
6.0), and RIFF WAV image file formats with a set of carefully devised metadata
tags. The original 1998 specification was updated to version 2.2 in April, 2002; while
not maintained by any standards-setting organization, its widespread ongoing use
by camera and both commercial and open-source software ensures its stability.

In each file, EXIF tags may describe camera manufacturer, model, lens descrip-
tor, date, time, aperture, exposure, focal length, metering mode, and ISO speed,
thumbnail previews, and copyright information for a given image. More recently,
cameras with built-in GPS receivers, tilt sensors and compasses record geographical
coordinates and camera aiming directions as well. Aggregating tags from large sets
of photos can help form initial estimates of scene contents and viewpoints, even
without GPS metadata as demonstrated by Snavely et al. [375]. As they discov-
ered, this data is not always reliable, because some photographers may edit their
photos by cropping or resizing with software that does not update the EXIF tags
set by the camera. We believe metadata tags from EXIF are an excellent start,
but could be much richer and more useful for indexing and browsing large photo
collections, particularly as cameras gain better abilities to estimate camera pose,
lighting, and image content.

For example, the growing popularity of automatic face-detection (Section 7.1)
in current generation digital cameras may eventually permit your camera to rec-
ognized frequently-photographed people and tag them by name automatically, as
some existing photo-browsing software can do now (e.g., Google’s Picasa and Ap-
ple’s iPhoto). Similarly, cellular towers can triangulate and determine the location
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of existing camera-equipped ‘Edge’ and ‘G3’ phones even without GPS; why not
relay that location information to those phones for use in tagging photos? New
biometrics made possible by cameras, such as fingerprints and iris scans could also
augment EXIF data with tags to identify the photographer. As both Hays and
Efros’ img2gps [179] and Jacobs et al. [198] showed, adding accurate timestamps
can also assist in determining geolocation, and the directions of shadows from sun-
light can assist in determining camera aiming direction. In the future we expect
auxiliary tilt sensors to become more common, facilitating not just user interface
improvements, but also post-capture scene recovery in the style of Photosynth.

7.5 Image Sequences

Aggregated on-line photo collections present new sources of weakly-structured im-
age data; if organized according to 3D location (e.g., as with PhotoSynth) we can
choose our own paths to explore the scene, selecting photos in any order we wish to
learn more about scene features we find particularly interesting. Currently, we lose
most of this freedom with video sequences. Video browsing only permits us to select
individual video clips, and playback shows us only one fixed temporal sequence; we
have no choice of camera locations, movements or viewpoints. At best we can only
lengthen an interesting sequence using pause and slow-speed playback, or shorten
a boring one using fast-forward or skip-ahead in playback. How might we gain
more choices in creating and exploring the contents of one video? How might we
better aggregate the visually important contents of multiple video sequences? In
this section we review some of the historic and recent work on video processing,
particularly for time-lapse imaging, motion depiction, and video summarization.

7.5.1 Time-lapse Imaging

Time-lapse photography summarizes long-term visual changes in much shorter
video sequences, enabling us to stretch our useful attention span from tens of
seconds to hours, days, months, or years. As video and motion pictures consist
of individually photographed frames recorded and played back at a constant up-
date rate, time-lapse sequences are simply those recorded at a slower frame rates
than their playback. Setting the ratio between recording and playback rate de-
termines the apparent temporal rate; 30Hz playback of a video recorded at one
frame per minute shows changes 1800 times faster than normal. Time-lapse ex-
periments began even before motion pictures with flip-book animations, and ap-
peared at the dawn of commercial motion pictures in Georges Méliès’ motion
picture Carrefour De L’Opera (1897). Popularity for educational use began in
part due to F. Percy Smith’s stop-motion flower-blooming films and studies of the
eerie growth of slime molds (see: www.screenonline.org.uk/people/id/594315/), but
many others adopted the method for effective illustration of growth, celestial move-
ments, weather, and more. Although he was a stop-action pioneer (1915-1918), Ro-
man Vishniac’s later contributions to scientific photography advanced stop-action,
light-interruption, and polarization methods for living organisms of all kinds (see:
en.wikipedia.org/wiki/Roman Vishniac).
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Figure 7.26: Time-lapse video processing. (Top): Factored Time-Lapse Video [386].
(a) A single frame from an outdoor time-lapse sequence factored into its sun-
light(directional), skylight(non-directional), and reflectance components. (b)
Shadow removal reconstructed from sky light and reflectance estimates (c) Sunlight-
only component. (d) Synthetic markings added by modifying the reflectance esti-
mate, then multiplying by the sunlight and skylight estimates. (source: people.csail.
mit.edu/wojciech/FTLV/index.html) (Bottom):from Computational Time-Lapse
Video [60]. The first row shows three consecutive frames in a time-lapse sequence
with uniform temporal sampling. The bottom row shows three consecutive frames
in a time-lapse sequence with non-uniform temporal sampling, used to preserve the
key event of a truck passing, with synthetic motion trails added to indicate high
speed motion. (source: ericpbennett.com/TimeLapse/BennettMcMillan07.pdf)
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During time-lapse photography, exposure time choices determine the amount
of motion blur in each frame; more blur helps reveal the velocity of moving ob-
jects as they pass through the scene. Long frame times and very short expo-
sure times undersample the scene, and may cause temporal aliasing (e.g., airplane
propellers, wheels and tires that stop and spin backwards). Long time-gaps be-
tween exposures also enable actors and directors to make seemingly-impossible
‘stop-motion’ animation films by hiding intervening actions between each frame,
such as re-molding plasticine characters (e.g., Aardmann Animation’s “Wallace
and Gromit” series), bending armatures and replacing molded, pre-painted heads
(e.g., Disney’s “The Nightmare Before Christmas”) and countless entertaining stu-
dent videos with actors that move slightly for each frame or leap into the air just
before each shutter-release (e.g., ‘Human Skateboard’ on YouTube www.youtube.
com/watch?v=MtbQ4J3RfQ8&feature=related).

Time-lapse or frame-by-frame photography for film or video usually relies on
either a manual shutter or an ‘intervalometer’ to take photographs at uniform time
intervals, and may miss important events. Digital video provides us with several
new kinds of flexibility; as each frame costs almost nothing to capture, we can
record full-frame rate (e.g., 30Hz) digital video, then create ‘time-lapse’ sequences
computationally, choosing the best frames to keep, or combining those we captured
to construct fewer frames from them. Recently Bennett and McMillan [60] explored
some of these methods, and described several ways to construct more useful and
aesthetically pleasing time-lapse sequences by adaptive sampling and multi-frame
video processing.

First, they address temporal aliasing, (the information loss caused by skip-
ping frames) in time-compression of surveillance videos. At low frame rates, these
cameras may capture only a single frame of an important event such as an in-
dividual entering or leaving an area. Instead, they propose recording frames at
ordinary video frame rates, but then discarding most of the frames that contain
no visually-significant changes, forming an event-driven time-lapse sequence that
moves rapidly through long stretches of uneventful time. They used a dynamic
programming method to optimize video temporal sampling for best match to user’s
desired frame rates and specifications of visual events. By making weighted sums
of uneventful video, they created a virtual shutter effect that adds synthetic motion
blur to a time-lapse sequence (see Figure 7.26). Their implementation presumes
the surveillance camera is fixed and observes a mostly-static scene, as they use
frame-differencing metrics to detect significant scene changes.

Over long time periods, fixed video cameras viewing fixed outdoor scenes gather
a surprisingly information-rich collection of images. Natural illumination varies dra-
matically but predictably over time, due to changes in illumination direction from
sun movements (both dawn to dusk and season to season) and also from weather
and artificial illumination from street lights, interior lights, and moving lights from
cars and other vehicles. Sunkavalli et al. [386] examine visually meaningful compact
representations for these time-lapse sequences.

As they observe, a camera that takes a picture every 5 seconds yields 17,280
images per day and nearly 1 million per year. Their studies showed that while
näıve PCA methods can summarize these images using a few low-dimensional basis
images, they can construct a much more meaningful and useful decomposition by
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Figure 7.27: Toward Fully Automatic Geo-Location and Geo-Orientation of Static
Outdoor Cameras [198]. (source: ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=
4544040)

factoring the images into estimates of reflectance, shadow, directional (sunlight) and
non-directional (sky-light) illumination, whose weighted products formed accurate
approximations of the scene under any desired time-of-day or degree of overcast.
By using the time-varying intensities of each pixel independently they first identify
the onset (the edge) of moving shadow boundaries in the scene to label pixels as
in shadow or direct sunlight. They then apply matrix factorization to the volume
formed by their time-sequence of labeled images to find a set of basis curves that,
together with per-pixel offsets and scales, describe the image set. From these, they
can estimate surface normals and surface reflectances with sufficient accuracy to
permit some 3D image editing in addition to recreating any desired relighting. Such
representations are useful for computer vision tasks such as background modeling,
image segmentation, and scene reconstruction, as shown in Figure 7.26.

Time-lapse imagery of outdoor scenes has utility for geo-localization as well.
Similar to the img2gps method of Hays and Efros [179], one would expect that the
natural changes in illumination captured by a simple webcam would be sufficient to
localize the camera with some degree of certainty. Jacobs et al. [198] describe just
such an algorithm, with the additional constraints that the images are accurately
time-stamped and the camera remains static (see Figure 7.27).

First, they find a sequence of images where the camera has not moved. Second,
they compute a “canonical day” decomposition (similar to a PCA decomposition,
but consistent across multiple cameras). Third, they create a full hemispherical sky
intensity map for a given geo-location and time of day. Finally, an optimization pro-
cess searches to find the orientation of the camera relative to this hemisphere which
maximizes the correlation between the sky pixels in the image and the predicted
sky intensity.

While image-based geo-location may not provide the accuracy of true GPS, we
believe it is remarkable how accurate state-of-the-art system are—for instance, the
recent method of Jacobs et al. already reports a localization accuracy within 50
miles for static cameras.



256 7. Processing and Reconstruction

Figure 7.28: Marcel Duchamp. Nude Descending a Staircase, No. 2 (1912). (source:
en.wikipedia.org/wiki/Nude Descending a Staircase, No. 2)

7.5.2 Motion Depiction

How can a digital image best depict motion? Video sequences try to record motion
objectively with an optical copy, but artists show us many much more inventive
methods to depict motion in stationary, moving, or responsive displays from oil
paintings to Alexander Calder’s mobiles and wire drawings in 3D. Even subtle
changes in composition can create or destroy our impression of movement in a single
image, yet the sheer diversity we find in the best motion depictions suggest that
computational approaches may uncover new ones. The radical yet playful works by
Duchamp such as “Nude Descending a Staircase, No. 2” shown in Figure 7.28 show
abstractions and multiple copies of moving forms; image sequences by Edgerton
and Mili (see Chapter 5) remove abstractions and show us the details of forms
that change too rapidly to see with our own eyes. Some recent computational
photography-related papers seem to emulate these works, such as the shape-time
images by Freeman et al. [140], and others give us new tools for abstraction and
selective detail. Can we compute a continuum of motion depictions that let us
choose or vary them between detailed and abstract? What varieties of abstraction
are comprehensible but still computable?

Our motion-depiction choices are much broader than just variations on motion-
blur such as strobed multi-image photographs or trajectory lines. Liu et al. [250]
recognized that while ‘time-lapse’ photography can amplify our ability to com-
prehend changes over long time-scales, film-like photography offers no ability to
amplify motion itself, no sensible way to exaggerate very small-amplitude move-
ments we might otherwise miss. As shown in Figure 7.29, they first group pixels
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Figure 7.29: Motion Magnification [250]. (top left) One registered input frame.
(top middle) Clustered trajectories of tracked features. (top right) Related motion
layers (bottom left) Exaggerated motion causes holes (in black) (bottom middle)
Texture synthesis fills these holes. (bottom right): User-modified segmentation map
corrects errors. (source: people.csail.mit.edu/celiu/motionmag/motionmag.html)

into layers that each contain moving parts, and estimate motion vectors for each
pixel in each layer. Users then explore these layers and selectively amplify motion
vectors for particularly interesting layers (e.g., boost the bending movements for
the swing set’s support beam). As amplified movements can displace some pixels
substantially and leave behind empty areas in some of the video frames, they fill
these holes either by interpolating static features at this location from earlier or
later frames, or they apply texture synthesis to create plausible replacements for
occluded scene content. The results let us see very subtle movements that are both
visually interesting and suggest a structures’ tolerance for its current loads; for ex-
ample, a motion-amplifying surveillance cameras for large highway bridges might
help warn engineers of unseen structural weaknesses or resonant movements. While
quite effective, camera resolution and noise currently limits the method’s practical-
ity for low-light or high-contrast settings, and extensive data fitting may limit its
temporal sensitivity as well.

7.5.3 Video Summarization

Just as conventional video provides just one rather limited depiction of motion, we
have no one ‘best’ method for summarizing video’s visual contents. While modern
graphical operating systems present thumbnail views of images, documents, and
other resources, the creation of such preview images for videos remains an open
topic. How can we compress a short animation? how can we best represent the
movement of the subjects and the camera throughout? Goldman et al. [157] ob-
serve that video summarization is closely related to the storyboarding process using
in film production, and emulate it for summarization. As shown in Figure 7.30,
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Figure 7.30: Schematic storyboarding for video visualization and editing [157].
“(Left): Four still frames from one shot of the film “Charade”(1963). (Top):
Schematic storyboard composed from the frames at left; the large 3D arrow, indi-
cating motion toward the camera, was identified and rendered without determining
the 3D location of subject or camera. (Bottom): Professional storyboard artists’
rendering of the shot, composed with Adobe Photoshop and Corel Painter (Image
credit: Peter Rubin). (source: grail.cs.washington.edu/projects/storyboards/)

professionally-trained graphic artists create storyboards to help plan the most ef-
fective shots to convey a story or a sequence of ideas. The storyboard artist uses
a succinct graphic language in a sequence of drawings that describe the compo-
sition of each shot in the video. Sparse, deft line drawings depict subjects, sets
and backgrounds, and bold, annotated arrows indicate actor and camera move-
ments. Unlike the entirely-artist-driven storyboard method, Goldman et al. render
schematic storyboard layouts from input video clips using a minimum of user inter-
action. They draw upon a number of core computer vision technologies, including
tracking, segmentation, and keyframe selection to make similarly sparse, simplified
backgrounds and to make action-indicating arrows from photographed motions. As
observed by the authors, the creation of such storyboards has wider applications to
“...video editing, surveillance summarization, assembly instructions, composition
of graphic novels, and illustration of camera technique for film studies.” Others
have addressed some of the topics, such as “Salient Stills” [393], one of the earliest
computational attempts to depict video content in a single image. Assa et al. [47]
also applied keyframe select for video summarization. As these projects demon-
strate, content-driven image-processing techniques can already automate some of
the tedium of simplified sketching and routine drawings and transcriptions, freeing
artists for far more cognitively valuable depiction tasks.
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7.6 Multi-image Fusion

Any computational technique that requires more than one photograph employs
some form of multi-image fusion to merge their visually significant content, but
‘fusion’ methods assemble an image from pieces of many others. For example,
Chapter 3 describes fusion by photometric blending of overlapping images to stitch
together seamless panoramic images of static scenes. Chapter 3 shows how to extend
depth-of-field by combining images with different planes of focus, but at the cost of
multiple exposures. Chapter 5 explained how to fuse day/night and flash/no-flash
image pairs to enhance the overall aesthetics, reduce noise, and increase legibility
of the photographed scene. This section briefly reviews other multiple-image fusion
methods, including multi-resolution image pyramids, wavelet-domain blending, and
gradient-domain blending.

Blending overlapping image regions requires synthesizing a coherent transition
from one image to another. Despite potential mismatches between these images,
blended results should depict all key local textures and shape cues just once, and
maintain consistent color, noise, and texture across the entire transition region from
one photograph to another. This easy-to-state problem has proven surprisingly
difficult to solve robustly, and routinely requires substantial user interactions for
best-quality results. A wide variety of methods rely on multi-resolution image
decompositions described well in early papers by Burt and Adelson (e.g. [73]).

First, users supply a pair of aligned images and a boundary that specifies where
to make a ‘seamless’ transition from one image to the other. Before blending, Burt
and Adelson first construct a Gaussian pyramid from each image. A Gaussian
pyramid is just a source image (level zero of the pyramid) followed by sequence of
progressively smaller images or ‘levels’ stacked on top of it that we can imagine as
a pyramid of pixels. Each step up the pyramid shrinks the image size to half its
width and height, culminating in a one pixel image at the top. This single apex
pixel (or level or image) summarizes the entire image, and with each step down
the pyramid we find an image with more details than the last. From this, they
construct a Laplacian pyramid: they double the width and height of each Gaussian
pyramid level by interpolation and then subtract it from the next-lower level image
to remove the shared information and leave behind only the finest details held in
that level. The resulting band-pass pyramid holds an orderly sequence of image
details from finest (at the pyramid base) to coarsest (at the one-pixel apex). We
can then collapse the pyramid to reconstruct the original image perfectly: start at
the apex, double the layer’s width and height, add it to the next-lower level, and
continue towards the base.

Instead of cutting source images along user-supplied boundaries to merge them,
Bert and Adelson’s multiresolution method cuts the Laplacian pyramids, pieces
together each level into a new pyramid, then collapses it to form a merged image.
The two images’ coarse, low-spatial-frequency components blend together smoothly
over a wide transition region around the boundary, while progressively finer details
blend over progressively narrower transition regions. Laplacian pyramid blending
creates visually pleasing transitions particularly well-suited for dissimilar surfaces
on geometrically smooth, well-aligned shapes, such as their celebrated result that
blends an apple and an orange.
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Figure 7.31: Poisson Image Editing [317]. Instead of editing pixel values, Perez et
al. showed that editing image gradients offers greater flexibility, with results that
are often far more visually plausible. Gradients record only local changes, rather
than absolute pixel values or colors, and thus permit users to transfer textures and
visually significant variations without the color mismatches caused by copying their
pixel values. (source: www.irisa.fr/vista/Papers/2003 siggraph perez.pdf)

In 2003, Pérez et al. [317] presented Poisson image editing, a less elaborate
alternative to multiresolution methods that retains most of its advantages, and
also performs well for geometrically complex boundaries. Poisson image editing
manipulates only the difference between adjacent pixels instead of an entire pyra-
mid of pixel differences, and then applies a Poisson solver to these modified dif-
ferences to reconstruct the result image. Instead of pyramids, the method con-
verts each source and destination image into a vector-valued ‘gradient’ image that
holds the forward differences between each pixel and its eastward and northward
neighbors (e.g., replace each scalar pixel value I(x, y) with the 2D vector value
[I(x+ 1, y)− I(x, y), I(x, y + 1)− I(x, y)). As shown in Figure 7.31, users draw a
closed boundaries to specify source-image regions we wish to transfer to a destina-
tion image (e.g., the red-outlined bear, the yellow- and orange-outlined swimmers).
Over-writing destination gradients with source image gradients transfers only their
local changes rather their pixel values, and often permit seamless matching of source
and destination regions because it ignores globally-defined discrepancies such as
lighting or color differences.

As gradients describe only the changes in color and intensity, colors at the
boundaries of the pasted region always match the destination image, but achieve
this match by re-coloring the regions’ interior. The method performs very well for
cut-and-paste operations for objects on very similar backgrounds, but dissimilar
color or textures can induce objectionable artifacts. For example, a brown bear
surrounded dark blue-green river water looks a bit sun-bleached but still retains
its bear-like colors if we paste its gradients into light blue-green swimming-pool
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water as shown in Figure 7.31. However, that same brown bear may turn a sickly
gray-green and will swim in a patch of magenta water if we paste its gradients
onto a strong red background, because the Poisson solver will apply our pasted
water-to-bear gradients to red colors instead of water-like colors as it constructs
our output image. Mismatched background textures also induce halo-like artifacts:
if we paste our water-and-bear gradients onto the gradients of colored random noise,
the Poisson solver may construct rainbow-like fringes around the pasted region’s
boundaries due to nonzero curl and Dirichlet boundary conditions. 1

Algorithms for multiple-image fusion continue to evolve with each publication,
in part due to the close tie of hardware and software in computational photogra-
phy. Regardless, certain families of solutions such as Poisson image editing and
variants (e.g., Photoshop’s ‘healing brush’ tool, introduced in 2001) have become
widespread. We further discuss some of the practical details of such techniques in
the Appendices, including Graph Cuts and further gradient-domain image manip-
ulation techniques.

7.7 Conclusion

As we’ve learned in the previous chapters, conversion of raw sensor outputs into
picture values involves sophisticated processing. While existing digital cameras
perform ‘de-mosaicking’, (interpolating the Bayer grid), remove fixed-pattern noise,
and hide ‘dead’ pixel sensors, recent work in computational photography leads
further. The main idea is a “co-design” of optics and processing for optimal capture
and post-capture resynthesis. Such co-design has emerged as a common theme in
coded photography.

In some cases, outputs of ordinary cameras can be manipulated by incorporating
recent advances in image processing and computer vision. Advances in geometric
operations on large sets of photos now allow even novices to explore their image
content in 3D [376]. In such a data-rich environment, in which millions of photos
on any object can be archived and retrieved at little cost, automatic processing
must become a central feature of computational photography. Modern processing
methods use filtering to reduce the impact of noise, detect and recognize important
image features, such as faces, as well as categorize and automatically assign higher-
level labels. To remove blur due to defocus or motion, recent algorithms solve the
ill-posed blind deconvolution problem by enforcing certain natural image statistics
on the solution.

The statistical ‘priors’ exploit the common observation that there are large
gradients at sparse image locations or that the histogram of gradients of natural
scenes is sharply peaked at zero. Ever-increasing online photo collections are allow-
ing rapid progress in data driven, probabilistic and inferential methods. Cartoon

1An intensity image with N pixels always has one unique set of 2N forward differences. How-
ever, not all sets of 2N gradients describe an image, because we can specify gradient field with
non-zero curl. In these images, the pixel differences along at least one closed path (e.g., around
the edge of the image, or around any loop connecting together a sequence of adjacent pixels) don’t
add up to zero. For these ‘impossible’ gradients, a Poisson solver will find an image that matches
them best in the least-squares sense, causing smooth, broad, halo-like errors that spread outwards
from the curl-inducing regions.
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rendering from photos is redefining what it means to be ‘photorealistic’.



Chapter 8

Future Directions

What will a camera look like in 20 years? What will Photoshop look like in 20
years? Will we use gigapixel cameras? How will movie making and news reporting
change? Will we be able to monitor our own health with nano-scopes built into
our mobile devices? Can cameras protect our elbows and shins from sharp-edged
furniture or other sources of painful bumps and bruises? How will we stay in
touch (or maintain telepresence) with our loved ones? It is difficult to say how the
field will evolve. To help understand the future of Computational Photography,
four broad trends deserve your attention: (i) Modern developments in fields other
than photography introduce novel improvements to cameras, imaging, and non-
imaging sensors. (ii) Future photography will be decided not just by capture-side
innovations but also by new methods to share, display and interact with visual
results. (iii) Current scientific, industrial and medical imaging that were previously
considered exotic and unwieldy procedures such as tomography, confocal and coded-
sensing methods will blend rapidly with casual camera use and photography. (iv)
Finally, unusual configurations of multiple cooperating devices (cameras, lights,
scenes, wireless services, online databases) may dominate or replace the current
photographic conventions and how everyone captures a visual experience.

8.1 Modern Imaging

Over the last decade, we have seen a rapid growth in professional and consumer
photography. Digital cameras, introduced in early 1990s have already reached over
100 million in sales per year. Thanks to such large numbers, photography research
and techniques were mainly driven by consumer demand for smarter cameras and
superior imaging. However, camera technology is rapidly developing beyond pho-
tography for other applications. On the one hand, applications such as direct remote
surveillance, teleconferencing, online live video and sharing pre-recorded video, etc.
require little or no additional computational abilities beyond what most of us al-
ready have in a desktop computer. On the other hand, industrial vision, computer
vision, robotics and mining of online collections involve sophisticated computations
that still demand far greater resources, and may remain out of reach without fur-
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ther microprocessor advances, GPU co-processing or distributed cloud computing
enabled by widespread availability of high-speed networks. The hardware (cam-
eras, sensors, optics, processing, lighting and displays) and software developed for
these non-photographic applications all impose strong influences on computational
photography.

In addition, emerging billions of mobile camera phones have spawned a new
camera culture that changes the rules of visual communication. Beginning scarcely
10 years ago [137], the number of digital cameras in mobile phones has skyrocketed
from zero to over one billion. This is a fascinating time for camera and imaging
research. What happens when a billion people worldwide become empowered with
tools of visual communication? The goal of Computational Photography research
is not simply to use these cameras, but to amplify their shared abilities and develop
the next generation of imaging devices, algorithms and software.

8.1.1 Wafer-level Cameras

Unsurprisingly, a main area of innovation is cost reduction. In 2008, about 80%
of the 1.2 billion mobile phones sold had a camera inside. A camera has become
an indispensable feature of several devices including mobile phones, game consoles
such as Xbox, Playstation or Nintendo Wii and notebook computers. Wafer-level
optics is a novel technology that is designed to meet the demand for smaller form
factors, higher resolution and cost-effective pricing in the next generation of camera
phones. The optical components are fabricated on glass wafers in a manner similar
to that of fabricating integrated-circuit chips on silicon wafers. The entire camera is
aligned and assembled at the wafer level and subsequently diced to form individual
camera modules.

In electronics, smaller is better. WLC creates smaller image pixels i.e. higher-
resolution and smaller devices. Unfortunately smaller is not better in optics be-
cause the wavelength cannot be scaled down leading to diffraction and photon noise.
Scaling down the optics translates to a smaller lens diameter (D) and shorter focal
length (f). For the same light collection ability (F), the size of the diffraction-limited
spots is independent of the lens diameter. However, the number of resolvable im-
age spots—the space bandwidth product—is drastically reduced for very small lens
diameters. Nevertheless, WLC approach allows a new opportunity to produce a
unified optics-sensor architecture and the co-design can overcome traditional prob-
lems in optics (diffraction and aberration) or sensor (noise, well-depth, etc.).

Multi-aperture and Multi-scale Optics

The co-design of optics and sensors has shows ways to unconventional fusion of
light bending and sensing architectures. As resolution of pixels approaches below a
micron, there is limited gain due to the limits of conventional optics. There are two
approaches being explored: multi-aperture and multi-scale optics. A multi-aperture
(MA) architecture consists of an array of small submicron pixel imagers (apertures),
each with its own integrated optics. By focusing the integrated optics onto an image
plane formed by an objective lens in a region above the MA imager, the apertures
capture overlapping views of the scene. The correlation and redundancy between
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Figure 8.1: Comparison of conventional mobile phone camera fabrication (left)
with wafer-level camera fabrication (right). Opto-wafers and CMOS wafers are
mounted together and diced into individual camera modules. [Reinhard Voelkel,
SUSS MicroOptics SA]

apertures, along with computation, provide several new capabilities, including: (i)
simultaneous capture of a 2D image at higher resolution than the aperture count
and a 3D depth map without the need for active illumination or calibration; (ii)
simplification of the objective lens design; (iii) reduction of color crosstalk via per-
aperture color filters; and (iv) increased tolerance to pixel defects.

The multi-scale design discusses strategies for increasing the information ca-
pacity of geometric-aberration limited lens systems by adding reprocessing optics
near the focal plane. Defense Advanced Research Projects Agency (DARPA) is
already planning 1.6 Gigapixel sensors as part of the ARGUS program to support
unmanned air vehicle for aerial surveillance/ 1 DARPA also has a call for a 50
Gigapixel project under the MOSAIC initiative [396]. The theoretical diffraction
limit for space-bandwidth product (i.e. FOV/angular resolution) is rarely achieved
by a practical system due to lens aberrations. For example, a 1 cm aperture with 1
cm focal length (F/1 system) is diffraction limited to 310 Megapixels. But, real sys-
tems underperform by an order of magnitude (well below 30 Megapixel). So there
is a new need for computational optics as well as defocus deblurring algorithms.

The hope is that with multi-scale design, the optical re-processing strategy will
enable multi-gigapixel or even terapixel imaging through a single aperture [66].

8.1.2 Modern Optics

Wavefront coding is an imaging technique introduced by Dowski and Cathey utiliz-
ing joint optimization of a coded phase plate and digital postdetection processing.
Phase plates originally introduced for extended depth of field using a cubic pro-
file can be used for a variety of purposes. Companies are using it for correcting
for chromatic aberration and wide field of view imaging without significant lens
aberration.

1www.darpa.mil/IPTO/programs/argus/argus approach.asp
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Figure 8.2: Optical pre-processing near the sensor plane (a) Multi aperture design
adds new lenslet near the sensor for redundant imaging. (b) Traditional lenses
create focused spherical focused image plane. (c) Multi-scale optics uses a location-
dependent choice of microlenses to correct for the spherical aberrations. [David
Brady Duke U.]

Electroactive Optics

Future lenses may eliminate the need for moving lenses back and forth for focus
or zoom. Newer lenses can change shape based on applied voltage. The liquid
lenses by Varioptic are based on the electrowetting phenomenon [398]. A water
drop is deposited on a substrate made of metal, covered by a thin insulating layer.
The voltage applied to the substrate modifies the contact angle of the liquid drop.
The liquid lens uses two isodensity liquids, one is an insulator while the other is a
conductor. The variation of voltage leads to a change of curvature of the liquid-
liquid interface, which in turn leads to a change of the focal length of the lens.

A very similar electromechanical design involves Electroactive Polymers used
by Optotune [397]. Several field actuated materials that change shape exist such
as piezoelectrics and magnetostrictive materials. Electroactive Polymers, however,
are superior in terms of produced strain, actuation pressure and specific energy
densities. They use compliant electrodes that enable polymer films to expand or
contract in the in-plane directions in response to applied electric fields (or mechani-
cal stresses). The electrostriction of elastomeric polymer dielectrics with compliant
electrodes is potentially useful as a small-scale, solid-state actuator technology.
Optotune has shown that such polymers are well suited for tunable lenses. Both
electroactive lenses described above currently suffer from limited lifetime and show
hysteresis. Nevertheless, for Computational Photography these newer electroac-
tive adaptive lenses allows fast change in focal length between successive images or
within a single image, foveated imaging (spatially varying resolution) and phase-
retardation for controllable phase plates.

Photonic Crystals

Current explosion in information technology has been derived from our ability to
control the flow of electrons in a semiconductor in the most intricate ways. Pho-
tonic crystals promise to give us similar control over photons - with even greater
flexibility because we have far more control over the properties of photonic crys-
tals than we do over the electronic properties of semiconductors. Photonic crystals
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Figure 8.3: Liquid lenses from Varioptic use electrowetting principle to change the
focal length.

(PC) are typically nanostructure material with ordered array of holes. A common
configuration is a lattice of high refractive index (RI) material embedded within a
lower RI material. The behavior is dependent on creating a high index contrast.
PC are produced in 2D or 3D periodic structure. The highly periodic structures
that blocks certain wavelengths. The gap or notch in wavelength is called Photonic
band gap. Hence PC are also called Semiconductors for light and mimics silicon
band gap for electrons. With photonic jets, it is possible to focus light to spot
sizes below possible with conventional optics and below diffraction limits. Hooman
Mohseni and his group at Northwestern University have shown a focusing spot one
third the wavelength of light. This has been shown only at 3 micron diameters
lenses but the hope is that it can scale to several millimeters.

Computational photography can exploit the programmable and highly selec-
tive/rejecting narrow wavelength filters that go beyond the traditional Bayer color
grids on pixels. PC are also exploited for light efficient LEDs that could be part of
narrow-wavelength flashlights. PC are used in optical communication to support
extreme bandwidth via wavelength multiplexing. There is also hype about future
terahertz CPUs via optical communication on chip. Optical computation, process-
ing, communication and storage then can be married with optical sensing to create
an all-optical compact devices.

Nonlinear Optics

Nonlinear optics has been a rapidly growing field and involves interaction of intense
coherent light radiation with matter. Currently, it is mainly observed in intense,
pulsed lasers and special crystals. In traditional linear optics, light is deflected or
delayed without wavelength change (a linear system). Nonlinear optics (NLO) deals
with behavior of light in nonlinear media. In such media the dielectric polarization
responds nonlinearly to the electric field of the light. A software analogy would
be self-modifying programs. Why do nonlinear effects occur, in general? Imagine
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Figure 8.4: Photonic crystals are considered semiconductors of light. A common
structure is lattice of high refractive index (RI) material embedded within a lower
RI material.

playing music through a cheap amplifier and speaker that fails to reproduce loud
notes. The amplifier maps input to output in a non-linear fashion, possibly leading
to clamping at high intensities. A mono-frequency note with a single sinusoidal
pattern after clamping or any nonlinear scaling produces higher frequencies or har-
monics. In optics, those frequencies correspond to modifications of wavelength (or
the color of light). 2

Nonlinear effects are responsible for several non-intuitive effects. In addition to
color change, we can change light beam shape in space and time, use light intensity
of one beam as a programmable switch to gate propagation of a second light beam,
and devise imaging for shortest events—in femtoseconds, 10−15 seconds. Although,
most effects are for high intensity lasers, scientists are inventing new crystals and
materials. For computational photography, an exciting area is programmable re-
fractive index based on the optical Kerr effect discovered in 1960. If the refractive
index (RI) of a material is n0, and the nonlinear component of the RI is n2 , then a
beam of intensity I can modify the RI to n = n0 +n2 ∗I. Another intensiting effect
is self-focussing of light beams. Since RI is higher for higher intensity, a beam with
Gaussian cross-section intensity profile creates a convex lens inside a homogeneous
material. Unfortunately, in most cases beam collapses on itself converging till the
material is damaged!

2An excellent overview is available at www.physics.gatech.edu/gcuo/UltrafastOptics/
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Figure 8.5: Demonstration of the impact of nonlinear response on frequency spec-
trum. When the input signal intensity is high, the system does not behave as a
linear system and the clamping produces higher harmonics.

8.1.3 Modern Sensors

A trend that takes advantage of scaling is increasing pixel-level processing by adding
more transistors to each pixel. Additional logic allows image sensor architectures
with per-pixel analog to digital converters (ADCs). This in turn means reduced
demands on ADC performance, elimination of fixed pattern noise (FPN), and high
speed readout.

One of the challenges for photography is low-light sensitivity. However, in sci-
entific and industrial applications often deal with applications that measure and
analyze light emitted at levels so low that detection of single photons is required.
For decades researchers have relied heavily upon glass photomultiplier tubes and
newer channel multipliers. For dealing with motion blur, Time Delay and Integra-
tion (TDI) charge-coupled devices (CCD) are widely used. However linear speed
and direction are known a priori. The strategy is equivalent to image motion com-
pensation by panning, but performed on sensor. Sensed charge patterns and shifted
them across the CCD array in sync with the movement of the image, to integrate
more light from the scene. TDI provides the technology for capture of moving
objects where high output level flash tubes are not available, are too distant, or
are insufficient. Examples of such applications are satellite or aerospace imaging,
machine vision, or industrial inspection. A TDI clock is used to synchronize the
movement of charged packets in the CCD. Unlike a traditional sensor that provides
a frame of output, during exposure, the CCD detector reads out the information
in the opposite direction at the same speed. Thus, the frame rate is proportional
to the speed of the moving object. Computational photography techniques will
evolve rapidly as these sensors with additional bandwidth or logic per pixel become
available.
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Back-side Illumination

Back-side illumination (BSI) in CMOS sensors is a relatively new trend. In tra-
ditional front-side illumination (FSI) sensors, the light passes through optics (a
microlens and color filter) and pixel well electronics (various metal layers for cir-
cuits before reaching the sensing silicon). The decrease in pixel size does not match
decrease in the depth of the pixel well. Small pixels create very narrow wells
reducing angle of acceptance and reducing light sensitivity. With BSI, the well
electronics is upside down. The sensing silicon absorbs light immediately after op-
tics. BSI provides the most direct path for light to travel into the pixel, avoiding
light blockage by the metal interconnect. Companies have announced BSI sensor
plans for 0.9 micron pixels. With pixel size approaching visible light wavelengths,
a completely new imaging architecture is being planned for light field or wavefront
detection [136, 392].

3D VLSI Sensors

Three dimensional very large scale integration technology (3D VLSI) technology
in the field of optoelectronics provides vertical as well as horizontal interconnects
between multiple substrate layers. This is especially beneficial for large image sen-
sor arrays with stacked and interconnected sensing, processing and communication
layers. Such stacked processing elements could mimic human retina which is a
layered structure with several layers of neurons interconnected by synapses. Tradi-
tional 2D VLSI puts constraints on pixel fill factor and readout rates due to space
required and distance covered by non-sensing electronics. The tighter integration
in 3D VLSI allow significant reduction in size, weight, power consumption and de-
lay. On-board per pixel circuits achieve analog local pre-processing for spatial and
temporal filtering and gain control. So it is easy to support high dynamic range
imaging, gradient sensing and sophisticated real (positive as well as negative) val-
ued linear filter operations in analog domain. Asynchronous pulse time modulation
and address event representation encoding and processing of data in distributed
architectures, is an attractive alternative to traditional synchronous digital signal
processing in 2D arrays [258, 395].

8.1.4 Metadata and Non-Visual Data

Our own visual sensing and our memory of viewed scenes is deeply impacted by non-
visual data. Meta-data captured with additional, possibly non-visual sensors may
greatly aid photography. Augmentations may include currently available sources
such as automatically-sensed identity of people or objects (from RF, optical, or
electronic tags and badges, or even a fingerprint reader on a cameras shutter release
button), sound (audio recording) and location and pose sensing (GPS, compass, tilt-
sensors, and indoor location tracking). But information about other conditions may
also play a role. Sensing temperature, smell and wind will allow us to synthesize
and manipulate visual recordings to recreate savory experiences in a restaurant, the
breeze on a beach or an exhilarating ride on a rickety roller coaster.
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8.1.5 Computation and Optimization

[SUGGESTED ADDITIONAL SUBSECTION BY DI WU—NEEDS TO BE WRIT-
TEN] Can we add one subsection here to talk about the important role of compu-
tation/ optimization in imaging, like the nature photonics paper: Looking around
corners and through thin turbid layers in real-time with scattered incoherent light.
And also perhaps compressive sensing light field capture?

8.2 Displays

Computational photography may create new mechanisms for hyperrealistic synthe-
sis, but ultimately the display medium is critical for realizing the visual experience.
Unfortunately, the situation for displays is similar to the situation with modern
cameras. Just as digital cameras mimic film-like photography, nearly all current
displays mimic back-lit film or film projectors, and offer little more visual informa-
tion and interactivity than high-quality CRT (cathode ray tube) monitors. How-
ever, several pioneering efforts demonstrate very promising new directions, includ-
ing “Lighting Sensitive Displays by Nayar et al. [289], the extended auto-multiscopic
method of Matusik et al. [262], the first true 360-degree 4D light-field display from
Jones et al. [208] and dramatically improved dynamic range from Dolby HDR dis-
plays [394]. As most displays are tailored to available content rather than new
capabilities, change may come slowly to digital displays designed for 2D photos,
videos and animations. With more capable modern displays and new ways to share
visual information, the corresponding capture and manipulation techniques will
change, but new cameras may wait on new displays, and new displays may wait on
new cameras! Let us review some of the recent progress and some future directions.

8.2.1 High Dynamic Range Displays

BrightSide technology [394] uses LCD technology. Usually LCD displays have a
backlight provided by CCFL (Cold Cathode Fluorescent Light) tubes. Thats why
even when the LCD screen is black it is not actually black, it still has some residual
light: the tube is still turned on. The main idea of BrightSide technology is to
remove this CCFL backlight and use several LEDs instead, a technology they call
IMLED (Individually Modulated Array of LED backlights).

The brightness of each LED is controlled by an 8-bit signal, so each LED has 256
brightness steps (zero would mean tuned off while 255 would mean totally turned
on; a 128 value would turn on the LED with 50% of its luminance, a 64 would
turn on the LED with 25% of its luminance and so on). The first display launched
with this technology—called DR37-P (which is a 37 panel)—has 1,380 white LEDs
behind the LCD screen.

So, the idea is quite simple. Instead of having just one light source behind the
LCD screen that is turned on all the time with the same brightness, BrightSide
technology displays use several white LEDs where each one can have its brightness
controlled (256 different brightness steps).
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Figure 8.6: Towards a 6D photo-frame: a multi-dimensional display which pas-
sively react to the light of the environment. (bottom left) Traditional photo-frames
present 2D images. (top left) Displays with horizontal or vertical parallax (3D)
or both parallax (4D) use lenslet arrays or holograms to create a fixed outgoing
light field. This creates a floating virtual object but it does not respond to ambient
light. (bottom right) Fuchs et al. [2008] create a lighting aware 2D photo-frame,
i.e., a 4D display that responds to 2D position of light. (top right) Ultimately, the
photo-frame should encode a 6D reflectance field and reveal a different 4D light
field depending on the 2D environmental illumination.

8.2.2 3D, Volumetric and View Dependent Displays

How can we create photo-frames and displays that display higher dimensional re-
flectance fields? Such visualizations play an important role in our everyday life: in
images, volumes, light fields or reflectance field data sets. However, many optical
visualizations and recording techniques are limited to a 2D structure. Therefore,
methods have been presented in the past which address this problem by flattening
the high dimensional data, embedding it in a planar, 2D representation. Integral
photography [248] is an early approach which records a 4D light field on a photo-
graphic plate. The main concept is adding an array of lenses to the plate, we can
discretize the spatial coordinates into spatial as well as angular dimensions.

Planar encodings of light fields are since the days of integral photography closely
coupled to the development of displays which create a 3D impression by projecting
a light field into space. Nakajima et al. [285] described a lens array on top of a
computer display for a 3D viewing experience. In 2004, Matusik and Pfister [262]
presented an end-to-end system which records a 3D light field, streams it over
the network and then displays it on a lenticular array screen. Their article also
gives a good overview of current multi-dimensional display techniques. Javidi and
Okano [201] discuss a range of related techniques.

Compressive Displays

SUGGESTED ADDITION BY DI WU—NEEDS TO BE WRITTEN add compres-
sive display work from our group, from HR3D–¿ layered 3D ? polarization field ?
Tensor display

While light fields capture the appearance of a static object, reflectance fields
further encode the optical response of an object to illumination. Nayar et al. [289]
presented a display which measures the distant room illumination, approximated
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as environment map, and interactively renders an image in this illumination. Koike
and Naemura [218] propose an extension towards emitting a light field in a similar
fashion. Both displays are electronic and rely on software and hardware evaluating
the illumination and rendering the reflectance field. Scharstein et al. [354] obtained
a patent on a device which is passive: it employs optics in order to create a numeral
display of the current time. This is achieved by encoding a pattern in a slit mask so
that natural sunlight direction produces different symbols. However, this construc-
tion inherently blocks the majority of incident light rays. Fuchs et al. [143] follow
a passive approach to illumination variant displays using lenses and colored pat-
terns, thus using a larger portion of the available light for a higher contrast display
of more expressive patterns. For distant light and a fixed observer position, they
demonstrate a passive optical configuration which directly renders a 4D reflectance
field in the real-world illumination behind it. Combining multiple of these devices
in a 2D array they build a display that renders a 6D experience. The incident
2D illumination influences the outgoing light field, both in the spatial and in the
angular domain. Since it is free from any electronic parts, the 6D photo-frame can
be potentially printed as a 2D pattern and displayed behind the frames optics.

Some futuristic displays include manufacturing techniques for bionic eyes at
microscopic scales to combine a flexible, biologically safe contact lens with an im-
printed electronic circuit and lights [214]. Looking through a completed lens, you
would see what the display is generating superimposed on the world outside for
see-through augmented reality. The work is lead by Babak Parviz at University
of Washington. However, the challenge is that the resolution of an image emitted
from the contact lens will be low (due to blur). Saccades, which stabilize an image
outside but not on retina, may blur everything.

8.3 Great Ideas from Scientific Imaging

Light transport and manipulation is very much part of several non-imaging oper-
ations such as optical communication, lithography and medical procedures. Rapid
progress in theoretical understanding, hardware and methodologies in those fields
will in turn impact cameras and photography. In terms of the responsibility of the
task, there is also a need to think about balancing between physical and digital
layers in terms of size, cost and power.

Some computation imaging which required supercomputers for scene reconstruc-
tion will be now possible via computing power on consumer devices. This removal
of computing barrier means these complex information processing techniques will
be used for casual problems. Emitters and sensors used in this exotic imaging, e.g.
high speed, infrared, ultraviolet, is becoming cheaper and accessible. In a sense,
the physical components of a camera, including high quality lenses, may not get
cheaper, but silicon sensing is becoming cheaper.

In several scientific imaging scenarios, the sensed image quality is quite poor. So
in this fields, there is a lot of emphasis on overcoming the limitations of the phys-
ical medium via clever physical architecture or highly sophisticated software. The
low quality maybe due to difficulties in dealing with a wide spectrum, backscatter
or secondary scatter or low SNR of sensor. For Computational Photography, it
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may be possible to use low-quality lenses and overcome the physical limitations of
lenses with similar scientific computation. On the other hand, in several area of
scientific imaging such as astronomy and microscopy, they have already explored
(studied and characterized) optical lenses that are well beyond any consumer pho-
tography. This includes super-resolution, careful manipulation of spectrum, e.g. in
fluorescence microscopy, wavefront phase manipulation and programmable illumi-
nation for feature revealing imaging. Scene measurement and representation in 4D
and beyond encompasses previously isolated ”Islands” of Ingenious Scientific Imag-
ing Measuring. What can we learn from them? Can we extend their methods?
Particularly promising fields include the following.

(i) Tomography: Tomography is a powerful technique that allows us to see inside
a volumetric object via cross-sectional imaging. For any penetrating measurements,
attenuation along straight-line paths can be used to construct 3D images of internal
structures This is currently used measuring sound transmission to electrical capac-
itance, from seismographic disturbances to ultrasonics to X-rays. We saw earlier
that tomographic techniques are used in building multi-spectral imagers.

(ii) Spectrographic methods: complex interdependencies between wavelengths,
reflectance, and transmissions are used for image forming, and broad classes of
statistical measurements help decipher or identify useful features for land manage-
ment, pollution studies, atmospheric patterns, wildlife migration, and geological
and mineral features..

(iii) Confocal Methods and Synthetic Aperture methods: As described above,
one can achieve very narrow depth-of-field image by collecting a widely divergent
rays from each imaged point and these methods can extend to macroscopic scales
via multiple cameras and multiple video projectors.

(iv) Fluorescence Methods: Some materials respond to absorbed photons by
re-emitting other photons at different wavelengths, a phenomena known as fluores-
cence While very few materials fluoresce in the narrow range (¡ 1 octave!) of visible
wavelengths, hyperspectral imaging reveals instructive fluorescence phenomena oc-
cur over much wider bands of wavelengths. Many organic chemicals have strongly
varied fluorescent responses to ultraviolet light, and some living tissues can be
chemically or genetically tagged with fluorescent markers that reveal important bi-
ological processes. Accordingly, hyperspectral imaging and illuminants can directly
reveal chemical or biological features that may be further improved by 4D methods.

(v) Compressive Measurements: There is a strong interest in Analog to Informa-
tion (A2I) sensors. Sparse in transformed domain. The idea behind Task-specific
Imaging (TSI) is to achieve information optimal projection. For example, the lo-
cation of a moving vehicle in a surveillance video is only a few bits of information.
Can we build a camera that records only the tracking information instead of a high
resolution video? Using careful, possibly adaptive, projection of the data, Mark
Neifield and his group at University of Arizona have achieved temporal compres-
sive sensing. David Brady and his group at Duke University have built an adaptive
multispectral imager.
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8.3.1 Other Dimensions

As noted in the Assorted pixels paper [Nayar2003], photographic capture gathers
optical data along many dimensions, and few are fully exploited. In 4-dimensional
ray space we sense and measure more than simple intensity (or more formally, ra-
diance), but also visually assess wavelength, time, materials, illumination direction
and more. Polarization is also sometimes revealing, and the mapping from polariza-
tion direction of the illuminant to the polarization of reflected light is not a simple
one: for some biological materials, the mappings are nonlinear and unexplored [Wu
et al. 2003]. Extended exploration of wavelength dependence is already well ad-
vanced. Hyperspectral imaging has already gathered a rich and growing literature
for a broad range of applications from astronomy to archival imaging of museum
treasures.

8.3.2 Transient Imaging and Ultra-fast Imaging

How can we exploit the finite speed of light to improve image capture and scene
understanding? New theoretical analysis coupled with emerging ultra-high-speed
imaging techniques can lead to a new source of computational visual perception.
We need a new theoretical foundation for sensing and reasoning using transient
light transport, and experimentation with scenarios in which transient reasoning
exposes scene properties that are beyond the reach of traditional machine vision.
In a traditional camera, the light incident at a pixel is integrated along angular,
temporal and wavelength dimensions during the exposure time to record a single
intensity value. Distinct scenes may result in identical projections (images) and,
hence, identical pixel values. Thus, it is challenging to estimate scene properties
which are not directly observable. Steady-state light transport assumes equilibrium
in global illumination. In transient light transport framework, light takes a finite
amount of time to travel from one scene point to the other. Recent advances in ultra-
high speed imaging have made it possible to sample light as it travels 0.3 millimeter
in 1 picosecond. The dynamics of transient light transport in response to a single
ray impulse illumination can be extremely complex, even for a simple scene. Unlike
a traditional 2D pixel, which measures the total number of photons. Transient
light transport measures photon arrival rate as a function of time. Kirmani et al.
[216] show that multi-path analysis using images from a time-of-flight (ToF) camera
provides a tantalizing opportunity to infer 3D geometry of both visible and hidden
parts of a scene.

Looking Around Corners

[SUGGESTED ADDITIONAL SUBSECTION BY DI WU—NEEDS TO BE WRIT-
TEN] We could add more details from the looking around corner (nature comm.
paper), and visualize light in motion project.
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Figure 8.7: Can you look around the corner into a room with no imaging device
in the line of sight? Kirmani et al. show that by emitting short pulses (1 —
> 2), and analyzing multi-bounce reflection from the door (4 —> 1), they can
infer hidden geometry even if the intermediate bounces (3) are not visible. The
transient imaging camera prototype consists of a femtosecond laser illumination
and picosecond-accurate detectors.

8.4 Fantasy Imaging Configurations

Beyond what we can do now, what would we like to achieve in computational
photography? What can we imagine if we set aside current practical limits? By
widening the goals of photography to the capture of the visual essence of an object,
scene, or event, we can escape the current notion of an ideal photography studio
as a room full of lights and box-like cameras, and expand it in wholly different
directions.

8.4.1 The Moment Camera

Film-style photography relies on an instantaneous ideal: we attempt “stop time
by capturing any photographed scene quickly enough to ignore any movement that
happens during the measurement process. Even so-called motion pictures consist
of a sequence of individual frames, and current video systems also make these same
film-like serial attempts at instantaneous capture, rather than direct sensing of the
motions themselves. Harold Edgerton pushed the instantaneous ideal to extremes
by using ultra-short strobes to illuminate transient phenomena, and ultra-short
shutters to measure ultra-bright phenomena quickly, such as his famous high-speed
movies of atomic bomb explosions. Can we work in the opposite direction with
new kinds of digital sensors, ones that summarize movement and change rather
than incident light averaged over time?

Digital sensors offer new opportunities for more direct sensing, and digital dis-
plays permit interactive display of the movements we capture. Accordingly, Michael
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Cohen has proposed that the film-rooted distinction between still cameras and video
cameras should gradually disappear. He proposed that we need an intermediate dig-
ital entity he calls a moment; one visually meaningful action we wish to remembera
childs fleeting expression of delighted surprise, a whisper of wind that sways the
trees, etc., and it might fit in short video clips [Cohen 2005]. Motion sensing and
deblurring itself can improve in the future [BenEzra 2004, Raskar 2006]. Move-
ment also causes difficulties for constructing panoramas. However, if the movement
is statistically consistent, it is possible to combine conventional image stitching op-
erations with so-called video texturing methods [Schdl 2000] to create consistent,
seamless movement that captures the moment of the panorama quite well. It can
be further extended to capture video texture panoramas [Agarwala 2005].

8.4.2 Slow Glass

As pointed out by Rick Szeliski in recent talks, “slow glass is a fictional material
in Bob Shaw’s short story ”Light of other days” (Analog, 1966), and several sub-
sequent stories. The glass, which delays the passage of light by years or decades,
is used to construct windows, called “scenedows, that enable city dwellers, sub-
mariners and prisoners to watch ”live” countryside scenes. In the original story,
Shaw implied that slow glass was just a material with an enormously high index
of refraction (somewhere in the quadrillions). In a later story, he supplied a more
convoluted explanation attributing the delay to photons passing “.through a spiral
tunnel coiled outside the radius of capture of each atom in the glass. The high refrac-
tive index explanation fails because Fresnel reflection (proportional to the square
of the difference in refractive index) from the surface would form a near-perfect
mirror; no light would enter the glass!

8.4.3 Blind Camera

With ubiquitous wireless communications, any camera could become an always-
connected networked object. How might we exploit its access to vast repositories
of online information? In his insightful 2006 art projects, 3 Sascha Pohflepp built a
prototype “Blind Camera” that has a viewfinder and responds to its shutter release
by taking a picture, but has no optics, sensor or illumination. The connectivity
supports another channel for visual information. If the goal of computational pho-
tography is hyperrealistic synthesis, the part about machine-readable coded capture
could be completely bypassed.

Imagine taking a photo in Times Square in New York city as a tourist. It is
debatable whether you should take that picture at all. There are thousands of
photos online, probably from the same place from which you plan to snap the
photo. Sascha Pohflepp built his “Blind Camera by mounting a mobile phone in
a black case to let you snap other people’s pictures. When you click the button
to take a picture, the mobile phone connects to the internet, searches for photos
from the same location with a similar time stamp and returns a picture to the
viewfinder display. In todays world, this brilliant idea can be expanded to grab
a photo by trawling a large photo sharing site, such as Flickr, to get a photo

3www.blinksandbuttons.net/index.html
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Figure 8.8: The Blind Camera has no traditional camera optics. When you take
a picture, the camera connects to the internet, searches for photos from the same
location with a similar time stamp, and returns a picture to the viewfinder display.

from roughly the same position (via GPS), same viewpoint (via compass), same
time of day and weather conditions (weather records). Photos shared in space-time
dimensions are certainly easy for architectural or natural landscapes. The challenge
is to insert scene elements seen only at-the-moment including your own friends and
family members. Recently Neel Joshi [297] used photos from family album as
image priors to enhance low-quality photos of family members. As long as the
album has high-quality images, one might get away with low-quality cameras for
casual photography. With a sufficiently large database of the preferred appearance
of family members and complete visual records of popular vacation sites, then
perhaps a consumer on a trip will need only a cute little black box with a big red
button!

8.4.4 Sheet-like Cameras

The dream of a flat thin (rigid) camera has many groups chasing an array of tech-
niques. Although miniature cameras such as those found in cell phones are now
commonplace, their resolution and light collection abilities compare poorly with
their full-sized counterparts due to diffraction-limited optics and small aperture
size. Several researchers have developed methods to aggregate many small cameras
into more powerful combinations:

The MONTAGE (Multiple Optical Non-Redundant Aperture Generalized Sen-
sors) program was sponsored by the Defense Advanced Research Projects Agency
(DARPA) with program managers Ravindra Athale and Dennis M. Healy. The
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origami lens exploits a unique reflective multiple-fold approach [402]. Light enters
the element through an outer annular aperture and is focused by a series of con-
centric zone reflectors to the image plane in the central area of the optic. The
40mm focal length annular aperture lens is compacted to fit within the 5mm thick
volume with a conventional three-megapixel CMOS sensor and the whole assembly
is integrated as a flat disk. This is similar to a Cassegrain telescope which exploits
additional folding of optical paths.

Another thin camera approach is based on compound lens design that involves
a planar array of miniature cameras. In theory, it is similar to a camera array.
A compact image-capturing system called TOMBO (an acronym for thin observa-
tion module by bound optics) has shown several interesting applications of the thin
optical configuration [Tanida 2001]. This form of array imaging employs specially
designed array of lenslets to capture an ensemble of images of a subject, enabling the
collection of significantly more information than possible with conventional single-
lens imaging systems. An integrated array imaging system, dubbed PERIODIC,
was recently developed to exploit different dimensions including sub-pixel displace-
ment, phase, polarization, neutral density, and wavelength [Plemmons 2007]. Each
camera has its own modified optical filter. Fisher information dictates theoreti-
cal upper bounds on the fidelity of reconstruction of high-resolution images from
low-resolution image sequences. In general, the recovery involves solving complex
ill-posed image registration and reconstruction problems.

8.4.5 Camera Ubiquity and Life Logs

Thad Starner and other cybernauts who began personally instrumenting them-
selves in the 1990s have experimented with always-on video cameras, and projects
at Microsoft Research and the MIT Media Lab have both explored gathering video
memories of every waking moment. So called smart dust sensors (extensively ex-
plored by DARPA projects) and other unstructured ubiquitous sensors might gather
views, sounds, and appearance from anywhere in a large city.

Two entirely fanciful designs (as proposed by Tumblin [333]) suggest alterna-
tive approaches to appearance capture and set a a potentially useful distant goal.
Suppose we could construct a flexible cloth-like material that holds microscopic,
interleaved video projectors and video cameras. As the micro-projectors emit hy-
perspectrally colorful patterns of light in all possible directions from all possible
points on the cloth (a flexible 4D light source), the interleaved micro-cameras would
make geometrically calibrated coordinated hyperspectral measurements in all pos-
sible directions from all possible points on the cloth (a flexible 4D camera). Wiping
the cloth over a surface would illuminate and photograph inside even the tiniest
crack or vent hole of the object, banishing occlusion from the data set; a quick wipe
would characterize any rigid object thoroughly.

Suppose we wish to capture the appearance of a soft object, without touching
it? Then perhaps a notebook-like device made of two plates hinged together would
help. Each panel would consist of interleaved cameras and projectors in a sheet-like
arrangement; simply placing it around the object would provide sufficient optical
coupling between the embedded 4D illuminators and 4D cameras to assess the
object thoroughly. What other configurations of sensors, lights, optics, processing
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Figure 8.9: The origami lens exploits a reflective multiple-fold approach. Light
enters the element through an outer annular aperture and is focused by a series of
concentric zone reflectors to the central area of the image plane. The 40mm focal
length annular aperture lens is compacted to fit within the 5mm thick volume with
a conventional three-megapixel CMOS sensor. The whole assembly is integrated as
a flat disk [402].

Figure 8.10: Multipespective Views. How can we build a camera to generalize the
perspective projection? (Courtesy: Jingyi Yu and Leonard McMillan)
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and displays would enable new forms of computational photography?

8.5 Conclusion

The film-like cage around us is gone. Released from 150 years of habits and con-
ventions from film-like photography, we cant help but be a little bewildered right
now, like a zoo-raised animal released into the wild. We dont yet see all of the
possibilities, and even our fantasies of the ideal forms of photographic equipment
cannot yet give us the complete and definitive answer for the best possible forms of
photography. Even the close-range cloth camera lacks the long-range abilities of a
top-quality telephoto lens, and diffraction limits preclude capturing the subtleties
of a majestic mountain-range scene at dusk, or the details in the pale moon near
the horizon. If the goal of photography is to capture, reproduce, and manipulate
a meaningful visual experience, then the camera cloth is not sufficient to capture
even the most rudimentary birthday party. The human experience and our per-
sonal viewpoint is missing. Ted Adelson suggested camera wallpaper or the balloon
camera, ubiquitous sensors that would enable us to compute arbitrary viewpoints
at arbitrary times.

While arbitrary viewpoints at arbitrary times might aid us in capturing that
party, they simply expand our choices, without offering any help on making those
choices. What makes these moments special? What parts of this video will become
keepsakes or evidence? How do we find what we care about in this flood of video?
Advanced cameras can supply us with visual experiences, but we need artificial-
intelligence-like software or human intervention to decide what to keep, to find what
matters most to humans.

This is an exciting time for exploration; every new direction may advance our
ability to capture visual experiences, to construct photo-based visual prosthetics,
to devise new and widely-available forms of capture, manipulation, and interaction
with what we see around us, or would like to see. We hope the new choices and
toolsets presented here will stoke your imagination as well, and entice you to seek
out wholly new paths to the as-yet unimagined photographic wonders still ahead
of us all.
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Chapter 9

Appendix

introductory material to the Appendix goes here

9.1 Image Gradients

Consider the image intensities as a two dimensional function I(x, y). The gradient
of image at each point is then defined as a 2D vector (Ix, Iy) whose components
are given by the derivatives in the horizontal and vertical directions respectively.
At each point (pixel), the length (magnitude) of the gradient vector corresponds to
the rate of change of intensities in that direction and the direction of the gradient
vector denotes the direction of the maximum intensity change.

Figure 9.1 shows a simple example of a bright circle on a dark background.
At each point of the circle boundary, the gradient points towards the normal at
that point, since that direction corresponds to maximum intensity change. The
magnitude of horizontal and vertical gradient components vary continuously across
the circle.

9.1.1 Gradient Domain Algorithms

Figure 9.2 depicts the typical flow of gradient domain algorithms. Image gradients
are obtained from a single image or set of images. These gradients are then ma-

I(x,y)

Ix>0, Iy=0

Ix=Iy

Ix

Iy

Gradient 
Vector

Figure 9.1: (Left) Intensity image. (Right) Gradient vectors at two points on the
circle boundary.
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nipulated in linear or non-linear fashion to result in an output gradient field. The
resultant gradient field is then integrated to obtain the final image.

Grad X

Grad Y

New Grad X

New Grad Y

2D 
Integration

Gradient 
Processing

A Common Pipeline

Figure 9.2: A common pipeline for gradient domain algorithms.

9.1.2 Pseudo Code for Removing Reflections

Inputs: Flash/No-flash image pair Output: Reflection removed image and reflection
layer

• Compute gradients from the given images

• For each pixel in no-flash image, project the gradient on to the image gradient
of flash image. Compute the difference of given gradient in no-flash image and
projected gradient.

• Integrate the two resulting gradient fields to obtain reflection removed image
and reflection layer.

9.1.3 Matlab Code for Image Reconstruction
from Given Gradient Field

Inputs: given gradient field P (horizontal gradients) and Q (vertical gradients)

Size: H by W

Output: Reconstructed image Z (H by W)

• Obtain Differentiation Matrices and Vectors
idx = [1:W-1]’; idy = [1:H-1]’;
Dx = sparse(idx,idx,-1,W,W) + sparse(idx+1,idx,1,W,W);
Dy = sparse(idy,idy,-1,H,H) + sparse(idy,idy+1,1,H,H);
D = [kron(Dx’,eye(H)) ; kron(eye(W),Dy)];
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• Vectorize gradients
g = [P(:);Q(:)];

• Poisson Solver
Z = reshape([0;D(:,2:end)\g],H,W);
Z = Z – min(Z(:));

9.1.4 Web Links

Software (Matlab codes): www.umiacs.umd.edu/∼aagrawal/
software.html, www.umiacs.umd.edu/∼aagrawal/iccv05/Agrawal
ICCV05MatlabCode.zip
Gradient Domain Course: www.umiacs.umd.edu/∼aagrawal/
ICCV2007Course/index.html

9.2 Bilateral Filter

In several image/graphics applications, edges preserving smoothing or robust filters
are required. Bilateral filter is an edge preserving filter whose weights depend on
spatial filter and a range filter. In contrast, Gaussian filtering of images solely
depends on spatial filter and thus smoothes out sharp edges/boundaries

The equation for Gaussian filtering is given by

GF [p] =
1

Wp

∑

q∈S
Gσs (‖ p− q ‖) I[q], (9.1)

where GF is the filtered image, I is the input image, S denotes a neighborhood
around pixel p and Gσs denotes a spatial Gaussian filter. Wp is a normalization
constant given by Wp =

∑
q∈S

Gσs (‖ p− q ‖).
The equation for bilateral filtering is given by

BF [p] =
1

Wp

∑

q∈S
Gσs (‖ p− q ‖)Gσr (‖ I[p]− I[q] ‖) I[q], (9.2)

where Gσr denotes a range filter and

Wp =
∑

q∈S
Gσs (‖ p− q ‖)Gσr (‖ I[p]− I[q] ‖) .

9.2.1 Web links

people/csail.mit.edu/sparis/bf course

9.3 Graph Cuts

Graph Cut is a discrete optimization technique for efficiently minimizing energy
functions. The technique is widely used in image segmentation, multiview recon-
struction, stereo algorithms and for solving discrete labeling problems.
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Figure 9.3: Demonstrating the basic concept of Gaussian filter (top) versus bilateral
filter (bottom). The bilateral filter at every pixel depends on both the spatial filter
and the range filter. At image discontinuities, the filtered output at pixel p is
obtained from the same side of discontinuity.
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An image segmentation problem is converted into a graph partition problem as
follows. A pixel is a graph node and a link between neighboring pixels is an edge
connecting two nodes. The pixel similarity is the edge weight. In the simplest case,
pixel similarity is difference between the two pixel intensities. In graph partition,
our goal is to find the minimum cost cut where the cost is the sum of weights of
removed edges. A cut is represented by a set of edges whose removal makes a graph
disconnected.

Figure 9.4: Segmentation as a graph cut problem. Graph is created by assigning
pixel similarity weight wij between pixel pairs i and j. The minimum cost cut,
shown in blue, partitions the graph i.e. segments the image by labeling pixels as
belonging to one group.

For computational photography applications, a common application is as fol-
lows: Given a set of images, we wish to obtain a new image which combines relevant
and useful information from all of them. This can be solved using graph cuts by
treating the given set of images as different labels. In the final output, each pixel
is thus assigned a label from this set.

• Define a cost function per pixel for assigning a particular label to that pixel

• Define a smoothness cost between pixels to have same labels.

• Minimize the total cost function over all image pixels using graph cut tech-
nique and obtain the labels.

• Generate the final output by choosing pixels from given set of images accord-
ing to the labels.
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Labeling Problem by 

Energy Minimization 
Binary Labels 

Min-Cut/Max 

flow problem

Global Optimization 

in Polynomial Time

Figure 9.5: Labeling problems can be efficiently solved using graph cuts which
provide global optimization in polynomial time.

Matlab Code for graph cut optimization: www.csd.uwo.ca/∼olga/code.html
Web resources: www.cs.cornell.edu/∼rdz/graphcuts.html
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