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Preface

Spatial Augmented Reality is a rapidly emerging field which concerns every-
one working in digital art and media who uses any aspects of augmented
reality and is interested in cutting-edge technology of display technologies
and the impact of computer graphics. We believe that a rich pallet of dif-
ferent display technologies, mobile and non-mobile, must be considered and
adapted to fit a given application so that one can choose the most efficient
technology. While this broader view is common in the very established
area of virtual reality, it is becoming more accepted in augmented reality
which has been dominated by research involving mobile devices.

This book reflects our research efforts over several years and the material
has been refined in several courses that we taught at the invitation of
Eurographics and ACM SIGGRAPH.

Who Should Read This Book

In order for a broad spectrum of readers—system designers, programmers,
artists, etc— to profit from the book, we require no particular programming
experience or mathematical background. However, a general knowledge of
basic computer graphics techniques, 3D tools, and optics will be useful.

The reader will learn about techniques involving both hardware and
software to implement spatial augmented reality installations. Many Cg
and OpenGL code fragments, together with algorithms, formulas, drawings,
and photographs will guide the interested readers who want to experiment
with their own spatial augmented reality installations.

By including a number of exemplary displays examples from different
environments, such as museums, edutainment settings, research projects,
and industrial settings, we want to stimulate our readers to imagine novel

xi
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xii Preface

AR installations and to implement them. Supplementary material can be
found at http://www.spatialar.com/.

About the Cover

The images at the top of the front cover show a rainbow hologram of a
dinosaur (Deinonychus) skull (found in North America). It has been aug-
mented with reconstructed soft tissue and artificial shading and occlusion
effects. The soft tissue data, provided by Lawrence M. Witmer of Ohio
University, were rendered autostereoscopically. A replica of the skull was
holographed by Tim Frieb at the Holowood holographic studio in Bamberg,
Germany. The hologram was reconstructed by projected digital light that
could be controlled and synchronized to the rendered graphics. This en-
abled a seamless integration of interactive graphical elements into optical
holograms.

The image at the bottom show an example of Shader Lamps: an aug-
mentation of a white wooden model of the Taj Mahal with two projec-
tors. The wooden model was built by Linda Welch, George Spindler and
Marty Spindler in the late 1970s. In 1999, at the University of North Car-
olina, Greg Welch spray painted the wooden model white and Kok-Lim
Low scanned it with a robotic arm to create a 3D model. The wooden
model is shown illuminated with images rendered with real time animation
of a sunrise.

The art work on the back cover was created by Matthias Hanzlik. The
sketches show early concepts of SAR prototypes. They have all been real-
ized and are described in the book.
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1
A Brief Introduction to

Augmented Reality

Like Virtual Reality (VR), Augmented Reality (AR) is becoming an emerg-
ing edutainment platform for museums. Many artists have started using
this technology in semi-permanent exhibitions. Industrial use of augmented
reality is also on the rise. Some of these efforts are, however, limited to us-
ing off-the-shelf head-worn displays. New, application-specific alternative
display approaches pave the way towards flexibility, higher efficiency, and
new applications for augmented reality in many non-mobile application
domains. Novel approaches have taken augmented reality beyond tradi-
tional eye-worn or hand-held displays, enabling new application areas for
museums, edutainment, research, industry, and the art community. This
book discusses spatial augmented reality (SAR) approaches that exploit
large optical elements and video-projectors, as well as interactive render-
ing algorithms, calibration techniques, and display examples. It provides a
comprehensive overview with detailed mathematics equations and formu-
las, code fragments, and implementation instructions that enable interested
readers to realize spatial AR displays by themselves.

This chapter will give a brief and general introduction into augmented
reality and its current research challenges. It also outlines the remaining
chapters of the book.

1.1 What is Augmented Reality

The terms virtual reality and cyberspace have become very popular outside
the research community within the last two decades. Science fiction movies,
such as Star Trek, have not only brought this concept to the public, but

1
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2 1. A Brief Introduction to Augmented Reality

have also influenced the research community more than they are willing to
admit. Most of us associate these terms with the technological possibility
to dive into a completely synthetic, computer-generated world—sometimes
referred to as a virtual environment . In a virtual environment our senses,
such as vision, hearing, haptics, smell, etc., are controlled by a computer
while our actions influence the produced stimuli. Star Trek ’s Holodeck is
probably one of the most popular examples. Although some bits and pieces
of the Holodeck have been realized today, most of it is still science fiction.

So what is augmented reality then? As is the case for virtual reality,
several formal definitions and classifications for augmented reality exist
(e.g., [109, 110]). Some define AR as a special case of VR; others argue
that AR is a more general concept and see VR as a special case of AR.
We do not want to make a formal definition here, but rather leave it to
the reader to philosophize on their own. The fact is that in contrast to
traditional VR, in AR the real environment is not completely suppressed;
instead it plays a dominant role. Rather than immersing a person into a
completely synthetic world, AR attempts to embed synthetic supplements
into the real environment (or into a live video of the real environment).
This leads to a fundamental problem: a real environment is much more
difficult to control than a completely synthetic one. Figure 1.1 shows some
examples of augmented reality applications.

As stated previously, augmented reality means to integrate synthetic in-
formation into the real environment. With this statement in mind, would
a TV screen playing a cartoon movie, or a radio playing music, then be
an AR display? Most of us would say no—but why not? Obviously, there
is more to it. The augmented information has to have a much stronger
link to the real environment. This link is mostly a spatial relation between
the augmentations and the real environment. We call this link registra-
tion. R2-D2’s spatial projection of Princess Leia in Star Wars would be
a popular science fiction example for augmented reality. Some technolog-
ical approaches that mimic a holographic-like spatial projection, like the
Holodeck, do exist today. But once again, the technical implementation as
shown in Star Wars still remains a Hollywood illusion.

Some say that Ivan Sutherland established the theoretical foundations
of virtual reality in 1965, describing what in his opinion would be the
ultimate display [182]:

The ultimate display would, of course, be a room within which
the computer can control the existence of matter. A chair dis-
played in such a room would be good enough to sit in. Hand-
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1.1. What is Augmented Reality 3

(a) (b)

(c) (d)

Figure 1.1. Example of augmented reality applications. The glasses, mustache,
dragons, and fighter figure are synthetic: (a) and (b) augmenting a video of the
real environment; (c) and (d) augmenting the real environment optically. (Im-
ages: (a) courtesy of Vincent Lepetit, EPFL [87]; (b) courtesy of Simon Gibson
[55], Advanced Interfaces Group c© University of Manchester 2005; (c) and (d)
prototypes implemented by the Barhaus-University Weimar.)

cuffs displayed in such a room would be confining, and a bullet
displayed in such a room would be fatal. With appropriate
programming, such a display could literally be the Wonderland
into which Alice walked.

However, technical virtual reality display solutions were proposed much
earlier. In the late 1950s, for instance, a young cinematographer named
Mort Heilig invented the Sensorama simulator, which was a one-person
demo unit that combined 3D movies, stereo sound, mechanical vibrations,
fan-blown air, and aromas. Stereoscopy even dates back to 1832 when
Charles Wheatstone invented the stereoscopic viewer .

Then why did Sutherland’s suggestions lay the foundation for virtual
reality? In contrast to existing systems, he stressed that the user of such an
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4 1. A Brief Introduction to Augmented Reality

ultimate display should be able to interact with the virtual environment.
This led him to the development of the first functioning Head-Mounted
Display (HMD) [183], which was also the birth of augmented reality. He
used half-silvered mirrors as optical combiners that allowed the user to
see both the computer-generated images reflected from cathode ray tubes
(CRTs) and objects in the room, simultaneously. In addition, he used
mechanical and ultrasonic head position sensors to measure the position of
the user’s head. This ensured a correct registration of the real environment
and the graphical overlays.

The interested reader is referred to several surveys [4, 5] and Web sites
[3, 193] of augmented reality projects and achievements. Section 1.2 gives
a brief overview of today’s technical challenges for augmented reality. It is
beyond the scope of this book to discuss these challenges in great detail.

1.2 Today’s Challenges

As mentioned previously, a correct and consistent registration between syn-
thetic augmentations (usually three-dimensional graphical elements) and
the real environment is one of the most important tasks for augmented
reality. For example, to achieve this for a moving user requires the system
to continuously determine the user’s position within the environment.

Thus the tracking and registration problem is one of the most funda-
mental challenges in AR research today. The precise, fast, and robust
tracking of the observer, as well as the real and virtual objects within the
environment, is critical for convincing AR applications. In general, we can
differentiate between outside-in and inside-out tracking if absolute track-
ing within a global coordinate system has to be achieved. The first type,
outside-in, refers to systems that apply fixed sensors within the environ-
ment that track emitters on moving targets. The second type, inside-out,
uses sensors that are attached to moving targets. These sensors are able to
determine their positions relative to fixed mounted emitters in the environ-
ment. Usually these two tracking types are employed to classify camera-
based approaches only—but they are well suited to describe other tracking
technologies as well.

After mechanical and electromagnetic tracking , optical tracking became
very popular. While infrared solutions can achieve a high precision and
a high tracking speed, marker-based tracking , using conventional cameras,
represent a low-cost option. Tracking solutions that do not require artificial
markers, called markerless tracking , remains the most challenging, and at
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1.2. Today’s Challenges 5

the same time, the most promising tracking solution for future augmented
reality applications. Figure 1.1(a) shows an example of a markerless face
tracker.

Much research effort is spent to improve performance, precision, robust-
ness, and affordability of tracking systems. High-quality tracking within
large environments, such as the outdoors, is still very difficult to achieve
even with today’s technology, such as a Global Positioning System (GPS) in
combination with relative measuring devices like gyroscopes and accelerom-
eters. A general survey on different tracking technology [164] can be used
for additional reading.

Besides tracking, display technology is another basic building block for
augmented reality. As mentioned previously, head-mounted displays are
the dominant display technology for AR applications today. However, they
still suffer from optical (e.g., limited field of view and fixed focus), technical
(e.g., limited resolution and unstable image registration relative to eyes)
and human-factor (e.g., weight and size) limitations. The reason for this
dominance might be the long time unique possibility of HMDs to support
mobile AR applications. The increasing technological capabilities of cell
phones and Personal Digital Assistants (PDAs), however, clear the way to
more promising display platforms in the near future. In addition, not all AR
applications require mobility. In these cases, spatial display configurations
are much more efficient.

The third basic element for augmented reality is real-time rendering .
Since AR mainly concentrates on superimposing the real environment with
graphical elements, fast and realistic rendering methods play an impor-
tant role. An ultimate goal could be to integrate graphical objects into
the real environment in such a way that the observer can no longer distin-
guish between real and virtual. Note that not all AR applications really
make this requirement. But if so, then besides perfect tracking and display
technologies, photo-realistic real-time rendering would be another requi-
site. Graphical objects, even if rendered in a high visual quality, would
have to be integrated into the real environment in a consistent way. For
instance, they have to follow a consistent occlusion, shadow-casting , and
inter-reflection behavior, as Figure 1.1 demonstrates.

Realistic, non-real-time capable global illumination techniques, such as
ray-tracing or radiosity , can be used if no interactive frame rates are re-
quired, . But for interactive applications, faster image generation methods
have to be used to avoid a large system lag and a resultant misregistration
after fast user motions. The improving hardware acceleration of today’s
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6 1. A Brief Introduction to Augmented Reality

Figure 1.2. Building blocks for augmented reality.

graphics cards make a lot possible, as is shown throughout the following
chapters. The ongoing paradigm shift of the computer graphics community
from the old fixed function rendering pipelines to programmable pipelines
strongly influences the rendering capabilities of AR applications. Exam-
ples of consistent rendering techniques for augmented reality have been
discussed in different scientific publications and in the course of several
conference tutorials [176, 17].

Figure 1.2 illustrates some general building blocks for augmented reality.
As we can see, the previously discussed challenges (tracking and registra-
tion, display technology and rendering) represent fundamental components.
On top of this base level, more advanced modules can be found: interaction
devices and techniques, presentation, and authoring . If we take a compar-
ative look at virtual reality again, we can see that the base technology of
today’s VR is much more mature. In contrast to VR where a large portion
of research is now being shifted to the second layer, the AR community
still has to tackle substantial problems on the base level.

Ideas and early implementations of presentation techniques, author-
ing tools, and interaction devices/techniques for AR applications are just
emerging. Some of them are derived from the existing counterparts in re-
lated areas such as virtual reality, multimedia, or digital storytelling. Oth-
ers are new and adapted more to the problem domain of augmented reality.
However, it is yet too early to spot matured concepts and philosophies at
this level.

The third layer, the application, is finally the interface to the user. Us-
ing augmented reality, our overall goal is to implement applications that are
tools which allow us to solve problems more effectively. Consequently, aug-
mented reality is no more than a human-computer interface which has the
potential to be more efficient for some applications than others. Although
many ideas for possible applications of this interface exist, not many have
actually become applicable today. One reason for this is the immature



�

�

�

�

�

�

�

�

1.3. Spatial Augmented Reality 7

base layer. With a stable core technology, augmented reality does have the
potential to address many application areas more effectively. Some virtual
reality applications, for instance, have already managed to become real
tools outside the research community. It is also clear, that broader base
levels will lead to a broader application spectrum.

Some software frameworks (e.g., [165]) are being realized that comprise
several of these parts. Good software engineering will be important for
the efficient handling of an increasing pallet of new tools and techniques.
Finally, user studies have to be carried out to provide measures of how
effective augmented reality really is.

1.3 Spatial Augmented Reality

The roots of virtual reality and augmented reality are not that far apart.
After almost forty years of research and development, however, they do not
follow the same technological paths anymore. In the early 1990s, projection-
based surround screen displays became popular. One of the most well-
known is the CAVE [35]—a multi-sided, immersive projection room. But
there are other examples of semi-immersive wall-like and table-like displays
or immersive cylindrical and spherical spatial displays. In general, spatial
displays detach the display technology from the user and integrate it into
the environment. Compared to head- or body-attached displays, spatial
displays offer many advantages and solve several problems that are related
to visual quality (e.g., resolution, field-of-view, focus, etc.), technical issues
(e.g., tracking, lighting, etc.), and human factors (e.g., cumbersomeness,
etc.), but they are limited to non-mobile applications..

The virtual reality community has oriented themselves away from head-
mounted displays and towards spatial displays. Today, a large variety of
spatial displays make up an estimated 90% of all VR displays. Head-
mounted displays, however, are still the dominant displays for augmented
reality. The reason for this might lie in the strong focus of mobile AR
applications—requiring mobile displays.

Video see-through and optical see-through head-mounted displays have
been the traditional output technologies for augmented reality applications
for almost forty years. However, they still suffer from several technological
and ergonomic drawbacks which prevent them from being used effectively
in many application areas. In an all-purpose context, HMDs are used in
many non-mobile AR applications. This affects the efficiency of these ap-
plications and does not currently allow them to expand beyond laboratory
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8 1. A Brief Introduction to Augmented Reality

demonstrations. In the future, other mobile devices, such as cell phones or
PDAs might replace HMDs in many mobile areas. Head-mounted displays
will also be enhanced by future technology, leading to a variety of new and
different possibilities for mobile AR.

Furthermore, we believe that for non-mobile applications a rich pallet of
different spatial display configurations can be as beneficial for augmented
reality, as they have been for virtual reality. Novel approaches have taken
augmented reality beyond traditional eye-worn or hand-held displays en-
abling additional application areas. New display paradigms exploit large
spatially-aligned optical elements, such as mirror beam combiners, trans-
parent screens, or holograms, as well as video projectors. Thus, we call
this technological variation spatial augmented reality (SAR). In many sit-
uations, SAR displays are able to overcome technological and ergonomic
limitations of conventional AR systems. Due to the decrease in cost and
availability of projection technology, personal computers, and graphics
hardware, there has been a considerable interest in exploiting SAR sys-
tems in universities, research laboratories, museums, industry, and the art
community. Parallels to the development of virtual environments from
head-attached displays to spatial projection screens can be clearly drawn.
We believe that an analog evolution of augmented reality has the potential
to yield a similar successful factor in many application domains. Thereby,
SAR and body-attached AR are not competitive, but complementary.

1.4 Outline of the Book

This book provides survey and implementation details of modern tech-
niques for spatial augmented reality systems and aims to enable the inter-
ested reader to realize such systems on his or her own. This is supported
by more than 200 illustrations and many concrete code fragments.

After laying foundations in optics, interactive rendering, and perspec-
tive geometry, we discuss conventional mobile AR displays and present
spatial augmented reality approaches that are overcoming some of their
limitations. We present state-of-the-art concepts, details about hardware
and software implementations, and current areas of application in domains
such as museums, edutainment, research, and industrial areas. We draw
parallels between display techniques used for virtual reality and augmented
reality and stimulate thinking about the alternative approaches for AR.

One potential goal of AR is to create a high level of consistency be-
tween real and virtual environments. This book describes techniques for
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the optical combination of virtual and real environments using mirror beam
combiners, transparent screens, and holograms. It presents projector-
based augmentation of geometrically complex and textured display sur-
faces, which along with optical combiners achieve consistent illumination
and occlusion effects. We present many spatial display examples, such as
Shader Lamps, Virtual Showcases, Extended Virtual Tables, interactive
holograms, apparent motion, Augmented Paintings, and Smart Projectors.

Finally, we discuss the current problems, future possibilities, and en-
abling technologies of spatial augmented reality.

Chapter 2 lays the foundation for the topics discussed in this book. It
starts with a discussion on light. The atomic view on light will give some
hints on how it is generated—knowing about its properties allows us to
realize how it travels through space.

From electromagnetic waves, a more geometric view on light can be
abstracted. This is beneficial for describing how simple optical elements,
such as mirrors and lenses, work. This chapter will describe how images
are formed by bundling real and virtual light rays in a single spatial spot
or area in three-dimensional space. Furthermore, it is explained that the
structure and functionality of the human eye (as the final destination of
visible light produced by a display) is as complex as an optical system
itself, and that the binocular interplay of two eyes leads to visual depth
perception. The depth perception can be tricked by viewing flat stereo
images on a stereoscopic display. The principles of stereoscopic vision and
presentation, as well as a classification of stereoscopic and autostereoscopic
displays, will be discussed in this chapter as well. We will illustrate how
images that are presented on stereoscopic displays are computed. Basic
rendering concepts, such as components of traditional fixed function ren-
dering pipelines and techniques like multi-pass rendering, but also modern
programmable rendering pipelines will be described.

Chapter 3 classifies current augmented reality displays into head-
attached, hand-held, and spatial displays. It gives examples of particular
displays that are representative for each class and discusses their advan-
tages and disadvantages. Retinal displays, video see-through and optical
see-through head-mounted displays, and head-mounted projectors are pre-
sented first in the context of head-attached displays. For hand-held dis-
plays, personal digital assistants, cell phones, hand-held projectors, and
several optical see-through variations are outlined. Finally, spatial AR dis-
plays are presented. First examples include screen-based video see-through
displays, spatial optical see-through displays, and projector-based spatial
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displays. The following chapters will explain how to realize such displays,
both from a hardware and software point of view.

Chapter 4 reviews the fundamental geometric concepts in using a pro-
jector for displaying images. A projector can be treated as a dual of a
camera. The geometric relationship between the two-dimensional pixels in
the projector frame buffer and the three-dimensional points in the world
illuminated by those pixels is described using perspective projection. The
chapter introduces a general framework to express the link between geo-
metric components involved in a display system. The framework leads to a
simpler rendering technique and a better understanding of the calibration
goals. We describe the procedure to calibrate projectors and render images
for planar as well non-planar displays along with issues in creating seamless
images using multiple projectors.

Chapter 5 expands on the geometric framework introduced in the pre-
vious chapter and describes the concrete issues in calibration and rendering
for various types of display surfaces. The techniques use parametric as well
as non-parametric approaches. For planar surface, a procedure based on
homography transformation is effective. For arbitrary non-planar displays,
we outline a two-pass scheme, and for curved displays, we describe a scheme
based on quadric image transfer. Finally, the chapter discusses the specific
projector-based augmentation problem where images are projected not on
display screens, but directly onto real-world objects.

Chapter 6 explains spatial optical see-through displays in detail. An
essential component of an optical see-through display is the optical com-
biner—an optical element that mixes the light emitted by the illuminated
real environment with the light produced with an image source that displays
the rendered graphics. Creating graphical overlays with spatial optical see-
through displays is similar to rendering images for spatial projection screens
for some optical combiners. For others, however, it is more complex and
requires additional steps before the rendered graphics are displayed and op-
tically combined. While monitors, diffuse projection screens, or video pro-
jectors usually serve as light emitting image sources, two different types of
optical combiners are normally used for such displays: transparent screens
and half-silvered mirror beam combiners. Rendering techniques that sup-
port creating correct graphical overlays with both types of optical com-
biners and with different images sources will be discussed in this chapter.
In particular, Chapter 6 will discuss rendering techniques for spatial opti-
cal see-through displays which apply transparent screens, as well as planar
and curved mirror beam combiners, in many different configurations. We
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describe how optical effects, such as reflection and refraction, can be neu-
tralized by hardware-accelerated rendering techniques and present building
blocks that can easily be integrated into an existing software framework.

Chapter 7 outlines interactive rendering techniques for projector-based
illumination and augmentation. It starts with an overview of methods that
allow augmenting artificial surface appearance, such as shading, shadows,
and highlights, of geometrically non-trivial objects. Calibrated projectors
are used to create these effects on physical objects with uniformly white
surface color. We then describe how to use calibrated projectors in combi-
nation with optical see-through configurations (described in Chapter 6) for
the illumination of arbitrary real objects. This allows digitization of the il-
lumination of the real environment and synchronization with the rendering
process that generates the graphical overlays.

The final goal is to create consistent occlusion effects between real and
virtual objects in any situation and to support single or multiple observers.
The surface appearance of real objects with non-trivial surface color and
texture can also be modified with a projector-based illumination. Such
an approach, for instance, allows the creation of consistent global or local
lighting situations between real and virtual objects. Appropriate rendering
techniques are also described in this chapter. A projector-based illumina-
tion also makes it possible to integrate graphical augmentations into optical
holograms. In this case, variations of the algorithms explained previously
let us replace a physical environment by a high-quality optical hologram.
Finally, this chapter presents real-time color-correction algorithms that,
in combination with an appropriate geometric correction, allow an aug-
mentation of arbitrary (colored/textured) three-dimensional surfaces with
computer generated graphics.

Chapter 8 brings together the previous, more technical chapters in an
application-oriented approach and describes several existing spatial AR
display configurations. It first outlines examples that utilize the projector-
based augmentation concept in both a small desktop approach (e.g., Shader
Lamps) and a large immersive configuration (e.g., the Being There project).
In addition, an interactive extension, called iLamps, that uses hand-held
projectors is described. Furthermore, several spatial optical see-through
variations that support single or multiple users, such as the Extended Vir-
tual Table and the Virtual Showcase are explained. It is shown how they
can be combined with projector-based illumination techniques to present
real and virtual environments consistently. A scientific workstation, the
HoloStation, is presented which combines optical hologram records of fossils
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with interactive computer simulations. Finally, two configurations (Aug-
mented Paintings and Smart Projectors) are presented. They use real-
time color correction and geometric warping to augment artistic paintings
with multimedia presentations, as well as to make projector-based home-
entertainment possible without artificial canvases.

Potential application areas for the display configurations described in
this chapter are industrial design and visualization (e.g., Shader Lamps, iL-
amps, Extended Virtual Table), scientific simulations (e.g., HoloStation),
inertial design and architecture (e.g., Being There), digital storytelling and
next-generation edutainment tools for museums (e.g., Virtual Showcase
and Augmented Paintings), and home-entertainment (e.g., Smart Projec-
tor). However, the interested reader can easily derive further application
domains, such as those in an artistic context.

Another goal of this chapter is to show that spatial augmented reality
display configurations can be applied successfully and efficiently outside
research laboratories. The Virtual Showcase, for instance, has been pre-
sented to more than 120,000 visitors at more than 11 exhibitions in mu-
seums, trade shows, and conferences. Unattended running times of four
months and more are an indicator for the fact that it is possible to make
the technology (soft- and hardware) robust enough to be used by museums
and other public places.

Chapter 9 postulates future directions in spatial augmented reality.
Many new opportunities are based on emerging hardware components,
and they are briefly reviewed. The chapter discusses innovative optics
for displays, new materials such as light emitting polymers, promising de-
velopments in sensor networks including those using photosensors, and the
excitement surrounding radio frequency identification tags. These technol-
ogy developments will not only open new possibilities for SAR, but also for
other AR display concepts, such as hand-held and head-attached displays.
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2
Fundamentals:

From Photons to Pixels

This chapter lays the foundation for the topics discussed in this book. It
will not describe all aspects in detail but will introduce them on a level
that is sufficient for understanding the material in the following chapters.
We strongly encourage the reader to consult the secondary literature.

We start our journey at the most basic element that is relevant for
all display technology—light. The atomic view on light will give us some
hints on how it is generated. Knowing about its properties allows us to
understand how it travels through space.

Starting from electromagnetic waves, we abstract our view on light to a
more geometric concept that is beneficial for describing how simple optical
elements, such as mirrors and lenses, work. We see how images are formed
by bundling real and virtual light rays in a single spatial spot or area in
three-dimensional space.

In addition, we learn that the structure and functionality of the human
eye (as the final destination of visible light produced by a display) is as
complex as an optical system itself, and that the binocular interplay of two
eyes leads to visual depth perception.

Depth perception, however, can be tricked by viewing flat stereo im-
ages on a stereoscopic display. The principles of stereoscopic vision and
presentation, as well as a classification of stereoscopic and autostereoscopic
displays, will be discussed.

From stereoscopic displays, we will see how images presented on these
displays are computed. Basic rendering concepts, such as components of
traditional fixed function rendering pipelines and techniques like multi-pass
rendering will be described. Modern programmable rendering pipelines will
be discussed as well.

13
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14 2. Fundamentals: From Photons to Pixels

(a) (b) (c)

Figure 2.1. Planetary model of atom: (a) electron orbiting the nucleus in a
non-excited state; (b) excited electron after quantum leap; (c) electron releasing
a photon while dropping back into a non-excited state.

2.1 Light in a Nutshell

To explain what light is, we want to start at a very low level—at an atomic
level. Illustrated by the well-known planetary model by Niels Bohr (1913),
atoms consist of a nucleus and electrons that orbit the nucleus (Figure 2.1).
They are held in the orbit by an electrical force. The nucleus itself consists
of protons (having a positive electrical charge) and neutrons (having no
electrical charge). The electrons have a negative electrical charge and can
move from atom to atom. This flow is called electricity.

The level at which an electron orbits the nucleus (i.e., the distance of the
electron to the nucleus) is called its energy state. By default, an electron
exists at the lowest energy state—that is the orbit closest to the nucleus. If
excited by external energy (e.g., heat) the electron can move from lower to
higher energy states (i.e., further away from the nucleus). This shift from
a lower to a higher energy state is called quantum leap. Since all energy is
always preserved (it might be converted, but it is never lost), the electrons
have to release energy when they drop back to lower energy states. They
do so by releasing packages of energy. Albert Einstein called these packages
photons .

Photons have a frequency that relates to the amount of energy they
carry which, in turn, relates to the size of the drop from the higher state
to the lower one. They behave like waves—they travel in waves with a
specific phase, frequency, and amplitude, but they have no mass. These
electromagnetic waves travel in a range of frequencies called electromag-
netic (EM) spectrum, which was described by J. C. Maxwell (1864–1873).
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Figure 2.2. EM spectrum and spectrum of visible light. (See Plate I.)

Figure 2.3. Interference of light waves: (a) amplification with zero phase shift,
(b) cancellation with π phase shift.

A small part of this spectrum is the EM radiation that can be perceived
as visible light .

Since light behaves like waves, it shares many properties of other waves.
Thomas Young showed in the early 1800s that light waves can interfere with
each other.

Depending on their phase, frequency, and amplitude, multiple light
waves can amplify or cancel each other out (Figure 2.3). Light that consists
of only one wavelength is called monochromatic light . Light waves that are
in phase in both time and space are called coherent . Monochromaticity
and low divergence are two properties of coherent light.

If a photon passes by an excited electron, the electron will release a
photon with the same properties. This effect—called stimulated emission—
was predicted by Einstein and is used today to produce coherent laser
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Figure 2.4. Polarization of light: only light waves with a specific orientation
pass through the filter.

light. In general, “normal” light consists of an arbitrary superimposition of
multiple incoherent light waves that create a complex interference pattern.

Light travels in a composition of waves with a variety of different orien-
tations. It can be polarized by selecting waves with a specific orientation.
The filtered portion is called polarized light . Augustine Fresnel explained
this phenomenon in the 19th century.

Depending on the material properties, light can be reflected , refracted ,
scattered , or light!absorbed by matter. If reflected, light is bounced off a
surface. Imperfections on the reflecting surface causes the light to be scat-
tered (diffused) in different directions. Light can also be scattered when it
collides with small particles (like molecules). The amount of scattering de-
pends on the size of the particle with respect to the wavelength of the light.
If the particle (e.g., a dust particle) is larger than the wavelength, light will
be reflected. If the particle (e.g., a gas molecule) is smaller, then light will
be absorbed. Such molecules will then radiate light at the frequency of the
absorbed light in different directions. John Rayleigh explained this effect
in the 1870s, thus this process is called Rayleigh scattering . Light can also
be absorbed and its energy converted (e.g., into heat). Refraction occurs
when light travels across the boundaries of two mediums. In a vacuum,
light travels at 299.792 km/s (the speed of light). If travelling through a
denser medium, it is slowed down which causes it to alter its direction.
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2.2. Geometric Optics 17

The amount of refraction also depends on the wavelength of the light—as
described by Isaac Newton who showed that white light splits into different
angles depending on its wavelength.

2.2 Geometric Optics

In general, optics refers to all appearances that are perceived by the human
visual system. The physical reason for these appearances, the light, was
analyzed at an early time, and the basic principles of geometric optics
and wave optics were outlined in the 19th century. In geometric optics,
the light is represented by individual rays that, in ordinary media, are
represented by straight lines. An ordinary media is homogeneous (the same
at all points) and isotropic (the same for all directions). One of the basic
hypotheses of geometric optics, the principle of P. de Fermat (1657), allows
the representation of light rays within isotropic media that are independent
of the light’s wave nature. Today this hypothesis is known as the principle
of the optical path length, and it states that the time that light travels on
the path between two points is minimal.

2.2.1 Snell’s Laws

The following laws were discovered by W. Snellius in 1621. They can
also be derived from Fermat’s principle. They describe the reflection and
refraction behavior of straight light rays at the interfacing surface between
two homogeneous media.

Figure 2.5 illustrates the interfacing surface that separates two homo-
geneous media with the two indices of refraction η1 and η2. A light ray
r intersects the surface at i (with the normal vector n) and is refracted
into r′.

The vectorized form of Snell’s’ law is given by η2r
′ − η1r = an, where

r, r′ and n are normalized and a is real.

Laws of refraction. We can derive the following laws of refraction from the
vectorized form of Snell’s law.

Theorem 2.2.1 (First refraction theorem.) Since r′ = (η1r+an)/η2,
the refracted ray r′ lies on the plane that is spanned by r and n. This plane
is called the plane of incidence.
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Theorem 2.2.2 (Second refraction theorem.) If we compute the cross-
product with n and the vectorized form of Snell’s law, we obtain η2(n×r′) =
η1(n× r). If we define the angle of incidence αi and the angle of refraction
αt, we can substitute the cross-products and obtain Snell’s law of refraction:
η1 sin αi = η2 sin αt.

Laws of reflection. Since the vector relation applies in general, we can
assume r and r′ to be located within the same medium with a refraction
index η1. Consequently, r is reflected at i into r′ (Figure 2.6).

We can derive the following two theorems of reflection from the vector-
ized form of Snell’s law.

Theorem 2.2.3 (First reflection theorem.) Since r′ = r + (a/η1)n,
the reflected ray r′ lies on the plane of incidence.

Theorem 2.2.4 (Second reflection theorem.) If we compute the cross-
product with n and the vectorized form of Snell’s law, we obtain n × r′ =
n × r. If we reassign αt to be the angle of reflection, we can substitute
the cross-products and obtain Snell’s law of reflection: − sin αt = sinαi or
−αt = αi for −π/2 ≤ αi ≤ π/2 and −π/2 ≤ αt ≤ π/2.

Note that the law of reflection is formally based on the assumption that
η2 = −η1.

Critical angle and total internal reflection. Since −1 ≤ sin αi ≤ 1, we can
derive −(η1/η2) ≤ sinαt ≤ (η1/η2) from the second refraction theorem. It
therefore holds that −(π/2) ≤ αi ≤ (π/2) and −γ ≤ αt ≤ γ, whereby γ is
called the critical angle and is defined by γ = sin−1(η1/η2).

Figure 2.5. Snell’s law of refraction.
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Figure 2.6. Snell’s law of reflection.

If αi becomes sufficiently large when entering an optically sparser
medium, then αt exceeds 90◦ and r is reflected from the interfacing surface,
rather than being transmitted. This phenomenon is known as total internal
reflection.

We can differentiate between two cases:

1. r enters an optically denser medium (η1 < η2): r is refracted for all
angles of incidence αi. If αi = π/2, then αt = sin−1(η1/η2) = γ.

2. r enters an optically sparser medium (η1 > η2): If αi < γ =
sin−1(η1/η2), then r is refracted. Otherwise, r is reflected, due to
total internal reflection.

2.2.2 The Formation of Point Images

Optical instruments can form images from a number of point-like light
sources (so-called objects). Light rays that are emitted from an object can
be reflected and refracted within the optical instrument and are finally per-
ceived by a detector (e.g., the human eye or a photographic film). If all
light rays that are emitted from the same object po travel through the op-
tical system which bundles them within the same image pi, then the points
po and pi are called a stigmatic pair . Consequently, this image-formation
property is called stigmatism, and the optical system that supports stig-
matism between all object-image pairs is called an absolute optical system.

The basic precondition for stigmatism can also be derived from Fermat’s
principle. It states that the optical path length for every light ray travelling
from po to pi is constant:

L(po → pi) = η1(ix − po) + L(ix → jx) + η2(pi − jx) = const
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(a) (b) (c)

Figure 2.7. Stigmatic image formation. (a) real object, real image, (b) real
object, virtual image, and (c) virtual object, real image.

where η1 and η2 are the refraction indices at the entrance and the exit of
the optical system.

If points (objects or images) are formed by a direct intersection of light
rays, then these points are called real. Figure 2.7(a) illustrates the real
object po whose emitted light rays pass through an optical system (the
filled square) and intersect at the real image pi.

If light rays do not directly intersect at a point (e.g., if they diverge
after exiting the optical instrument), they can form virtual points. Since
human observers are only able to detect the directions of light rays, rays
diverging from an optical system can appear to intersect within the system.
These images are called virtual images (Figure 2.7(b)).

The location of virtual points can be determined by extending the ex-
iting light rays in the negative direction. Consequently, this portion of the
optical path is negative and must be subtracted from the total path length.

As illustrated in Figure 2.7(c), objects can also be virtual. In this
case, the entering light rays have to be extended to find the location of
the corresponding virtual object. Similar to the relationship of the optical
path to a virtual image, the sub-path to a virtual object also has to be
subtracted from the total path length.

The production of absolute optical systems is difficult, since the only
surfaces that are easy to build and support stigmatism (some only for a
single object-image pair) are planar or spherical surfaces. Therefore, most
optical instruments only approximate stigmatic image formation. The in-
troduced deviation from the ideal image is called aberration. Some exam-
ples of reflective and refractive optical systems are given in the following
sections.

2.2.3 Reflective Optics

In the case of exclusively reflective optical systems (mirrors), the medium
that light rays travel through is homogeneous, thus η1 = η2 = η and
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ix = jx. Consequently, the optical path length equation can be simplified:

L(po → pi) = η((ix − po) + (pi − ix)) = const.

It can be further idealized that a mirror is surrounded by air, and that
the medium air is approximately equivalent to the medium of a vacuum
(η = 1), then two stigmatic points which are formed within air are defined
by

L(po → pi) = (ix − po) + (pi − ix) = const.

Planar mirrors. In the case of planar mirrors po is real while pi is virtual
(Figure 2.8 (a)), and all points ix of the simplified optical path equation
describe the surface of a rotation-hyperboloid with its two focal points in
po and pi. Planes represent a special variant of a rotation-hyperboloid,
where L(po → pi) = 0. Planar mirrors are absolute optical systems that
map each object po to exactly one image pi. Since this mapping is bijective,
invertible, and symmetrical for all points, it provides stigmatism between
all objects and images. This means that images which are generated from
multiple image points preserve the geometric properties of the reflected
objects that are represented by the corresponding object points.

If we represent the mirror plane by its normalized plane equation within
the three-dimensional space f(x, y, z) = ax+by+cz+d = 0, then the image
for a corresponding object can be computed as follows: With respect to
Figure 2.8(a), it can be seen that the distance from po to the mirror plane
equals the distance from the mirror plane to pi (i.e., a = a′). This can be
derived from the simplified optical path equation with simple triangulation.

If we now define the ray rp = po + λn, where n = (a, b, c) (f(x, y, z) is
normalized) is the normal vector perpendicular to the mirror plane and λ

an arbitrary extension factor of n, we can insert the components of rp into
f and solve for λ:

f(rp) = nrp + d = n(po + λn) + d = 0 → λ = − 1
nn

(npo + d).

Since |n| = 1, we can set nn = 1 and solve λ = −(npo + d) = a = a′.
Consequently the intersection of rp with f is given by

ip = po − (npo + d)n.

Since a = a′, the image point pi results from

pi = po − 2(npo + d)n. (2.1)
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In Chapter 6, we show how Equation (2.1) can be expressed as a homoge-
neous 4 × 4 transformation matrix that can be integrated into fixed func-
tion rendering pipelines to support optical combination with mirror beam
combiners.

With respect to Snell’s first reflection theorem, we can determine the
reflection ray r′ of the original ray r as

r′ = r − 2n(nr). (2.2)

In the case of planar mirrors, n is constant for all surface points i. However,
this equation is also valid for non-planar mirrors with individual normal
vectors at each surface point. In this case, the intersection i of r with the
mirror surface and the normal n at i has to be inserted in Equations (2.1)
and (2.2). Note that Equation (2.2) is a common equation used by ray-
tracers to compute specular reflection rays. The curvilinear behavior of
reflections at non-planar mirrors can be well expressed with ray-tracing
techniques, since they are based on the optical foundations of light rays.

Non-planar mirrors. In contrast to planar mirrors, non-planar mirrors do
not provide stigmatism between all objects and images. In fact, only a few
surface types generate just one true stigmatic pair. For all other objects
(or for objects reflected by other surfaces), the corresponding images have
to be approximated, since the reflected light rays do not bundle exactly
within a single point.

Like planar mirrors, convex mirrors generate virtual images from real
objects. This is because light rays always diverge after they are reflected.
Rotation-paraboloids (parabolic mirrors), for instance, can generate just
one true stigmatic pair (Figure 2.8(b)).

The extended light rays bundle in one virtual point pi only if po is
located at infinity. This point is the focal point f of the paraboloid. The
distance between the focal point and the surface is called the focal distance
or focal length f . For example, the focal length of a convex mirror is defined
as f = −r/2, the focal length of a concave mirror is given by f = r/2, and
the focal length of a planar mirror is f = 0, where r is the surface radius.

If po is not located at infinity, the extended light rays do not bundle
exactly within a single image. Thus, pi has to be approximated (Fig-
ure 2.8(c)). Note, that in this case, images formed by multiple image
points appear to be a reduced and deformed version of the reflected object
that is represented by the corresponding object points.

In addition to rotation-paraboloids, other mirror surfaces (such as
rotation-hyperboloids and prolate ellipsoids) can generate a single true
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8. (a) Planar mirror; (b) convex parabolic mirror with object at infinity;
(c) convex parabolic mirror with an object at a finite distance away from the
mirror surface; (d) concave parabolic mirror with object at infinity; (e) concave
parabolic mirror with an object at a finite distance behind its focal point; (f)
concave parabolic mirror with an object at a finite distance in front of its focal
point.
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stigmatic pair. In general we can say that the true stigmatic pair, gen-
erated by such surfaces, is always their two focal points. Mirror surfaces
other than the ones mentioned above do not generate true stigmatic pairs
at all.

Concave mirrors can generate both virtual and real images from real
objects because the reflected light rays converge or diverge, depending on
the location of the object with respect to the focal point. As in the convex
case, only the above mentioned surface types can generate just one true
stigmatic pair which consists of their two focal points. For other surface
types (or for objects that do not match the focal points), images can only
be approximated.

Figure 2.8(d) illustrates an example of a concave parabolic mirror,
where po is located at infinity and pi is generated at f .

If po is not located at infinity, pi has to be approximated. However,
depending on the position of the object with respect to the focal point, the
image can be either real or virtual. If, on the one hand, the object po is lo-
cated behind the focal point f (as illustrated in Figure 2.8(e)) the reflected
light rays converge and approximately bundle within the real image pi (also
located behind the focal point). Note, that in this case, images formed by
multiple image points appear to be an enlarged, flipped, and deformed ver-
sion of the reflected object that is represented by the corresponding object
points.

If, on the other hand, po is located between the surface and f (as illus-
trated in Figure 2.8(f)) the reflected light rays diverge and their extensions
approximately bundle within the virtual image pi. Note, that in this case,
images formed by multiple image points appear to be an enlarged and
deformed version of the reflected object that is represented by the corre-
sponding object points—yet, it is not flipped.

Note that if po = f , then pi is located at infinity (i.e., the reflected light
rays are parallel). In this case, pi is neither real nor virtual.

2.2.4 Refractive Optics

In the case of refractive optical systems (lenses), the medium that light
rays travel through is inhomogeneous. This means that, with respect to
the simplified optical path equation, light rays pass through two different
media with different densities and refraction indices (η1 �= η2), where η1

denotes the refraction index of the medium that surrounds the lens, and
η2 is the refraction index of the lens material. Since the rays are redirected
when they change into another medium, their entrance and exit points
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Figure 2.9. Planar lens.

differ (ix �= jx). It can be idealized again that a lens is surrounded by air
and that the medium air is approximately equivalent to the medium of a
vacuum (i.e., η1 = 1).

Planar lenses. For the following, we consider a homogeneous medium that
is bounded by two plane-parallel panels known as a planar lens. Similar
to planar mirrors, we can say that for planar lenses, po is real while pi is
virtual (Figure 2.9).

Light rays are refracted twice—once at their entrance points and again
at their exit points. This is referred to as in-out refraction. In the case of
planar lenses, the resulting out-refracted light rays have the same direction
as the corresponding original rays, but they are shifted by the amount ∆
in the direction parallel to their original counterparts. Since the original
rays diverge from po, the refracted rays also diverge from the lens.

In Chapter 6, we show how to compute ∆ for general situations and how
to integrate it into fixed function and programmable rendering pipelines to
support optical combination with mirror beam combiners. True stigmatic
pairs are not generated with planar lenses since the optical path length is
not constant for all rays.

An approximation, however, can be made if the lens is centered. An
optical system is centered (so-called centered or on-axis optical system) if
the axis of symmetry of all surfaces and the optical axis coincide, where
the optical axis is given by the center light ray of a light bundle with its
direction pointing towards the propagation direction of the light. In this
case, we can intersect the extended out-refracted light ray with the optical
axis and receive the virtual image pi. The approximation is a result of the
fact that we assume that the offset ∆ is constant for all rays that diffuse
from po. This means that all extended out-refracted light rays intersect at
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the same point pi on the optical axis. In the on-axis case, ∆ is given by

∆ = t(1 − 1/η2) (2.3)

(with αi = 0. Note that this equation, which is commonly referred to in
the optics literature, can only be used for on-axis (i.e., centered) optical
systems. It is assumed, that a detector (e.g., a human eye) has to be located
on the optical axis.

For centered optical systems, a further approximation is a result of the
assumption that adjacent points appear to transform similarly (from the
detector’s point of view). Thus, the offset ∆ for po is the same as for p′o.
The sine-condition of Abbe describes this assumption for adjacent point-
pairs that are located on the same plane, perpendicular to the optical axis.
The condition of Herschel expresses the preservation of stigmatism between
adjacent point-pairs located on the optical axis. These approximations rep-
resent the basis for all centered image-forming optical systems (mirrors and
lenses) that do not provide true stigmatism for all points (i.e., for the ma-
jority of all optical systems). They describe the approximate preservation
of stigmatism within the three-dimensional free-space for centered optical
systems. Nevertheless, they introduce aberrations.

The approach described in Chapter 6, on the other hand, is more general
and can also be applied for off-axis (i.e., non-centered) situations. Thus, the
detector does not have to be located on the optical axis. This is illustrated
in Figure 2.9, whereby the detector is indicated with e.

Rather than the on-axis equation, the off-axis equation (see Chapter 6)
will be used by the subsequent rendering techniques since we want to as-
sume that the addressed optical systems that are utilized for spatial aug-
mented reality configurations are general and not necessarily centered (i.e.,
the detector—or the eyes of a human observer, in our case—are not re-
quired to be located on the optical axis). Note that the optics used for
head-mounted displays is centered, and the correction of aberrations can
be precomputed [162, 200].

Since, for a given po and a given e, the geometric line of sight po − e is
known, but the geometric line of sight pi − e, which is required to compute
the correct ∆ is unknown, we approximate that by po−e = pi−e. Since the
angular difference between both lines of sight with respect to the plane’s
normal is minimal, the arising error can be disregarded.

Planar interfacing surfaces. We can also derive the off-axis out-refraction
behavior of light rays that move from a denser medium into air at the inter-
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Figure 2.10. Out-refraction at planar interfacing surfaces.

section of a planar interfacing surface. In this case, the rays are refracted
only once (Figure 2.10).

For the subsequent derivation, we want to assume a planar lens that
extends from the interfacing surface to po. With respect to Figure 2.10, we
can say that t = Λ + ∆. The distance Λ is given by Λ = t(tan αt/ tan αi),
and consequently t = Λ(tan αi/ tan αt).

If po is known, then t is the shortest distance between po and the plane
of the interfacing surface and is given by t = |f(po)| = |npo + d|, where
f(x, y, z) = ax+by+cz+d = 0 and n = (a, b, c) defines the plane (f(x, y, z)
is normalized). We can now solve for ∆:

∆ = Λ
(

tan αi

tan αt
− 1

)
, (2.4)

where Λ is constrained by the following boundaries:

lim(αi → π

2
) ⇒ Λ = 0

and

lim(αi → 0) ⇒ Λ = t

(
sin αt

sinαi

)
= t

(
1
η2

)
= const.

With Equation (2.4), we can derive the commonly referred to refraction
ratio for centered planar interfacing surfaces (i.e., for the case that αi = 0):
Λ/t = 1/η2.

This is equivalent to η2/t = η1/Λ for a variable refraction index. (Note
that we assumed η1 = 1 for air.)

This closes the loop and proves that the on-axis refraction computations
for centered systems (which are normally discussed in the optics literature)
are a special case of our more general off-axis refraction method.
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Note that the refraction transformation defined in Chapter 6 can be
used for out-refraction and to transform po to pi. For in-refractions (in our
example, if the object is located within air and the detector is located within
the denser medium) the refraction index, as well as the transformation
direction, have to be reversed.

In general, we can say that if the object is located within the denser
medium and the detector is located within the sparser medium (i.e., the
light rays are out-refracted), then the object’s image appears closer to the
interfacing surface. If, in turn, the object is located within the sparser
medium and the detector is located within the denser medium (i.e., the
light rays are in-refracted), then the object’s image appears further away
from the intersecting surface.

However, ray tracers usually determine the specular refraction ray r′ of
an original ray r as follows:

r′ =
η1

η2
r −

(
cos αt +

η1

η2
(nr)

)
n. (2.5)

As in the case of planar mirrors, for planar lenses or planar interfacing
surfaces, n is constant for all surface points i. However, Equations (2.4)
and (2.5) are also valid for non-planar surfaces with individual normal
vectors at each surface point. In this case, the intersection i of r with the
surface and the normal n at i have to be inserted. As for reflection, the
curvilinear behavior of refraction (for planar and for non-planar surfaces)
can be well expressed with ray-tracing techniques.

Non-planar lenses. In practice, curved lenses are usually bound by two
spherical surfaces. As in the case of spherical mirrors, spherical lenses
do not have exact focal points—just areas of rejuvenation which outline
approximate locations of the focal points. Consequently, they cannot gen-
erate true stigmatic pairs. In contrast to lenses, mirrors are often shaped
parabolically to provide exact focal points, and therefore provide one true
stigmatic pair. For manufacturing reasons, however, almost all lenses that
are used in optical systems are spherical. Stigmatism can only be approx-
imated for such optical systems.

The focal length of a spherical lens is defined by (Figure 2.11(a))

1
f

= (η2 − 1)
(

1
r1

− 1
r2

)
+

(η2 − 1)2

η2

t

r1r2
,

where r1 and r2 are the two surface radii and t is the central thickness of
the lens.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.11. (a) Convergent spherical lens with two objects at infinity; (b)
convergent spherical lens with an object a finite distance behind a focal point;
(c) convergent spherical lens with an object a finite distance in front of a focal
point; (d) divergent spherical lens with object at infinity; (e) convex parallel
spherical lens with an object a finite distance away; (f) concave parallel spherical
lens with an object a finite distance away.

Convergent lenses are mostly bounded by two convex spherical surfaces
(Figure 2.11(a)). Since light rays that are emitted from behind a focal
point (i.e., further away from the lens) converge after exiting such a lens,
real objects that are located behind a focal point form real images which
are located behind the opposite focal point (Figure 2.11(b)). Note that in
this case images formed by multiple image points appear to be a reduced,
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flipped, and deformed version of the refracted object that is represented by
the corresponding object points.

If, however, the object is located between a focal point and the lens’
surface, the light rays diverge after exiting a convergent lens. Thus, their
extensions bundle within a virtual image point in front of or behind the
same focal point (Figure 2.11(c)). Note that in this case images formed
by multiple image points appear to be an enlarged and deformed version
of the refracted object that is represented by the corresponding object
points—yet, it is not flipped. This behavior is very similar to the behavior
of concave mirrors—however, it is reversed.

Divergent lenses are mostly bounded by two concave spherical surfaces
(Figure 2.11(d)). In the case of divergent lenses, the exiting light rays
always diverge. Thus, real objects always form virtual images—no matter
where the object is located. This behavior can be compared with the
behavior of convex mirrors; it is also reversed.

Curved lenses that are bounded by two parallel (concave or convex)
spherical surfaces can also be considered. In this case, the thickness of
the lens t is the same at all surface points. These lenses can only produce
virtual images, since exiting light rays always diverge. This is illustrated in
Figure 2.11(e) for a convex lens, and in Figure 2.11(f) for a concave lens.

Note that the object-image translation direction of a convex lens is the
reverse of the direction of a concave lens. However, in contrast to plane
lenses but in correspondence with all other curved lenses, the out-refracted
rays do not have the same direction as the corresponding original rays and
are not simply shifted parallel to their original counterparts. Thus, Equa-
tion (2.3) in combination with approximations, such as the sine-condition
of Abbe or the condition of Herschel, do not apply in this case. Rather
Equations (2.4) or (2.5) can be used twice—for the in-refraction and for
the out-refraction of a ray.

2.3 Visual Depth Perception

In all optical systems, the light rays that are emitted by objects or images
are finally perceived by light-sensitive components—the so-called detectors.
An example of a detector is a photographic film (or disc or chip) used by
cameras to preserve the received light information on a medium. The most
common detector for optical systems, however, is the human eye which
forwards the detected light information to the brain. The interplay of
the two eyes that receive different two-dimensional images of the same
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environment (seen from slightly different perspectives) enables the brain to
reconstruct the depth information. This phenomenon is called stereoscopic
vision. Stereoscopic vision can be fooled with stereoscopic displays which
present two artificially generated images of a virtual environment to the
eyes of a human observer. As in the real world, these images are interpreted
by the brain and fused into a three-dimensional picture.

2.3.1 The Human Eye

The human eye consists of spherical interfacing surfaces and represents a
complex optical system itself (Figure 2.12). Its approximate diameter is
25 mm, and it is filled with two different fluids—both having a refraction
index of ∼1.336. The iris is a muscle that regulates the amount of the
incoming light by expanding or shrinking. The cornea and the elastic
biconvex lens (refraction index ∼1.4) below the iris bundle the transmitted
light in such a way that different light rays which are diffused by the same
point light source are projected to the same point on the retina. Note that
the projection is flipped in both directions—horizontally and vertically.

The retina consists of many small conic and cylindrical light-detecting
cells called photoreceptors (approximate size 1.5 ηm–5 ηm) that are catego-
rized into rods and cones. The resolution of the eye depends on the density
of these cells—which varies along the retina. If the distance between two
point projections is too small, only one cell is stimulated and the brain
cannot differentiate between the two points. To recognize two individual
points, the two stimulated cells have to be separated by at least one addi-
tional cell. If the angle between two light rays that are emitted from two
different point light sources and enter the eye is below 1.5 arc minutes, the

Figure 2.12. The human eye as an optical system.
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points cannot be differentiated. The limited resolution of the human eye is
the reason why light rays that are emitted from a single object point and
pass through an optical system which does not support true stigmatism,
still appear to intersect at a single image point. Thus, small aberrations of
non-stigmatic and non-absolute optical systems are not detected. Conse-
quently, the observer perceives a single—possibly deformed—image of the
object. The area with the highest resolution of detector cells is called the
fovea.

In addition, the lens adjusts the focus for different distances (i.e., focal
lengths) by deforming its shape. The deformation of the lens is called ac-
commodation. The human eye can accommodate for focal lengths between
∞ and 100 mm. Objects whose emanating light rays cannot be bundled
by the lens on a single point of the retina appear unsharp. This happens,
for instance, if the object is located closer to the eye than 100 mm.

2.3.2 Stereoscopic Vision

Two different views of the same object space are required to support depth
perception. The perceptual transformation of differences between the two
images seen by the eyes is called stereopsis. Due to the horizontal eye sep-
aration (interocular distance = ∼6.3 cm), the images that are perceived
by the two eyes are slightly shifted horizontally, and are rotated around
the vertical axis. Light rays that are emitted from an object project onto
different locations on the respective retina. The relative two-dimensional
displacement between two projections of a single object onto two differ-
ent focal planes (i.e., the left and the right eye’s retina) is called retinal
disparity . The stimulation of the detector cells at the corresponding loca-
tions is used by the brain to fuse the two images and to approximate the
relative distance (i.e., the depth) of the object. Note that if the disparity
between two projections becomes too large, the perceived images of the
object space cannot be fused by the brain and the object space appears
twice. This effect is called diplopia (double vision).

To facilitate the accurate projection of the light rays onto the proper
detector cells, the eyes have to rotate around the vertical axis until they
face the focal point. This mechanism is called vergence. They can either
rotate inwards to focus at close objects (convergence) or outwards to focus
distant objects (divergence). If their alignment is parallel, an object at
infinite distance is focused.

The total amount of the environment that can be seen by both eyes is
called monocular field of vision and extends over a 180◦ horizontal field of
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Figure 2.13. The human visual fields.

view and a 130◦ vertical field of view (Figure 2.13). The portion of this
visual field shared by both eyes is known as binocular field of vision and
extends over a 120◦ horizontal field of view and a 130◦ vertical field of view.
An even smaller portion within the binocular field of vision is called foveal
field of vision. It is the area in which both eyes see in focus. It extends
over a 60◦ horizontal and vertical field of view. Note that for stereoscopic
vision, only the binocular field of vision is of interest.

2.3.3 Spatial Stereoscopic Presentation

Stereoscopic vision can be fooled with stereoscopic displays (Figure 2.14).
For the subsequent explanation, we want to assume spatial stereoscopic
displays which allow pixels to be drawn on their rasterized display surface.

Given a fictive object po, we can determine the fictive light rays that
would be emitted from po and intersect the eyes. For this, the eyes’ posi-
tions need to be known; they are approximated by representing the eyes
with single points that are located at the eyeball’s center. These rays are
projected backwards onto the display surface and result in the positions
of the pixels that are finally drawn on the display. The two related (left
and right) projections of an object are called the stereo-pair . Since the real
light rays that are now emitted from the pixels intersect at po before they
reach the eyes, the brain perceives the fictive object at its corresponding
depth—floating in space. Such fictive objects (within the computer graph-
ics community also called virtual objects1) can be displayed so that they

1Not to be confused with the previously used virtual object terminology of the optics
community.
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Figure 2.14. Stereoscopic vision with spatial stereoscopic display.

appear in front of (e.g., po1), on, or behind the display (e.g., po2). The
apparent two-dimensional relative motion of a distant object with respect
to a close one as the viewpoint moves is called parallax . With respect to
planar stereoscopic displays, parallax is usually defined as the distance be-
tween one object’s pixel projection for the left eye and the same object’s
pixel projection for the right eye. In case the projections are on the same
side as the corresponding eye, the virtual object appears behind the display
surface (such as po2). This situation is called positive parallax . Note that
the maximum positive parallax occurs when the virtual object is located
at infinity. At this point the parallax equals the interocular distance.

If the virtual object appears in front of the display surface (such as po1),
then the projection for the left eye is on the right and the projection for the
right eye is on the left. This is known as negative parallax . If the virtual
object appears half way between the center of the eyes and the display,
the negative parallax equals the interocular distance. As the object moves
closer to the eyes, the negative parallax increases to infinity and diplopia
occurs at some point. In correspondence to this, the case where the object
is located exactly on the display surface is called zero parallax .

An essential component of stereoscopic displays is the functionality to
separate the left and right images for the respective eye when they are
displayed. This means, that the left eye should only see the image that has
been generated for the left eye, and the right eye should only see the image
that has been generated for the right eye. Several mechanical, optical, and
physiological techniques exist to provide a proper stereo separation.

Note that for stereo pairs that are projected onto a two-dimensional
spatial display to form a three-dimensional virtual object, the retinal dis-
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parity and the vergence are correct, but the accommodation is inconsistent
because the eyes focus at a flat image rather than at the virtual object.
With respect to stereoscopic displays, disparity and vergence are considered
as the dominate depth cues for stereoscopic viewing.

2.3.4 Classification of Stereoscopic Displays

This section will provide a broad classification of current stereoscopic dis-
play approaches (Figure 2.15). Note that we do not claim to present a
complete list of existing systems and their variations, but rather focus on
the technology that is (or might become) relevant for the concepts described
in this book.

Stereoscopic displays can be divided into autostereoscopic displays and
goggle-bound displays. While goggle-bound displays require the aid of
additional glasses to support a proper separation of the stereo images,
autostereoscopic displays do not. We will discuss goggle-bound displays
in the next section and then describe autostereoscopic displays in more
detail.

Figure 2.15. Classification of stereoscopic displays.
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Goggle-bound displays. Goggle-bound displays require the user to wear
additional goggle-like devices in front of the eyes to support a proper sepa-
ration of the stereo images. They can be divided into head-attached displays
and spatial displays.

Head-attached displays provide individual display elements for each eye,
and consequently can present both stereo images simultaneously. Exam-
ples for such elements are miniature CRT or Liquid Crystal Display (LCD)
screens that are used in most head-mounted displays [182, 183] and BOOM-
like displays. Retinal displays [83, 145] utilize low-power lasers to scan
modulated light directly onto the retina of the human eye instead of pro-
viding screens in front of the eyes. This produces a much brighter and
higher resolution image with a potentially wider field of view than a screen-
based display. Head-mounted projective displays [130, 73, 70] or projective
head-mounted displays [78] are projection-based alternatives that employ
head-mounted miniature projectors instead of miniature displays. Such
devices tend to combine the advantages of large projection displays with
those of head-mounted displays. Head-attached displays (especially head-
mounted displays) are currently the display devices that are mainly used
for augmented reality applications.

Head-mounted projective displays redirect the projection frustum with
a mirror beam combiner so that the images are beamed onto retro-reflective
surfaces that are located in front of the viewer (Figure 2.16). A retro-
reflective surface is covered with many thousands of micro-corner cubes.
Since each micro-corner cube has the unique optical property to reflect
light back along its incident direction, such surfaces reflect brighter images
than normal surfaces that diffuse light.

Spatial displays use screens that are spatially aligned within the envi-
ronment. Nevertheless, the user has to wear field-sequential (LCD shutter-
glasses) or light-filtering (polarization or color/intensity filters) goggles to
support a correct separation of the stereo images. The stereo separation
technique for spatial displays is generally known as shuttering , since each

Figure 2.16. Difference between reflection, diffusion, and retro-reflection of light.
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of the two stereo images which are presented on the same screen(s) has to
be made visible to only one eye (i.e., the other image has to be blocked
respectively—by shutting the eye). Depending on the shuttering technol-
ogy, the stereo images are either presented time sequentially (i.e., with
field-sequential goggles) or simultaneously (i.e., with light-filtering goggles).

Several light-filtering techniques exist that are also known as passive
shuttering . Anaglyphs, for instance, encode the stereo images in two dif-
ferent colors (e.g., red/green, red/blue, or red/cyan). Color filters that
are integrated into special glasses ensure that only one image reaches the
eye while the other one is blocked. A side effect of this technique is that
although the brain fuses the stereo images into a three-dimensional pic-
ture, this picture is perceived as monochrome. For very simple scenes with
well-defined edges, however, it is possible to display a third image which
carries the scene color to make a full color anaglyph. In this case, the
anaglyph effect is only apparent at the edges of objects. ChromaDepth
is another light-filtering technique that uses color to encode the depth of
a scene. This technique is based on the fact that the photoreceptors on
the retina focus on light at slightly different angles. ChromaDepth filters
alter the angle of the incident light depending on its wavelength and en-
hance this effect. Such filters are clear and do not change the color of the
displayed scene. The disadvantage of this technique is that the presented
scene cannot be shown in arbitrary colors. In particular, three-dimensional
animations would cause a continuous alternation of colors to encode the
depths—which is certainly impractical.

The Pulfrich effect is yet another light filtering technique which is based
on filtering intensity rather than color. The time from stimulation of the
photoreceptors on the retina to sending the processed signal to the brain de-
pends on the lighting conditions. It takes longer to send these signals under
low than under bright lighting conditions. Pulfrich glasses shade one eye
to realize stereo separation based on this effect. If a movie with horizontal
camera motion is watched with Pulfrich glasses, the same video frame will
process faster by the non-shaded eye than by the shaded one. If the camera
motion is done well, the non-shaded eye will send the image of a later video
frame, while the shaded eye simultaneously sends the image of an earlier
frame. The horizontal disparity between the two frames is perceived as
depth. The Pulfrich effect can only be used for certain video effects that
contain a horizontal camera motion, but not for arbitrary graphical scenes.

Finally, polarization glasses are the most common passive shuttering
technique for stereoscopic projection screens. They are based on the po-
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larization of light described in Section 2.1. The screen polarizes the stereo
images in two different directions (e.g., by attaching polarization filters in
different orientations in front of two video beamers that display the stereo
images simultaneously), while identically-oriented polarization filters inte-
grated in the glasses ensure the correct separation. The advantage of this
method is that it does not constrain the color or intensity representation
of the displayed scene. However, for projection displays, a special non-
organic screen material is required that does not destroy the polarization
of the projected light. Regular diffuse projection surfaces cannot be used.

Spatial displays can be further divided into desktop configurations and
projection displays. Using desktop monitors as a possible stereoscopic dis-
play is the traditional desktop-VR approach (also referred to as fish tank
VR [199]). Since desktop monitors (i.e., only CRT screens, but not LCD
screens) provide the refresh rate of 120Hz that is required for a time-
sequential shuttering, LCD shutter glasses are mostly used for stereo sep-
aration. This technique is known as active shuttering . Note that older
applications also use color-filtering glasses (e.g., anaglyphs) to separate
monochrome stereo images. Fish tank VR setups are classified as non-
immersive since, in contrast to large screens, the degree of immersion is
low. Reach-in systems [81, 166, 142, 204] represent another type of desktop
configuration that consists of an upside-down CRT screen which is reflected
by a small horizontal mirror. Nowadays, these systems present stereoscopic
three-dimensional graphics to a single user who is able to reach into the
presented visual space by directly interacting below the mirror while look-
ing into the mirror. Thus, occlusion of the displayed graphics by the user’s
hands or input devices is avoided. Such systems are used to overlay the
visual space over the interaction space, whereby the interaction space can
contain haptic information rendered by a force-feedback device such as a
PHANTOM [104]. Due to the small working volume of these devices, their
applications are limited to near-field operations.

Projection displays currently use CRT, LCD, LCOS, or digital light
projectors (DLP) to beam the stereo images onto single or multiple, planar
or curved display surfaces. Two types of projections exist: With front-
projection, the projectors are located on the same side of the display sur-
face as the observer. Thus, the observer might interfere with the projection
frustum and cast a shadow onto the display surface. With rear-projection
(or back-projection), the projectors are located on the opposite side of the
display surface to avoid this interference problem. Both active and passive
shuttering are used in combination with projection displays. For passive
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shuttering, at least two projectors are necessary to beam both filtered stereo
images simultaneously onto the display surface. Projection displays that
beam both stereo images sequentially onto the display surface require field-
sequential shutter glasses to separate the stereo images. For active shut-
tering, only one projector is necessary since the images are projected time
sequentially. However, as with desktop monitors, these projectors have to
support the required refresh rate of 120Hz to provide a flicker-free update
rate of 60Hz per eye. Note that projection screens can either be opaque
or transparent—depending on their application. Depending on the number
and the shape of the spatially aligned display surfaces, we can divide pro-
jection displays into surround screen displays and embedded screen displays.
Surround screen displays surround the observers with multiple planar (e.g.,
CAVEs [35], CABINs [63]) or single curved display surfaces (e.g., domes
or panoramic displays) to provide an immersive VR experience. Thus, the
observers are completely encapsulated from the real environment. Usually,
multiple projectors are used to cover the extensive range of the projection
surface(s).

In contrast to surround screen displays, embedded screen displays in-
tegrate single, or a small number of display surfaces, into the real envi-
ronment. Thus, the users are not immersed into an exclusively virtual
environment, but can interact with a semi-immersive virtual environment
that is embedded within the surrounding real environment. Horizontal,
workbench-like [84, 85] or vertical wall-like display screens are currently the
most common embedded screen displays. Oblique screen displays represent
a generalization of embedded screen displays, whereby special display sur-
faces are not integrated explicitly into the real environment. Rather, the
real environment itself (i.e., the walls of a room, furniture, etc.) provides
implicit display surfaces.

Although head-attached (especially head-mounted) displays have a long
tradition within the VR community, stereoscopic projection displays are
currently the dominant output technology for virtual reality applications.

Autostereoscopic displays. Autostereoscopic displays present three-dimen-
sional images to the observer without the need of additional glasses. Four
classes of autostereoscopic displays can be found: re-imaging displays, vol-
umetric displays, parallax displays, and holographic displays.

Two types of images exist in nature—real and virtual. A real image
is one in which light rays actually come from the image. In a virtual im-
age, they appear to come from the reflected image—but do not. In the
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case of planar or convex mirrors, the virtual image of an object is behind
the mirror surface, but light rays do not emanate from there. In contrast,
concave mirrors can form reflections in front of the mirror surface where
emerging light rays cross—so called “real images.” Re-imaging displays
project existing real objects to a new position or depth. They capture and
re-radiate the light from the real object to a new location in space. An
important characteristic of re-imaging displays is that they do not gen-
erate three-dimensional images by themselves. Some re-imaging systems
use lenses and/or mirrors to generate copies of existing objects. Especially
half-silvered mirror setups—called Pepper’s ghost configurations [196]—are
used by theme parks to generate a copy of a real three-dimensional envi-
ronment and overlay it over another real environment.

Pepper’s ghost configurations are a common theatre illusion from around
the turn of the century named after John Henry Pepper—a professor of
chemistry at the London Polytechnic Institute. At its simplest, a Pepper’s
ghost configuration consists of a large plate of glass that is mounted in
front of a stage (usually with a 45◦ angle towards the audience). Looking
through the glass plate, the audience is able to simultaneously see the stage
area and, due to the self-reflection property of the glass, a mirrored image of
an off-stage area below the glass plate. Different Pepper’s ghost configura-
tions are still used by entertainment and theme parks (such as the Haunted
Mansion at Disney World) to present their special effects to the audience.
Some of those systems reflect large projection screens that display prere-
corded two-dimensional videos or still images instead of real off-stage areas.
The setup at London’s Shakespeare Rose Theatre, for instance, uses a large
45◦ half-silvered mirror to reflect a rear-projection system that is aligned
parallel to the floor.

Other re-imaging displays use more complex optics and additional dis-
play devices. For instance, some re-imaging displays generate a copy of a
two-dimensional CRT screen which then appears to float in front of the
optics. These types of mirror displays—so-called real image displays—
generate real images (Figure 2.17).

Several real image displays are commercially available and are fre-
quently used as eye-catchers for product presentation by the advertising
industry or to facilitate special on-stage effects by the entertainment indus-
try. On the one hand, they can present real objects that are placed inside
the system so that the reflection of the object forms a three-dimensional
real image floating in front of the mirror. On the other hand, a display
screen (such as a CRT or LCD screen, etc.) can be reflected instead
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Figure 2.17. Examples of common real-image display configurations using one
or two concave mirrors.

[173, 106, 107]—resulting in a free-floating two-dimensional image in front
of the mirror optics that is displayed on the screen (some refer to these sys-
tems as pseudo 3D displays since the free-floating two-dimensional image
has an enhanced three-dimensional quality). Usually, prerecorded video
images are displayed with such real image displays.

Volumetric displays directly illuminate spatial points within a display
volume. In contrast to re-imaging displays, volumetric displays can gen-
erate synthetic images of voxelized data or three-dimensional primitives.
These types of displays generate images by filling or sweeping out a volu-
metric image space. Solid-state devices are variations of volumetric displays
which display voxel data within a translucent substrate by generating light
points with an external source (for example with lasers of different wave-
lengths located outside the substrate that are scanned through the image
space) [39].

Multi-planar volumetric displays build volumetric images from a time-
multiplexed series of two-dimensional images. These images are displayed
with a swiftly moving or spinning display element. This display element
can be, for example, a rotating proprietary screen onto which the images
are projected [45, 44] (e.g., using an external projector or lasers). Other
systems directly move or spin light-generating elements (e.g., light diodes)
or use multiple fixed, but switchable, screen planes [180]. In either case,
the human visual system interprets these time-multiplexed image slices as
a three-dimensional whole.

Varifocal mirror displays [190, 52, 106, 107] are yet another group of
volumetric displays. They use flexible mirrors to sweep an image of a CRT
screen through different depth planes of the image volume. In some systems
the mirror optics is set in vibration by a rear-assembled loudspeaker [52].
Other approaches utilize a vacuum source to manually deform the mirror
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optics on demand to change its focal length [106, 107]. Vibrating devices,
for instance, are synchronized with the refresh-rate of a display system
that is reflected by the mirror. Thus, the spatial appearance of a reflected
pixel can be exactly controlled, yielding images of pixels that are displayed
approximately at their correct depth (i.e., they provide an autostereoscopic
viewing and, consequently, no stereo-separation is required). Due to the
flexibility of varifocal mirror displays, their mirrors can dynamically deform
to a concave, planar, or convex shape (generating real or virtual images).
However, these systems are not suitable for optical see-through tasks, since
the space behind the mirrors is occupied by the deformation hardware (i.e.,
loudspeakers or vacuum pumps). In addition, concavely shaped varifocal
mirror displays face the same problems as real image displays. Therefore,
only full mirrors are used in combination with such systems.

Since view-dependent shading and culling (required to simulate occlu-
sion) of the presented graphics is not supported, volumetric displays are
mainly used to present volumetric, wire-frame, or icon-based contents.

Parallax displays are display screens (e.g., CRT or LCD displays) that
are overlaid with an array of light-directing elements. Depending on the
observer’s location, the emitted light that is presented by the display is
directed so that it appears to originate from different parts of the display
while changing the viewpoint. If the light is directed to both eyes individ-
ually, the observer’s visual system interprets the different light information
to be emitted by the same spatial point.

One example of a parallax display is a parallax barrier display (Fig-
ure 2.18(a)) that uses a controllable array of light-blocking elements (e.g.,
a light blocking film or liquid crystal barriers [136]) in front of a CRT screen.
Depending on the observer’s viewpoint, these light-blocking elements are
used to direct the displayed stereo-images to the corresponding eyes.

(a) (b)

Figure 2.18. Basic parallax display concepts: (a) parallax barrier display;
(b) lenticular sheet display.
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Another example is a lenticular sheet display (Figure 2.18(b)) that uses
an array of optical elements (e.g., small cylindrical or spherical lenses) to
direct the light for a limited number of defined viewing zones.

Parallax displays can be developed and mass-produced in a wide range
of sizes and can be used to display photo-realistic images. Many different
types are commercially available and used in applications ranging from
desktop screens to cell phone displays to large projection screens [205].

A hologram is a photometric emulsion that records interference patterns
of coherent light (see Section 2.2). The recording itself stores the amplitude,
wavelength, and phase information of light waves. In contrast to simple
photographs, which can record only amplitude and wavelength information,
holograms can reconstruct complete optical wavefronts. This results in
the captured scenery having a three-dimensional appearance that can be
observed from different perspectives.

To record an optical hologram, a laser beam is split into two identical
beams (Figure 2.19). One beam, the reference wave, illuminates the holo-
graphic emulsion directly while the other beam illuminates the object to

Figure 2.19. Optical holographic recording and reconstruction (example of a
transmission hologram). (Image reprinted from [18] c© IEEE.)
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be recorded. The light that is reflected off the object, the object wave,
together with the reference wave creates an interference pattern (or inter-
ference fringe) on the emulsion. If the emulsion is illuminated with a copy
of the reference wave, it interacts with the recorded interference fringes and
reconstructs the object wave, which is visible to the observer.

Computer-generated holograms (CGH) or electroholography [96] facili-
tates the computer-based generation and display of holograms in real time.
Holographic fringes can be computed by either rendering multiple perspec-
tive images, then combining them into a stereogram, or simulating the
optical interference and calculating the interference pattern. Once com-
puted, the system dynamically visualizes the fringes with a holographic
display. Since creating a hologram requires processing, transmitting, and
storing a massive amount of data, today’s computer technology still sets
CGH limits. To overcome some of these performance issues, researchers
have developed advanced reduction and compression methods that create
truly interactive CGH. Holographic displays share most of the properties
of volumetric displays, but they are still far from producing high-quality
three-dimensional images using affordable hardware.

2.4 Rendering Pipelines

The functionality of a graphics engine (implemented in hardware or soft-
ware) to map a scene description into pixel data is known as the render-
ing pipeline. Since the scene description, such as two-dimensional/three-
dimensional vertices, textures coordinates, normals, etc. are passed se-
quentially through different modules of a render engine, a function pipeline
is a vivid concept for illustrating the different processing steps.

To describe the full functionality of today’s rendering pipelines is be-
yond the scope of this book. The following sections rather summarize
the most important techniques used for the rendering concepts that are
described in the following chapters. We presume that the reader has a
certain level of knowledge in computer graphics techniques.

2.4.1 Fixed Function Rendering Pipelines

Once configured, traditional rendering pipelines apply the same operations
to all data elements that pass through the pipeline. Furthermore, such
pipelines require the application of a fixed sequence of basic operations,
such as transformations, lighting, texturing, rasterization, etc. After the
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scene has been rendered, the pipeline can be reconfigured with new para-
meters. Thus, such pipelines are called fixed function pipelines.

The applicability of fixed function pipelines is clearly limited. Scene
vertices, for instance, can only be transformed in the same way—allowing
only rigid body transformations. Geometry warping, on the other hand,
requires per-vertex transformations—a functionality that has to be imple-
mented in software if required. Lighting and shading is another example
that is applied in exactly the same way to each scene vertex. During raster-
ization, approximate values are interpolated for intermediate pixels. Fixed
function pipelines do not allow per-pixel operations that would lead to more
realistic shading effects.

One of the most important parts of a rendering pipeline is the trans-
formation pipeline that applies geometric transformations to the incoming
scene vertices and maps them to fragments (or pixels).

Transformation pipeline. Figure 2.20 illustrates OpenGL’s transformation
pipeline as it is presented by Neider et al. [117]. It is a component of
OpenGL’s rendering pipeline which is also discussed in [117].

Scene vertices (represented as homogeneous coordinates) are multiplied
by the transformation matrix which is a composition of the model-view
matrix and the projection matrix . These transformations are represented
as 4 × 4 homogeneous matrices.

The model-view transformation can be conceptually split into the scene
transformation and the view transformation.

Figure 2.20. OpenGL’s transformation pipeline.
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The scene transformation matrix S can be composed of a sequence of
other 4 × 4 transformation matrices which are all multiplied and result in
the model-view matrix. OpenGL offers a number of scene transformation
commands which are all translated into corresponding 4 × 4 matrices and
multiplied with the current model-view matrix. Examples of scene transfor-
mation commands are glTranslate(), glScale(), and glRotate(). The
corresponding implementation examples can be found in Appendix B. The
scene transformation maps the vertices from the object coordinate system
into the world coordinate system.

The view transformation matrix V is either generated by an appropriate
composition of glTranslate(), glScale(), and glRotate() commands,
or an additional utility library is used that provides an explicit view trans-
formation command which “wraps” the basic commands. These commands
are also translated into corresponding 4×4 matrices and multiplied with the
model-view matrix. An example is the gluLookAt() command, provided
by the OpenGL Utility Library (GLU)—an extension of OpenGL. The view
transformation maps the vertices from the world coordinate system into the
eye (or camera) coordinate system. Note that the inverse transpose mode-
view transformation matrix is automatically applied to the surface normal
vectors.

The projection transformation matrix P is generated by calling
an appropriate projection command. OpenGL offers two commands:
glFrustum() (or gluPerspective() from the GLU) for a perspective
projection and glOrtho() for an orthographic projection. They generate
the corresponding transformation matrix and multiply it with the
projection matrix. The corresponding implementation examples can be
found in Appendix B. The projection transformation first maps the ver-
tices from the eye coordinate system into the clip coordinate system, and
then into the normalized device coordinate system after applying the per-
spective division (i.e., [x/w, y/w, z/w]). While the clip coordinates are in
the range [−w,w], the device coordinates are normalized to the Euclidean
space [−1, 1]. The normalized component is used for depth handling and
is not affected by the viewport transformation.

The viewport transformation maps the [xnd, ynd] components of the nor-
malized device coordinates into the window coordinate system. OpenGL
provides the glViewport() command to support this mapping. A ho-
mogeneous matrix is not generated for this operation. Rather, the scaling
transformation is applied explicitly to the [xnd, ynd] components of the nor-
malized device coordinates. The window coordinates are normalized to the
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range a ≤ xw ≤ (a + width), b ≤ yw ≤ (b + height), where [a, b] is the
lower left corner and [width, height] are the dimensions of the window in
pixels. The window coordinates are computed from the normalized device
coordinates as follows:

xw = (xnd + 1)
width

2
+ 1 and yw = (ynd + 1)

height

2
+ 1.

The following code fragment outlines the correct sequence of operations
for configuring an OpenGL transformation pipeline:

...

// define window viewport

glViewport(...);

// switch to projection matrix

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

// projection transformation

glFrustum(...); // or gluPerspective(...); or glOrtho(...);

// switch to modelview matrix

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

// viewpoint transformation

gluLookAt(...);

// scene transformation

glTranslate(...);

glRotate(...);

glScale(...);

//render scene

...

Projections. Two basic types of projections exist: on-axis and off-axis pro-
jections. As described in Section 2.2, an optical system is called on-axis if
it is centered—i.e., if the axis of symmetry of all surfaces and the optical
axis coincide. For display surfaces or image planes this is the case if the
center of the camera frustum projects onto the center of the image plane
(or a display screen). An off-axis system is an optical system where this is
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Figure 2.21. Off-axis projection example.

not the case—i.e., (with respect to display surfaces of image planes) where
the center of projection projects onto a non-centered position on the image
plane (or a display screen).

Figure 2.21 illustrates an off-axis projection example. To determine the
corresponding viewing frustum, the scene’s bounding box (BB) is required
to compute the near (near) and far (far) clipping planes.

Given the position of the camera C (this is the center of projection),
the near and far clipping planes are computed as follows:

nearz = Cz − BBmax z − 1 and farz = Cz − BBmin z − 1.

Note that an offset of ±1 is required to prevent clipping of the front or
backside faces which are aligned with the bounding box’s top or bottom.

Assuming an on-axis situation (i.e., the camera is located at C =
[0, 0, z]), the size of the near clipping plane can be determined with a simple
triangulation:

nearwidth2 =
nearwidth

2
=

width

2
ratio and

nearheight2 =
nearheight

2
=

height

2
ratio,

where width and height are the dimensions of the projection plane or
drawing window (in the x, y directions), and ratio is given by

ratio =
nearz

Cz
.
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Since the projection is off-axis, a projectional shift has to be computed
before the parameters of the viewing frustum can be determined:

shiftx = Cxratio and shifty = Cyratio.

Using OpenGL’s glFrustum() function and GLUs gluLookAt() func-
tion [117], the viewing frustum for our example can be set as follows:

...

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glFrustum(-near_width2 - shift_x, near_width2 - shift_x,

-near_height2 - shift_y, near_height2 - shift_y,

near_z, -far_z);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(C_x, C_y, C_z, C_x, C_y, 0, 0, 1, 0);

...

Having the camera located at C = [0, 0, z] defines an on-axis situation.
Although glFrustum() is a function that allows the user to define pro-
jection transformations through general frustums, gluPerspective() is a
simplified version that allows the user to define only on-axis situations by
only specifying the near and far clipping planes, the vertical field of view,
and the aspect ratio of the frustum.

While on-axis projections are commonly used for head-attached dis-
plays, such as head-mounted displays, off-axis projections are used in com-
bination with spatial screens, such as spatial projection screens.

Lighting and shading. In fixed function pipelines, lighting and shading
computations are done on a per-vertex basis. Intermediate pixel colors of
the shaded surfaces (e.g., a triangle) are interpolated during rasterization.

With respect to Figure 2.22, OpenGL’s simplified shading model con-
sists of the following components (for point light sources):

• The attenuation factor F = 1/(kc +klr+ksr
2) allows selection of the

attenuation mode to be used. The constants kc, kl, ks can have the
Boolean values 0, 1 to enable or disable one or multiple attenuation
modes: the constant, linear, or square distance attenuation modes
respectively. The variable r is the distance from the vertex v to the
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Figure 2.22. OpenGL’s simplified lighting model.

light source l, and is automatically computed by the pipeline. While
square distance attenuation is physically the most correct mode, usu-
ally constant or linear modes are used to avoid a rapid falloff for the
intensities within a small distance range from the light source.

• The emission term E represents the ability of the vertex to emit light,
and is defined within the scene description.

• The ambient term A = AmAl represents the ambient reflection of
light. It consists of the multiplication of the ambient material prop-
erty Am and the ambient light property Al. Both are specified in the
scene description.

• The diffuse term D = lnDmDl defines the diffuse reflection of light
at the vertex v. It depends on the angle a between the direction
vector to the light source l and the normal vector n at v. Applying
Lambert’s reflection law nl = cos(a). The constants Dm and Dl

represent the diffuse material and light properties, respectively. Both
are set in the scene definition.

• The specular term S = (ns)iSmSl computes the specular reflection
components. It computes the half-vector s = (l + e)/ |l + e| between
the vector pointing towards the view point (or camera) e, and the
light vector l. The exponent i allows for modification of the shininess
of the surface, and Sm and Sl are the specular material and light
properties, which are also defined in the scene description.

Putting all these components together, the simplified lighting equation
for n point light sources can be summarized as

C = E +
n−1∑
i=0

Fi(Ai + Di + Si). (2.6)
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Figure 2.23. Linear interpolation of vertex properties within a triangle.

Equation (2.6) can be used to compute the light intensities at each vertex of
a scene triangle. Depending on the selected shading model, the intensities of
the intermediate pixels inside the triangles are either interpolated between
the corresponding three vertices (Gouraud shading) or they are simply
copied (flat shading). These two simple shading models are supported by
fixed function pipelines, such as standard OpenGL. More advanced models,
such as Phong shading that computes individual shading values depending
on interpolated surface normals, require per-pixel operations. This is not
supported by simple fixed function pipelines.

Different values are computed for each vertex, such as lighting intensi-
ties, texture coordinates, normals, alpha values, etc. They are called vertex
parameters. In fixed function pipelines, some of them are linearly interpo-
lated during rasterization to receive approximate values for pixels within
triangles to avoid the enormous amount of individual computations.

A linear interpolation of a vertex property pu,v at the barycentric coor-
dinates u, v = [0, 1] between the three constant corner values p0, p1, p2 is
given by

p(u, v) = (1 − u)(1 − v)p0 + (1 − v)up1 + (1 − u)vp2.

To cover the entire the triangle, its area is usually sampled at discrete u, v

positions during rasterization.
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Buffers. Several memory buffers are used in conventional graphics systems,
like OpenGL, to support different operations. One of the most important
buffers is the frame buffer which is the memory that holds the pixel in-
formation after rasterization. It is a two-dimensional matrix-like memory
structure whose size matches the image resolution. The frame buffer stores
different values at each individual pixel matrix element, such as the red,
green, blue, and alpha components of the pixel. A graphics system usually
provides many different frame buffers.

The most common situation is that only two frame buffers are provided
to support a smooth display of frames during animations. One buffer,
the back buffer , is used by the application for direct rendering. The other
buffer, the front buffer , is used for the direct output to the screen. Once the
back buffer has been filled with pixel information, it is copied (or swapped)
to the front buffer and displayed on the screen. To display the next frame,
the application can overwrite the back buffer while the image of the previ-
ous frame (stored in the front buffer) is still displayed on the screen. Once
the application has finished the rendering, the front buffer content is ex-
changed by swapping the back buffer content again. This sequence ensures
flicker-free animation sequences, since the image assembly of new frames
in done in the background. The combination of back and front buffers
is called double buffering . Applications that allow stereoscopic rendering
sometimes require two double buffers for rendering flicker-free stereo pairs.
Some graphics cards do support this by providing two double buffers, called
quad buffers. Quad buffers consist of back-left, back-right, front-left, and
front-right buffer sections, and their operations are equivalent to double
buffers.

Another relevant buffer is the depth buffer (or z-buffer). The depth
buffer has the same two-dimensional size as the frame buffer. At every
pixel position it stores the relative distance from the camera to the object
that projects onto the pixel. The depth test ensures that if multiple objects
project onto the same pixel, only the one that is closest to the camera
appears in the frame buffer. The range of depth values influences the
precision of the depth test since the bit-depth of each entry is normally
fixed. That means that a larger range has a lower precision than a smaller
range.

The stencil buffer is a buffer with the same dimensions as the frame
buffer. It can be used to stencil out regions in the frame buffer depending on
specific rules that can be influenced by the content of the frame of the depth
buffer. In a simple case, the stencil buffer stores binary values, where zero
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could indicate that the application cannot render into the corresponding
pixel in the frame buffer. Consequently, the application can first render a
dynamic mask into the stencil buffer. During the actual rendering pass, the
application renders into the frame buffer, but pixels that are blocked by the
stencil buffer cannot be filled; this is called a stencil test . In general, each
stencil value is not binary, but supports several stencil levels. A variety of
rules can be used depending on the content of the depth buffer and frame
buffer for rendering the stencil mask and making the stencil test. Logical
operations can also be applied to define the required stencil rule.

The texture memory is a buffer that does not have to have the same size
as the frame buffer. It stores image information that can be used for tex-
ture mapping a surface with pre-generated color and structure information.
Textures can be generated on-line (i.e., dynamically during rendering) or
off-line (e.g., by loading them from a file). There are two possibilities to
generate them dynamically. For example, an image can be rendered into
the back-buffer. The back-buffer is not swapped to the front-buffer, but is
copied into the texture memory, and then overwritten by the application.
The transfer from back-buffer to texture memory is called read-back . This
operation usually requires a lot of time that leads to a lower total frame
rate—especially if the back-buffer is located on the graphics card and the
texture memory is part of the main memory (in this case the entire back-
buffer has to be transferred from the graphics card, over the bus to the
main memory, and back). The time required for a read-back operation
increases with the size of the texture.

An alternative is a direct render-to-texture operation which is supported
by newer graphics cards to avoid a large delay caused by memory read-
backs. In this case, the application can generate a texture by directly
rendering into a special auxiliary buffer that can be addressed during tex-
ture mapping. Usually, this buffer is located on the graphics card, and a
bus transfer is not necessary. Such an off-line buffer is sometimes referred
to as a P-buffer .

Additional accumulation buffers allow the combination (accumulation)
of a series of pre-rendered images. A variety of different operations, such
as addition and subtraction, is normally supported to achieve the desired
effect. It is not possible to render directly into accumulation buffers. Con-
sequently, a time-consuming read-back is required.

All these buffers work hand-in-hand within a rendering pipeline and
are important tools for realizing higher-level operations, such as multi-pass
rendering techniques.
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Figure 2.24. Multi-pass rendering concept.

Multi-pass rendering. Simple rendering pipelines process their data in a
linear and fixed sequence, called a rendering pass. The scene is trans-
formed by the transformation pipeline, is lightened, texture-mapped, and
rasterized into the frame buffer under consideration of the depth buffer and
the stencil buffer. Finally it is displayed on the screen. To achieve more
advanced effects, a single rendering pass might not be sufficient. Some
applications create more than one image during multiple rendering passes
that are combined into a final image before displaying it (Figure 2.24).

In this case, portions of the rendering pipeline are executed multiple
times and the resulting images are stored in auxiliary buffers, such as the
P-buffer or the texture memory. They might serve as input for subsequent
rendering passes. When all effects have been computed, the different results
are assembled in the final image which is then displayed on the screen.
A popular example of multi-pass rendering is shadow mapping, in which
shadow masks are generated in a first rendering step. These maps are
stored in textures that are applied to the scene geometry during a second
rendering pass.

Multi-pass rendering is an essential tool for creating many common
illumination effects, such as shadows and reflections, but also for supporting
special display concepts—as we will see in the following chapters. Below,
we give three examples of basic multi-pass rendering techniques: projective
textures, shadow mapping , and cube mapping .

Projective Textures. Textures are normally mapped onto scene geometry by
assigning each scene vertex to a texture coordinate. Texture coordinates
are two-dimensional and refer to individual pixel positions (called texels) in
a texture. In many cases they are normalized to a range of [0, 1] (this is also
the case in OpenGL). Thus, the texture coordinates 0, 0 and 1, 1 refer to
the lower and the upper right texel in a texture. Since texture coordinates
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Figure 2.25. Projective texture mapping principle.

are vertex properties, they are linearly interpolated within triangles as
previously described.

Besides assigning texture coordinates to scene vertices manually, they
can be generated automatically during rendering. Projective texture map-
ping [168] is an important automatic texture generation method that al-
lows for the warping of an image between two different perspectives (Fig-
ure 2.25).

Consider Figure 2.25: Given the texture image1, the challenge is to
project it out from perspective1 in such a way that each texel (e.g., t1)
maps perspectively correct to a corresponding scene vertex (e.g., v). One
can imagine a slide projector that displays a slide onto a curved surface.
This can be achieved by computing a texture coordinate for each scene ver-
tex that assigns the correct texel to it (e.g., t1 to v in our example). This
dynamic computation of texture coordinates is exactly what projective tex-
ture mapping does. It is very simple to explain: If the scene geometry is
rendered from perspective1 through a transformation pipeline as outlined
in Figure 2.20—but without viewport transformation—the results are pro-
jected device coordinates for each vertex. They are normalized to a range
of [−1, 1]. We mentioned previously, that texture coordinates are normal-
ized to a range of [0, 1]. Consequently, an additional mapping between
device and texture coordinates is required. This mapping simply consists
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Figure 2.26. Projective texture mapping transformation pipeline.

of a two-dimensional scale transformation by 0.5, and a translation by 0.5
in the x/y-directions. Thus, to compute the correct texture coordinate for
each scene vertex, a transformation pipeline has to be configured that con-
sists of the first four steps of a regular transformation pipeline (as outlined
in Figure 2.20 but without viewport transformation) plus two additional
correction transformations (which we refer to as normalization). This is
outlined in Figure 2.26.

With such a transformation pipeline, the scene geometry can simply be
rendered. The results are not pixel positions that map to the frame buffer,
but texture coordinates that map to a texture.

OpenGL has its own matrix stack for automatic texture coordinate
generation. Consequently, the regular matrix stacks for model, view, and
projection transformations remain unaffected by these operations.

If a projective texture map has been created for perspective1 in our
example, the textured scene geometry can be rendered from a different
perspective (e.g., perspective2). The result is that each texel projected out
from perspective1 appears at the correct projection in perspective2. Thus,
t1 in perspective1 is warped into t2 in perspective2 in such a way that both
texels/pixels are spatially bound to vertex v. The same is true for surface
points, texels, and texture coordinates within triangles—they are linearly
interpolated.

The code fragment below describes how to set up a projective texture
map with OpenGL.

...

// generate texture in 1st pass

// projective texture parameters init



�

�

�

�

�

�

�

�

2.4. Rendering Pipelines 57

GLfloat eyePlaneS[]={1.0, 0.0, 0.0, 0.0};

GLfloat eyePlaneT[]={0.0, 1.0, 0.0, 0.0};

GLfloat eyePlaneR[]={0.0, 0.0, 1.0, 0.0};

GLfloat eyePlaneQ[]={0.0, 0.0, 0.0, 1.0};

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);

glTexGenfv(GL_S, GL_EYE_PLANE, eyePlaneS);

glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);

glTexGenfv(GL_T, GL_EYE_PLANE, eyePlaneT);

glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);

glTexGenfv(GL_R, GL_EYE_PLANE, eyePlaneR);

glTexGeni(GL_Q, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);

glTexGenfv(GL_Q, GL_EYE_PLANE, eyePlaneQ);

// projection matrix = texture matrix (perspective_1)

glMatrixMode(GL_TEXTURE);

glLoadIdentity();

// normalization

glTranslatef(0.5, 0.5, 0.0);

glScalef(0.5, 0.5, 1.0);

// projection (on-axis): CG = center of gravity of scene,

// C = center of projection (camera)

float len, delta;

len = sqrt( (CG[0] - C[0]) * (CG[0] - C[0])

+ (CG[1] - C[1]) * (CG[1] - C[1])

+ (CG[2] - C[2]) * (CG[2] - C[2]) );

delta = radius * (len - radius)/len;

glFrustum(-delta, delta, -delta,

delta, len - radius, len + radius);

// viewing transformation

gluLookAt(C[0], C[1], C[2], CG[0], CG[1], CG[2], 0, 0, 1);

glMatrixMode(GL_MODELVIEW);

// enable texture mapping and automatic texture

// coordinate generation

glEnable(GL_TEXTURE_2D);

glEnable(GL_TEXTURE_GEN_S);

glEnable(GL_TEXTURE_GEN_T);

glEnable(GL_TEXTURE_GEN_R);

glEnable(GL_TEXTURE_GEN_Q);
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// render scene in 2nd pass (from perspective_2)

// disable texture mapping and automatic texture

// coordinate generation

glDisable(GL_TEXTURE_2D);

glDisable(GL_TEXTURE_GEN_S);

glDisable(GL_TEXTURE_GEN_T);

glDisable(GL_TEXTURE_GEN_R);

glDisable(GL_TEXTURE_GEN_Q);

...

Shadow mapping. Shadows provide essential queues that help to interpret
a scene more efficiently and enhance realism. Because of this, shadowing
techniques are hardware-supported by today’s graphics cards and can be
generated at interactive frame rates.

Shadow mapping is a two-pass technique that generates hard shadows
(i.e., shadows that are generated from a single point-light source) in a
three-dimensional scene.

Shadow mapping uses projective texture mapping (Figure 2.27(a)). In
a first rendering pass the scene is rendered from the perspective of the
light source without swapping the frame back buffer into the front buffer.
Only the depth buffer content is read back into the texture memory. This
texture is usually referred to as a shadow map—although it indicates the
illuminated scene area rather than the portion that lies in shadow. In the
second pass, the scene is rendered from the perspective of the camera. The

(a) (b)

Figure 2.27. (a) Shadow-mapping principle; (b) example in an AR context.
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shadow map is warped into the perspective of the camera via projective
texture mapping (as described in the previous section). This allows us to
determine two depth values for each visible scene point: The first one can be
read out of the warped shadow map. It represents the distance d1 of scene
points to the light source that are not in shadow (i.e., those that are visible
to the light source). Reading the correct value out of the shadow map is
enabled by the projective texture mapping which results in corresponding
texture coordinates for each scene point at the end of the projective texture
mapping transformation pipeline (Figure 2.26). The second depth value is
computed during the second rendering pass—also during projective texture
mapping. The normalization step in the projective texture mapping trans-
formation pipeline (Figure 2.26) transforms only the x, y coordinates from
normalized device coordinates into texture coordinates. The z component
remains unchanged. Thus it represents the distance d2 from every (for the
camera visible) scene point to the light source—no matter if they are vis-
ible to the light source or not. Comparing these two values allows us to
determine the shadow areas (d2 > d1) and the illuminated areas (d1 ≤ d2).

The texture resolution and the precision of the depth buffer are impor-
tant for good quality shadow maps. Both parameters can be controlled by
optimizing the frustum values (i.e., clipping planes for depth buffer reso-
lution and field of view for texture resolution) of the light source and the
camera with respect to the scene dimensions. For dynamic scenes, these
values have to be adjusted every frame to avoid artifacts that result from
a too low depth-buffer or texture resolution with respect to specific scene
dimensions. It is important that the near and far clipping planes have
the same distance in both frustums—otherwise the depth values are not
mapped to the same space, and the depth test will fail.

The following code fragment describes how to set up a shadow map
with OpenGL.

...

// render scene in 1st pass (perspective_1=light source

// perspective) copy the shadow-map into texture memory

// (read-back)

glBindTexture(GL_TEXTURE_2D, Depth_Map_Id);

glCopyTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32_SGIX,

0, 0, ShadowMapSize, ShadowMapSize, 0);

glDepthFunc(GL_LEQUAL);

// projective texture parameters init -> same as above
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...

GLfloat sm_border[]={1.0, 1.0, 1.0, 1.0};

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,

GL_CLAMP_TO_BORDER_ARB);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,

GL_CLAMP_TO_BORDER_ARB);

glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR,

sm_border);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_SGIX,

GL_TRUE);

glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_COMPARE_OPERATOR_SGIX,

GL_TEXTURE_LEQUAL_R_SGIX);

// projection matrix = texture matrix (perspective_1=light

// source perspective) -> same as above

...

// enable texture mapping and automatic texture coordinate

// generation

glEnable(GL_TEXTURE_2D);

glEnable(GL_TEXTURE_GEN_S);

glEnable(GL_TEXTURE_GEN_T);

glEnable(GL_TEXTURE_GEN_R);

glEnable(GL_TEXTURE_GEN_Q);

// render scene in 2nd pass (from perspective_2=perspective

// of camera) disable texture mapping and automatic texture

// coordinate generation

glDisable(GL_TEXTURE_GEN_S);

glDisable(GL_TEXTURE_GEN_T);

glDisable(GL_TEXTURE_GEN_R);

glDisable(GL_TEXTURE_GEN_Q);

glDisable(GL_TEXTURE_2D);

...

Figure 2.27(b) shows an example of shadow-mapping applied in an opti-
cal see-through AR context. How shadows can be thrown from real objects
onto virtual ones and vice versa will be described in Chapter 7.

Cube Mapping. Just like projective texture mapping and shadow mapping,
cube mapping is yet another multi-pass technique that is based on auto-
matic texture generation. It simulates reflections of an environment scene
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Figure 2.28. Cube mapping principle.

on the surface of a particular object. It has been derived from more general
environment mapping techniques [21] and was adapted to the capabilities
of graphics hardware to support interactive frame rates.

A cube map is a texture that consists of six sub-images. These images
are generated by placing a camera in the center of gravity of an object
(called reflecting object) that has to reflect the surrounding environment
scene. Six perspective images of the environment scene (without the re-
flecting object) are then generated in six separate rendering passes. During
each pass, the camera points in a different direction. We can imagine a cube
that encloses the reflecting object. The cube is aligned with the world coor-
dinate system and its center matches the center of gravity of the reflecting
object (Figure 2.28). The parameters of the cameras that generate the six
perspective views are chosen in such a way that each perspective camera
is spanned by one face of the cube. Thus, their directions all differ by 90
degrees, and their x/y field-of-view is also 90 degrees. The six textures
together cover the entire surrounding environment.

During the second rendering pass, the scene (including the reflecting ob-
ject) is rendered from the regular camera’s perspective. When the reflecting
object is being rendered, cube mapping is enabled and an approximated
reflection of the surrounding environment on the reflecting object’s sur-
face is visible. This is achieved by determining the correct cube face and
texture coordinates within each cube-face texture. To do this quickly, a
reflection vector at the cube map’s center is computed for each reflecting
object’s vertex. This vector depends on the regular camera’s position (i.e.,
the view vector). The reflection vector is then used to look up the correct
sub-image and texture coordinates.
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Note that this method is only an approximation of reflection, in contrast
to the physical reflection principles described in Section 2.2. There are two
assumptions made in cube mapping that are physically incorrect, but lead
to interactive frame rates. First, the reflection vectors are computed for a
single point only at the center of the reflecting object and not for each of
its surface points. Second, the reflection vectors are not traced until the
corresponding reflected scene object is found, but they are used to compute
an intersection with perspective scene images arranged in a cubical manor
around the reflecting object. These perspective images are generated for a
single point at the center of the reflecting object and are fixed in direction
(e.g., aligned with the world coordinate system).

The code fragment which follows describes how to set up a cube map
in the correct order with OpenGL.

...

GLuint cm_s = 512; // texture resolution of each face

GLfloat cm_dir[6][3]; // direction vectors

GLfloat cm_up[6][3]; // up vectors

GLfloat cm_c[3]; // viewpoint / center of gravity

GLenum cubeFace[6] = {

GL_TEXTURE_CUBE_MAP_POSITIVE_X_EXT,

GL_TEXTURE_CUBE_MAP_NEGATIVE_X_EXT,

GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT,

GL_TEXTURE_CUBE_MAP_POSITIVE_Z_EXT,

GL_TEXTURE_CUBE_MAP_POSITIVE_Y_EXT,

GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT

};

// define cube map’s center cm_c[] -> center of object

// (in which scene has to be reflected)

// set up cube map’s view directions in correct order

cm_dir[0][0] = cm_c[0] + 1.0; //right

cm_dir[0][1] = cm_c[1] + 0.0; //right

cm_dir[0][2] = cm_c[2] + 0.0; //right

cm_dir[1][0] = cm_c[0] - 1.0; //left

cm_dir[1][1] = cm_c[1] + 0.0; //left

cm_dir[1][2] = cm_c[2] + 0.0; //left

cm_dir[2][0] = cm_c[0] + 0.0; //bottom

cm_dir[2][1] = cm_c[1] + 0.0; //bottom

cm_dir[2][2] = cm_c[2] - 1.0; //bottom

cm_dir[3][0] = cm_c[0] + 0.0; //top

cm_dir[3][1] = cm_c[1] + 0.0; //top

cm_dir[3][2] = cm_c[2] + 1.0; //top



�

�

�

�

�

�

�

�

2.4. Rendering Pipelines 63

cm_dir[4][0] = cm_c[0] + 0.0; //back

cm_dir[4][1] = cm_c[1] + 1.0; //back

cm_dir[4][2] = cm_c[2] + 0.0; //back

cm_dir[5][0] = cm_c[0] + 0.0; //front

cm_dir[5][1] = cm_c[1] - 1.0; //front

cm_dir[5][2] = cm_c[2] + 0.0; //front

// set up cube map’s up vector in correct order

cm_up[0][0]=0.0; cm_up[0][1]=-1.0; cm_up[0][2]= 0.0; //+x

cm_up[1][0]=0.0; cm_up[1][1]=-1.0; cm_up[1][2]= 0.0; //-x

cm_up[2][0]=0.0; cm_up[2][1]=-1.0; cm_up[2][2]= 0.0; //+y

cm_up[3][0]=0.0; cm_up[3][1]=-1.0; cm_up[3][2]= 0.0; //-y

cm_up[4][0]=0.0; cm_up[4][1]= 0.0; cm_up[4][2]= 1.0; //+z

cm_up[5][0]=0.0; cm_up[5][1]= 0.0; cm_up[5][2]=-1.0; //-z

// render the 6 perspective views (first 6 render passes)

for(int i=0;i<6;i++){

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glViewport(0,0,cubemap_size, cubemap_size);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(90.0, 1.0,0.1, INF);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(cm_c[0], cm_c[1], cm_c[2],

cm_dir[i][0], cm_dir[i][1], cm_dir[i][2],

cm_up[i][0], cm_up[i][1], cm_up[i][2]);

// render scene to be reflected

// read-back into corresponding texture map

glCopyTexImage2D(cubeFace[i], 0, GL_RGB, 0, 0,cm_s,cm_s,0)

}

// cube map texture parameters init

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

glTexParameteri(GL_TEXTURE_CUBE_MAP_EXT, GL_TEXTURE_WRAP_S,

GL_CLAMP);

glTexParameteri(GL_TEXTURE_CUBE_MAP_EXT, GL_TEXTURE_WRAP_T,

GL_CLAMP);

glTexParameterf(GL_TEXTURE_CUBE_MAP_EXT, GL_TEXTURE_MAG_FILTER,

GL_LINEAR);

glTexParameterf(GL_TEXTURE_CUBE_MAP_EXT, GL_TEXTURE_MIN_FILTER,

GL_NEAREST);

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_NV);

glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_NV);

glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_NV);
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// enable texture mapping and automatic texture coordinate

// generation

glEnable(GL_TEXTURE_GEN_S);

glEnable(GL_TEXTURE_GEN_T);

glEnable(GL_TEXTURE_GEN_R);

glEnable(GL_TEXTURE_CUBE_MAP_EXT);

// render object in 7th pass (in which scene has to be

// reflected)

// disable texture mapping and automatic texture coordinate

// generation

glDisable(GL_TEXTURE_CUBE_MAP_EXT);

glDisable(GL_TEXTURE_GEN_S);

glDisable(GL_TEXTURE_GEN_T);

glDisable(GL_TEXTURE_GEN_R);

...

How cube mapping is applied to enhance realism for optical see-through
AR in which real objects are being reflected in virtual ones is described in
Chapter 7.

2.4.2 Programmable Rendering Pipelines

Fixed function pipelines transform all incoming data in the same way within
each frame. It is not possible to reconfigure them to treat each entity dif-
ferently. This supports rigid body transformations, but non-linear warping
is not possible.

As we will see in Chapter 6, fixed function pipelines are sufficient to
pre-distort images which are displayed in combination with optical ele-
ments that provide the same transformation characteristic—such as planar
mirrors. Other optical elements, such as curved mirrors or lenses, require a
curvilinear pre-distortion that cannot be realized with early fixed function
pipelines.

A new generation of rendering pipelines is called programmable ren-
dering pipelines. Basically they work in the same way as fixed function
pipelines. The general difference, however, is that programmable pipelines
can be configured with small programs—called shaders—instead of with
simple homogeneous matrices only. These shaders accept parameters that
are passed to them from the main application. This concept allows a much
greater flexibility, because arbitrary and element-individual transforma-
tions can be realized. Even control structures, such as loops or conditions,
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Figure 2.29. Simple programmable rendering pipeline.

can be used in shaders. Such pipelines are important, because they do
hardware-support curvilinear transformations, and consequently real-time
pre-distortion images displayed in combination with view-dependent optics,
such as curved mirrors and lenses.

Currently, two different types of shaders exist: vertex shaders and pixel
shaders. As illustrated in Figure 2.29 they are arranged in a pipeline
configuration.

The following code fragment illustrates a simple frame of a vertex shader
as implemented in NVIDIA’s C for Graphics (Cg) language [47]:

struct input { /*vertex parameters*/

float4 position : POSITION;

float4 normal : NORMAL;

...

};

struct output { /*fragment parameters*/

float2 texcoord : TEXCOORD;

float4 position : POSITION;

float4 color : COLOR;

...

};

output main(input VERTEX_IN /*, additional parameters*/)

{

output PIXEL_OUT;

/* perform computations with VERTEX_IN and

additional parameters that result in PIXEL_OUT */
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return PIXEL_OUT;

}

In Chapter 6, we will see examples for vertex shaders that are used for
image pre-distortion in combination with curved mirrors and lenses.

The next code fragment gives a simple frame for a pixel shader—also
implemented in Cg [47]:

struct input { /* fragment parameters */

float2 texcoord : TEXCOORD;

float4 position : POSITION;

float4 color : COLOR;

...

};

struct output { /* fragment parameters */

float4 color : COLOR;

...

};

output main( input PIXEL_IN /*, additional parameters */) {

output PIXEL_OUT;

/* perform computations with PIXEL_IN and

additional parameters that result in PIXEL_OUT */

return PIXEL_OUT;

}

In Chapter 7 we discuss an example application of a pixel shader used
for real-time color correction that enables a projection on textured surfaces.

2.5 Summary and Discussion

There are two fundamental views on light: light as waves and light as rays.
In reality, they are both just abstractions of what light really is, but the
two views are of advantage when using them to explain how optical systems
work. The subgroup of optics that applies the wave concept is called wave
optics, while the one that abstracts light as rays is called geometric optics.

Our starting point of geometric optics was Snell’s laws for reflection
and refraction which led to image forming optical systems. Mirrors and
lenses—as the two major components of optical systems—and their image-
forming behavior for different surface types have been described in detail
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and appropriate geometric object-image transformations have been pre-
sented. We have seen, that only Cartesian surfaces (such as rotation-
paraboloids, rotation-hyperboloids, and prolate ellipsoids) can generate
stigmatic image pairs. Only planar mirrors, however, provide true stigma-
tism between all object-image pairs and represent absolute optical systems.
The other surface types, which provide stigmatism for a limited number of
points (normally only for their focal points) are difficult to produce. This
is the reason why most optical instruments approximate stigmatic image
formation, and therefore introduce aberrations.

We noted that the human eye itself is a complex optical system. Being
the final link of an optical chain, the eyes can detect two perspectively
different versions of the formed images and send signals to the brain which
fuses them to a three-dimensional picture. Disparity, vergence, and ac-
commodation are the main mechanisms to support stereoscopic viewing.
However, due to the limited retinal resolution of the eyes, small aberra-
tions of non-stigmatic optical systems are not detected. Consequently, the
eyes perceive a single consistent image of the corresponding object—even if
the light rays that are emitted by the object do not intersect exactly at the
image point after travelling through the optical system. We have seen how
stereoscopic viewing can be fooled with graphical stereoscopic displays by
presenting different two-dimensional graphical images to both eyes. Com-
mon passive and active stereo-separation techniques, such as shuttering,
polarization, anaglyphs, ChromaDepth and the Pulfrich effect have been
described, and we explained how they work based on the wave-optical or
physiological and psychological observations we made earlier.

We will learn in Chapter 4 that two different augmented reality dis-
play concepts exist to superimpose graphics onto the user’s view of the real
world. Video see-through, on the one hand, makes use of video-mixing to in-
tegrate graphics into a displayed video-stream of the environment. Optical
see-through, on the other hand, applies optical combiners (essentially half-
silvered mirrors or transparent LCD displays) to overlay rendered graphics
optically over the real view on the physical environment. Both techniques
have advantages and disadvantages, as we will see later.

In this chapter, we have given a broad classification of today’s stereo-
scopic displays and described several classes of autostereoscopic and goggle-
bound techniques. In general, we can say that most autostereoscopic dis-
plays do not yet support optical see-through augmented reality applica-
tions. This is generally due to the technological constraints of the applied
optics. Exceptions are some mirror-based re-imaging displays. Although
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Figure 2.30. First prototype of an autostereoscopic, multi-user capable optical
see-through display implemented by the Bauhaus University-Weimar.

an indirect “window on the world” view on the real environment supported
by video-mixing would be feasible, autostereoscopic displays are still hardly
used for augmented reality tasks. We believe that this will change for both
optical and video see-through with the availability of cost-effective parallax
displays. (We will present examples in upcoming chapters.) Figure 2.30
shows a first example of a multi-user optical see-through display that uses
an autostereoscopic parallax screen.

While autostereoscopic displays do not require additional devices to
address most visual depth cues, goggle-bound displays strongly depend
on head-worn components to support a proper separation of the presented
stereoscopic images. Video see-through and optical see-through head-
mounted displays are today’s dominant AR display devices. However, they
entail a number of ergonomic and technological shortcomings, which will
also be discussed later. To overcome these shortcomings and to open new
application areas, the virtual reality community orientated itself more and
more away from head-mounted displays and towards projection-based spa-
tial displays such as surround screen displays and embedded screen displays.
Compared to head-mounted displays, projection-based devices provide a
high and scalable resolution, a large and extendable field of view, an easier
eye accommodation, and a lower incidence of discomfort due to simula-
tor sickness. They lack in mobility and in optical see-through capabilities
though, and have limitations in the number of users they can support
simultaneously. Head-mounted projector displays might represent a com-
promise that tends to combine the advantages of HMDs with those of pro-
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jection displays. However, they suffer from the imbalanced ratio between
heavy optics (and projectors) that results in cumbersome and uncomfort-
able devices and ergonomic devices with a low image quality. Currently,
this is a general drawback of all head-attached displays that are depen-
dent on miniature display elements. All these issues might improve in the
future, with emerging technology, such as miniature projectors, new optics,
Light Emitting Polymers (LEPs), or Organic Light Emitting Diodes
(OLEDs), etc.

Projection-based spatial displays in combination with video-mixing sup-
port a more immersive “window on the world” viewing. Video-mixing,
however, still banishes the users from the real environment and, in combi-
nation with such devices, allows only a remote interaction. Compared to
an optical combination, video-mixing also has a number of technological
shortcomings. Especially for projection-based display systems, problems
that are related to the video-mixing technology, such as a time delayed
video-presentation (due to the time required to capture and pre-mix the
video streams), a reduced resolution of the real environment (due to the lim-
ited resolution of the cameras), and a strong limitation of head movements
(due to restricted movements of the cameras) handicap the implementation
of interactive and flexible augmented reality applications on this basis.

Augmented reality concepts are being proposed that suggest to detach
the display technology from the user and to embed it into the real environ-
ment instead. This follows the evolution of virtual reality technology. In
analogy to the term spatial virtual reality, this paradigm became known as
spatial augmented reality. This concept is the focus of this book.

Just like for mobile AR displays, spatial augmented reality displays con-
sist of two main optical components; light generators (such as projectors or
screens) and optical combiners (such as mirrors, semi-transparent screens,
and lenses). In the following chapters, we will describe how graphics can
be rendered in real-time to support view-dependent and view-independent,
on- and off-axis spatial AR displays. We learn how image distortion caused
by non-trivial display geometries or optical reflection and refraction can be
graphically neutralized in such a way that the formed images appear or-
thoscopic, stereoscopically, and perspectively correct and undistorted to an
observer.

While absolute optical systems (i.e., planar mirrors) provide an affine
optical mapping, affine geometry transformations that are integrated into
traditional fixed function pipelines can be used for neutralization. For op-
tical elements that require curvilinear transformations (like curved mirrors
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and lenses), however, an image warping is more efficient and more flexi-
ble than a geometric transformation. Programmable rendering pipelines in
combination with multi-pass techniques neutralize such optical effects at
interactive frame rates. These techniques will be discussed in more detail
in Chapter 6. Finally, projective texture mapping and derived techniques
are essential tools for projector-based augmentation and projector-based
illumination methods, discussed in Chapter 5 and Chapter 7, respectively.
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3
Augmented Reality Displays

Augmented reality displays are image-forming systems that use a set of
optical, electronic, and mechanical components to generate images some-
where on the optical path in between the observer’s eyes and the physical
object to be augmented. Depending on the optics being used, the image
can be formed on a plane or on a more complex non-planar surface.

Figure 3.1 illustrates the different possibilities of where the image can
be formed to support augmented reality applications, where the displays
are located with respect to the observer and the real object, and what type
of image is produced (i.e., planar or curved).

Head-attached displays, such as retinal displays, head-mounted dis-
plays, and head-mounted projectors, have to be worn by the observer.
While some displays are hand-held , others are spatially aligned and com-
pletely detached from the users. Retinal displays and several projector-
based approaches produce curved images—either on the observer’s retina
or directly on the physical object. Most of the displays, however, produce
images on planes—called image planes—that can be either head-attached
or spatially aligned. Images behind real objects cannot be formed by a
display that is located in front of real objects. In addition, if images are
formed by a display located behind a real object, this object will occlude
the image portion that is required to support augmentation.

When stereoscopic rendering is used to present mixed (real and virtual)
worlds, two basic fusion technologies are currently being used: video-mixing
and optical combination.

While video mixing merges live record video streams with computer-
generated graphics and displays the result on the screen, optical combi-
nation generates an optical image of the real screen (displaying computer
graphics) which appears within the real environment or within the viewer’s
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Figure 3.1. Image generation for augmented reality displays.

visual field while observing the real environment. Both technologies have
a number of advantages and disadvantages which influence the type of ap-
plication they can address.

Today, most of the stereoscopic AR displays require the user to wear
some sort of goggles to provide stereo separation. Autostereoscopic ap-
proaches, however, might play a dominant role in the future of AR.

In this chapter, we discuss several types of augmented reality displays.
Note that we present examples in each display category, rather than to
provide a complete list of individual devices.

3.1 Head-Attached Displays

Head-attached displays require the user to wear the display system on his
or her head. Depending on the image generation technology, three main
types exist: retinal displays that use low-power lasers to project images
directly onto the retina of the eye, head-mounted displays that use minia-
ture displays in front of the eyes, and head-mounted projectors that make
use of miniature projectors or miniature LCD panels with backlighting and
project images on the surfaces of the real environment.
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3.1.1 Retinal Displays

Retinal displays [83, 145, 89] utilize low-power semiconductor lasers (or, in
the future, special light-emitting diodes) to scan modulated light directly
onto the retina of the human eye, instead of providing screens in front of
the eyes. This produces a much brighter and higher-resolution image with
a potentially wider field of view than a screen-based display.

Current retinal displays share many shortcomings with head-mounted
displays (see Section 3.1.2). However, some additional disadvantages can
be identified for existing versions:

• Only monochrome (red) images are presented since cheap low-power
blue and green lasers do not yet exist.

• The sense of ocular accommodation is not supported due to the com-
plete bypass of the ocular motor system by scanning directly onto the
retina. Consequently, the focal length is fixed.

• Stereoscopic versions do not yet exist.

The main advantages of retinal displays are the brightness and contrast,
and low-power consumption—which make them well suited for mobile out-

Figure 3.2. Simplified diagram of a retinal display.
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door applications. Future generations also hold the potential to provide
dynamic re-focus, full-color stereoscopic images, and an extremely high
resolution and large field-of-view.

3.1.2 Head-Mounted Displays

Head-mounted displays are currently the display devices which are mainly
used for augmented reality applications. Two different head-mounted dis-
play technologies exist to superimpose graphics onto the user’s view of
the real world: video see-through head-mounted displays that make use of
video-mixing and display the merged images within a closed-view head-
mounted display, or optical see-through head-mounted displays that make
use of optical combiners (essentially half-silvered mirrors or transparent
LCD displays). A comparison between these two general technologies can
be found in [163].

Several disadvantages can be noted in the use of head-mounted displays
as an augmented reality device. Note that most of these shortcomings are
inherited form the general limitations of head-attached display technology.

(a) (b)

Figure 3.3. (a) Simplified optical see-through; (b) video see-through concepts.
Example of video see-through head-mounted display setup with camera, back-
pack computer, and GPS antenna.
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• Lack in resolution that is due to limitations of the applied miniature
displays. In the optical see-through case, only the graphical overlays
suffer from a relatively low resolution, while the real environment can
be perceived in the resolution of the human visual system. For video
see-through devices, both the real environment and the graphical
overlays are perceived in the resolution of the video source or display.

• Limited field of view that is due to limitations of the applied optics.

• Imbalanced ratio between heavy optics (that results in cumbersome
and uncomfortable devices) and ergonomic devices with a low image
quality.

• Visual perception issues that are due to the constant image depth.
For optical see-through, since objects within the real environment
and the image plane that is attached to the viewer’s head are sensed
at different depths, the eyes are forced to either continuously shift
focus between the different depth levels, or perceive one depth level
as unsharp. This is known as the fixed focal length problem, and it
is more critical for see-through than for closed-view head-mounted
displays. For video see-through, only one focal plane exists—the
image plane.

• Optical see-through devices require difficult (user- and session-
dependent) calibration and precise head tracking to ensure a correct
graphical overlay. For video see-through, graphics can be integrated
on a pixel-precise basis, but image processing for optical tracking
increases the end-to-end system delay.

• Increased incidence of discomfort due to simulator sickness because of
head-attached image plane (especially during fast head movements)
[133].

• Conventional optical see-through devices are incapable of providing
consistent occlusion effects between real and virtual objects. This is
due to the mirror beam combiners that reflect the light of the minia-
ture displays interfering with the transmitted light of the illuminated
real environment. To solve this problem, Kiyokawa et al. [79] use
additional LCD panels to selectively block the incoming light with
respect to the rendered graphics.
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Figure 3.4. Osaka University’s ELMO–An optical see-through head-mounted
display that provides mutual occlusion by using a see-through LCD panel in
front of the HMD optics. (Image courtesy of Kiyoshi Kiyokawa [79] c© 2002.)

Head-mounted displays are currently the dominant display technology
within the AR field. They support mobile applications and multi-user
applications if a large number of users need to be supported.

Some variations of head-mounted displays exist that are more attached
to the real environment than to the user. Optical see-through boom-
like displays (e.g., Osaka University’s ELMO [79]) or video see-through,
application-adopted devices (e.g., the head-mounted operating microscope
[48]) represent only two examples.

3.1.3 Head-Mounted Projectors

Head-mounted projective displays (HMPDs) [130, 73, 70] redirect the frus-
tum of miniature projectors with mirror beam combiners so that the images
are beamed onto retro-reflective surfaces (see Chapter 2) that are located
in front of the viewer. A retro-reflective surface is covered with many thou-
sands of micro corner cubes. Since each micro corner cube has the unique
optical property to reflect light back along its incident direction, such sur-
faces reflect brighter images than normal surfaces that diffuse light. Note
that this is similar in spirit to the holographic films used for transparent
projection screens. However, these films are back-projected while retro-
reflective surfaces are front-projected.

Other displays that utilize head-attached projectors are projective head-
mounted displays (PHMDs) [78]. They beam the generated images onto
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(a)

(b) (c)

Figure 3.5. (a) Simplified head-mounted projector concept; (b) and (c) exam-
ples of head-mounted projector prototypes (Image (b) courtesy of Hong Hua and
Jannick Rolland [70] c© 2001.)

regular ceilings, rather than onto special surfaces that face the viewer. Two
half-silvered mirrors are then used to integrate the projected stereo image
into the viewer’s visual field. Their functioning is generally different than
head-mounted projectors. It can be compared to optical see-through head-
mounted displays. However, in this case the images are not displayed on
miniature screens, but projected to the ceiling before being reflected by the
beam splitter.
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Figure 3.6. Example of how HMPDs are used to make things transparent—
Optical Camouflage. (Image courtesy of Inami et al. [73].)

Head-mounted projective displays decrease the effect of inconsistency
between accommodation and convergence that is related to HMDs. Both
head-mounted projective displays and projective head-mounted displays
also address other problems that are related to HMDs. They provide a
larger field of view without the application of additional lenses that intro-
duce distorting arbitrations. They also prevent incorrect parallax distor-
tions caused by inter-pupil distance (IPD) mismatch that occurs if HMDs
are worn incorrectly (e.g., if they slip slightly from their designed position).
However, current prototypes also have the following shortcomings:

• The integrated miniature projectors/LCDs offer limited resolution
and brightness.

• Head-mounted projective displays might require special display sur-
faces (i.e., retro-reflective surfaces) to provide bright images, stereo
separation, and multi-user viewing.

• For projective head-mounted displays, the brightness of the images
depends strongly on the environmental light conditions.
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• Projective head-mounted displays can only be used indoors, since
they require the presence of a ceiling.

Such displays technically tend to combine the advantages of projection
displays with the advantages of traditional head-attached displays. How-
ever, the need to cover the real environment with a special retro-reflective
film material make HMPDs more applicable for virtual reality applications,
rather than for augmenting a real environment.

3.2 Hand-Held Displays

Conventional examples of hand-held displays, such as Tablet PCs, personal
digital assistants [51, 54, 53, 131, 194], or—more recently—cell phones [112]
generate images within arm’s reach. All of these examples combine proces-
sor, memory, display, and interaction technology into one single device, and
aim at supporting a wireless and unconstrained mobile handling. Video
see-through is the preferred concept for such approaches. Integrated video
cameras capture live video streams of the environment that are overlaid by
graphical augmentations before displaying them.

However, optical see-through hand-held devices also exist. Stetton et al
[174] for instance, have introduced a device for overlaying real-time tomo-
graphic data. It consists of an ultrasound transducer that scans ultrasound
slices of objects in front of it. The slices are displayed time-sequentially on a
small flat-panel monitor and are then reflected by a planar half-silvered mir-
ror in such a way that the virtual image is exactly aligned with the scanned
slice area. Stereoscopic rendering is not required in this case, since the visu-
alized data is two-dimensional and appears at its correct three-dimensional
location.

Hand-held mirror beam combiners can be used in combination with
large, semi-immersive or immersive screens to support augmented reality
tasks with rear-projection systems [8]. Tracked mirror beam combiners act
as optical combiners that merge the reflected graphics, which are displayed
on the projection plane with the transmitted image of the real environment.

Yet another interesting display concept is described in Raskar [158]. It
proposes the application of a hand-held and spatially aware video projector
to augment the real environment with context sensitive content. A combi-
nation of a hand-held video projector and a camera was also used by Foxlin
and Naimark of InterSense to demonstrate the capabilities of their optical
tracking system. This concept represents an interesting application of AR
to the fields of architecture and maintenance.
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(a)

(b)

Figure 3.7. (a) AR application running on a PocketPC; (b) a first prototype on
a conventional consumer cell phone. (Images: (a) courtesy of Graz University of
Technology [194]; (b) reprinted from [112] c© IEEE.)

There are disadvantages to each individual approach:

• The image analysis and rendering components is processor and mem-
ory intensive. This is critical for low-end devices such as PDAs and
cell phones and might result in a too high end-to-end system delay
and low frame rates. Such devices often lack a floating point unit
which makes precise image processing and fast rendering even more
difficult.

• The limited screen size of most hand-held devices restricts the covered
field-of-view. However, moving the image to navigate through an
information space that is essentially larger than the display device
supports a visual perception phenomenon that is known as Parks
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Figure 3.8. Example of a hand-held mirror display—The Sonic Flashlight. (Im-
age courtesy of George Stetten [174].)

effect [129]. That is, moving a scene on a fixed display is not the same
as moving a display over a stationary scene because of the persistence
of the image on the viewer’s retina. Thus, if the display can be moved,
the effective size of the virtual display can be larger than its physical
size, and a larger image of the scene can be left on the retina. This
effect was also pointed out by the early work of Fitzmaurice [49] on
mobile VR devices.

• The optics and image sensor chips of integrated cameras in consumer
hand-held devices are targeted to other applications and,
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Figure 3.9. The Transflective Pad—a hand-held mirror beam combiner in com-
bination with a large rear-projection screen. (Image reprinted from [8] c© Black-
well.)

(a)

(b)

Figure 3.10. (a) AR Flashlight—augmenting the world with a tracked hand-held
projector; (b) context aware iLamp—augmenting of an identified surface (Images:
(a) courtesy of InterSense Inc. c© 2002; (b) reprinted from [158] c© ACM.)
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consequently, provide a limited quality for image processing tasks
(e.g., usually high barrel distortion). For example, they do not allow
for modifying focus. Fixed focus cameras can only be effective in a
certain depth range. This also applies to the image output of hand-
held projectors if they are used to augment surfaces with a certain
depth variance, since projected images can only be focused on a single
plane.

• Compared to head-attached devices, hand-held devices do not provide
a completely hands-free working environment.

Hand-held devices, however, represent a real alternative to head-attached
devices for mobile applications. Consumer devices, such as PDAs and cell
phones, have a large potential to bring AR to a mass market.

More than 500 million mobile phones have been sold worldwide in
2004. It has been estimated that by the end of the year 2005 over fifty
percent of all cell phones will be equipped with digital cameras. Today,
a large variation of communication protocols allows the transfer of data
between individual units, or access to larger networks, such as the Inter-
net. Leading graphics board vendors are about to release new chips that
will enable hardware-accelerated 3D graphics on mobile phones including
geometry processing and per-pixel rendering pipelines. Variable-focus liq-
uid lenses will enable dynamic and automatic focus adjustment for mobile
phone cameras, supporting better image processing. Some exotic devices
even support auto-stereoscopic viewing (e.g., Sharp), GPS navigation, or
scanning of RFID tags. Due to the rapid technological advances of cell
phones, the distinction between PDAs and mobile phones might be history
soon. Obviously, compact hand-held devices, such as PDAs—but especially
mobile phones—are becoming platforms that have the potential to bring
augmented reality to a mass market. This will influence application areas,
such as entertainment, edutainment, service, and many others.

3.3 Spatial Displays

In contrast to body-attached displays (head-attached or hand-held), spatial
displays detach most of the technology from the user and integrate it into
the environment. Three different approaches exist which mainly differ in
the way they augment the environment—using either video see-through,
optical see-through, or direct augmentation.
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Figure 3.11. Example for a screen-based video see-through display. The locomo-
tion of a dinosaur is simulated over a physical footprint. (Image reprinted from
[13] c© IEEE.)

3.3.1 Screen-Based Video See-Through Displays

Screen-based augmented reality is sometimes referred to as window on the
world [46]. Such systems make use of video mixing and display the merged
images on a regular monitor.

Like fish tank virtual reality systems which also use monitors, window
on the world setups provide a low degree of immersion. Within an aug-
mented reality context, the degree of immersion into an augmented real
environment is frequently expressed by the amount of the observer’s visual
field (i.e., the field of view) that can be superimposed with graphics. In
the case of screen-based augmented reality, the field of view is limited and
restricted to the monitor size, its spatial alignment relative to the observer,
and its distance to the observer.
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For screen-based augmented reality, the following disadvantages exist:

• Small field of view that is due to relatively small monitor sizes. How-
ever, the screen-size is scalable if projection displays are used.

• Limited resolution of the merged images (especially dissatisfying is
the limited resolution of the real environment’s video image). This is
a general disadvantage of video see-through [163].

• Mostly remote viewing, rather than supporting a see-through metaphor.

Screen-based augmentation is a common technique if mobile applica-
tions or optical see-through does not have to be supported. It represents
probably the most cost efficient AR approach, since only off-the-shelf hard-
ware components and standard PC equipment is required.

3.3.2 Spatial Optical See-Through Displays

In contrast to head-attached or hand-held optical see-through displays,
spatial optical see-through displays generate images that are aligned within
the physical environment. Spatial optical combiners, such as planar [9, 10]
or curved [9, 16] mirror beam combiners, transparent screens [124, 19], or
optical holograms [18] are essential components of such displays. This class
of augmented reality displays is described in much more detail in Chapter 6.

Spatial optical see-through configurations have the following shortcom-
ings.

• They do not support mobile applications because of the spatially
aligned optics and display technology.

• In most cases, the applied optics prevents a direct manipulative in-
teraction with virtual and real objects that are located behind the
optics. Exceptions are reach-in configurations—either realized with
see-through LCD panels [167] or mirror beam combiners [56].

• The number of observers that can be supported simultaneously is re-
stricted by the applied optics. Multi-user displays such as the Virtual
Showcase [9] and its variations support four and more users.

• A mutual occlusion between real and virtual environment is not sup-
ported for the same reasons as for optical see-through head-mounted
displays. Projector-based illumination techniques which solve this
problem [12] are discussed in Chapter 7.
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• Due to the limited size of screens and optical combiners, virtual ob-
jects outside the display area are unnaturally cropped. This effect
is known as window violation and is also present for fish tank and
semi-immersive virtual reality displays.

The general advantages of spatial optical see-through displays are eas-
ier eye accommodation and vergence, higher and scalable resolution, larger
and scalable field of view, improved ergonomic factors, easier and more
stable calibration, and better controllable environment (e.g., tracking, il-
lumination, etc.).This can lead to more realistic augmented environments.
Chapter 6 will discuss these issues in more detail.

(a)

(b)

Figure 3.12. (a) A monitor-based single-user Virtual Showcase variation; (b)
the Extended Virtual Table using a large beam splitter and projection screen.
(Images: (a) reprinted from [9] c© IEEE; (b) reprinted from [10] c© MIT Press.)
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(a)

(b)

Figure 3.13. (a) Ogi’s invisible interface; (b) transparent projection screen.
(Images: (a) courtesy of Ogi et al. [124]; (b) courtesy of Laser Magic Produc-
tions [86].)

3.3.3 Projection-Based Spatial Displays

Projector-based spatial displays use front-projection to seamlessly project
images directly on a physical objects’ surfaces instead of displaying them
on an image plane (or surface) somewhere within the viewer’s visual field.
Single static [147, 192, 13] or steerable [138], and multiple [152, 155, 157, 19,
20] projectors are used to increase the potential display area and enhance
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(a) (b)

(c) (d)

Figure 3.14. (a) and (b) Example of a screen-based AR display using a see-
through LCD panel—The AR window; (c) and (d) example of a mirror-based AR
display using optical see-through beam splitters (Images: (a) and (b) courtesy of
ZGDV e.V. [167] c© 2005; (c) and (d) courtesy of Manfred Bogen [56].)

the image quality. Chapters 5 and 7 will discuss these concepts in more
detail.

A stereoscopic projection and, consequently, the technology to separate
stereo images is not necessarily required if only the surface properties (e.g.,
color, illumination, or texture) of the real objects are changed by overlaying
images. In this case, a correct depth perception is still provided by the
physical depth of the objects’ surfaces.

However, if three-dimensional graphics are to be displayed in front of
or behind the object’s surfaces, a view-dependent, stereoscopic projection
is required as for other oblique screen displays [150].

Projector-based spatial displays introduce several new problems:

• Shadow-casting of the physical objects and of interacting users that is
due to the utilized front-projection. (Multi-projector configurations
can solve this problem.)
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(a) (b)

(c) (d)

Figure 3.15. Spatially augmenting a large environment: (a) virtual model; (b)
physical display environment constructed using Styrofoam blocks; (c) and (d)
augmented display. Note the view-dependent nature of the display, the per-
spectively correct view through the hole in the wall, and the windows. (Images
courtesy of Kok-Lim Low [93].)

• Restrictions of the display area that is constrained to the size, shape,
and color of the physical objects’ surfaces (for example, no graphics
can be displayed beside the objects’ surfaces if no projection surface
is present). Multi-projector configurations can solve this problem.

• Restriction to a single user in case virtual objects are displayed with
non-zero parallax. (Multi-user projector configurations can solve this
problem.)

• Conventional projectors only focusing on a single focal plane located
at a constant distance. Projecting images onto non-planar surfaces
causes blur. Exceptions are laser projectors which do not suffer from
this effect.
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Figure 3.16. ShaderLamps with Taj Mahal: The wooden white model is illu-
minated; the scanned geometry of the Taj Mahal is augmented to add texture
and material properties; The geometry is then registered to the real Taj Ma-
hal and displayed from the projector’s viewpoint. (Images reprinted from [155]
c© Springer-Verlag; see Plate II.)

• Increased complexity of consistent geometric alignment and color cal-
ibration as the number of applied projectors increases.

On the other hand, projector-based spatial displays overcome some of
the shortcomings that are related to head-attached displays: an improved
ergonomics, a theoretically unlimited field of view, a scalable resolution,
and an easier eye accommodation (because the virtual objects are typically
rendered near their real world location).

As we will see in Chapters 5 and 7, real-time geometric, photometric and
radiometric image compensation enables the augmentation of geometrically
complex, colored and textured everyday surfaces that do not need to be
optimal for a projection.

3.4 Summary and Discussion

In this chapter, we gave an overview of different display technologies suit-
able for augmented reality applications. We categorize these approaches
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Figure 3.17. The Everywhere Display concepts (Images courtesy of Claudio
Pinhanez [138], IBM Corporation c© 2001–2002.)

into three main classes: head-attached, hand-held, and spatial displays.
Different technologies have their individual advantages and disadvantages.
While head-attached and hand-held displays support mobile applications,
spatial displays do not. However, spatial displays can currently provide
higher quality and more realism than can be achieved with current mobile
devices. This is due to two reasons. First, a limited environment with
a fixed display can be controlled better than a large environment with a
moving display. This mainly applies to tracking and illumination, which
are difficult to realize for arbitrary mobile applications. Second, most of
the technology is not body-attached. Consequently, the size and weight of
spatial displays does not conflict with ergonomic factors. The power con-
sumption of spatial displays is also not a critical factor, as is the case for
mobile devices. All of this leads to spatial displays that provide a higher
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resolution, a larger field of view, brighter and higher contrast images, a
better scalability, an improved focus situation, and a consistent augmenta-
tion (e.g., consistent lighting and occlusion, better image registration, etc.)
than possible with head-attached or hand-held displays. For applications
that do not require mobility, spatial displays are a true alternative.

For historic reasons, head-mounted displays are mainly used for aug-
mented reality applications today. They serve as an all-purpose platform
for all sorts of scenarios. Many of these scenarios are not addressed effi-
ciently because the technology has not been adapted to the application.
This might be one reason for the fact that the breakthrough of augmented
reality has not happened yet. We can compare this to the virtual real-
ity field—which is more or less related to augmented reality. In the be-
ginnings of virtual reality, head-mounted displays were also the dominant
display technology. They are still used today, but they co-exist as part of
a large pallet of different display types, including non-immersive fish tank
VR screens as well as semi-immersive and immersive projection displays in
all variations. Today, the VR community and end-users have the possibility
to choose the display technology that best suits their application demands.
This is probably one reason for the success of VR in recent years.

A similar development process can also shape the future of augmented
reality. The display examples that are presented in this chapter are only a
few examples of different possibilities. It is clear that some of them will be
established inside and outside the field, and others will not. Cell phones,
for instance, have an extremely high potential for being the breakthrough
for mobile augmented reality. An AR application developed for such a
platform can directly address a mass market, since no specialized and ex-
pensive hardware is required. Spatial displays, on the other hand, have
the potential of merging real and virtual with very high quality. Thus, a
visible separation between physical and synthetic environments might dis-
appear completely one day. The advantage of this evolution is obvious.
The right technology can be chosen to address the demands of an applica-
tion with the highest possible efficiency. Thus, mobile AR and spatial AR
go hand-in-hand.
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Geometric Projection

Concepts

In this chapter, we review the fundamentals of image formation and projec-
tion using a projector. Traditionally, a projector is used to create flat and
usually rectangular images. In this sense, the three-dimensional computer
graphics rendering algorithms used for a CRT or a flat LCD panel can be
directly used for a projector without modification. However, a projector
and display surface can be used in a variety of geometric configurations. In
this chapter, we introduce a general framework that allows image synthe-
sis under these geometric variations. The framework leads to a rendering
framework and a better understanding of the calibration goals. We describe
the issues involved and how the proposed algorithms are used in various
types of display environments.

4.1 Geometric Model

Consider the conceptual framework for a camera in computer vision. A
camera model defines the relationship between three-dimensional points
and two-dimensional pixels. These are extremely useful geometric abstrac-
tions based on simple approximations, e.g., based on a pin-hole camera
model that ignores optical or quantization issues. We introduce a simi-
lar conceptual framework for projector-based environments to express the
geometric relationship between the display components.

Let us consider the problem of rendering images of three-dimensional
virtual objects using a projector. There are various possibilities. The
user could be moving or be static. The projector can be in an arbitrary
position illuminating the display surface in a front-projection setup or rear-
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projection setup. The display surface can be planar or non-planar. The
displayed virtual object can be in front of, behind, or on the display sur-
face. The proposed framework can be used under any one of the display
configurations.

4.1.1 Geometric Relationship

Consider the components in Figure 4.1. What is their interrelation regard-
less of the specific display configuration?

The geometric framework defines the geometric relationship among
the (tracked) user T , projector P , and the display surface D so that,
for any arbitrary three-dimensional point V on the virtual object,
we can express the mapping between V and the projector pixel mp

in the rendered image of the object.

Further, the transformation from the three-dimensional virtual object space
to the two-dimensional projector image space can be described via an in-
termediate point on the display surface. Let us express the projector, P

by its center of projection, Pc, and retinal image plane, PR.

(a) (b)

Figure 4.1. Rendering the image of virtual object under different projector
display configurations: (a) a front projection display with a point on the virtual
object behind the screen; (b) a rear-projection system with the virtual point in
front of the screen. The display surface in both cases is non-planar.
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The projection mp of a virtual point V is the intersection of the ray
PcM with projector image plane PR, where M is the intersection
of the ray TV with the display surface D.

The process can be described with more details in two logical steps. For a
tracked user at T , we need to present the image of V to the user along the
ray TV .

1. First compute where V would be displayed on the display surface D

by intersecting ray TV with D, shown in Figure 4.1 as M .

2. Then find the pixel, mp, that illuminates M using the analytic pro-
jection model of the projector.

Thus, V and mp are related by the projection of M which in turn is defined
by the ray TV and the surface D. The projection is undefined if the ray
TV does not intersect D or if ray PcM does not intersect image plane PR.

Similar to the geometric relationship in computer vision and image-
based rendering, this simple abstraction can be exploited to describe for-
ward, backward and mutual relationships between three-dimensional points
and two-dimensional pixels. In the simplest case, in perspective projection
or scan-conversion during image synthesis, which are both forward mapping
stages, this relationship can be used to find the pixel coordinates {mp} of
virtual points {V }. On the other hand, using backward mapping between
the pixels {mp} and points on the display surface {M}, one can compute
the user view of the displayed image. Backward mapping is also useful for

Figure 4.2. Relationship between geometric components.



�

�

�

�

�

�

�

�

96 4. Geometric Projection Concepts

texture mapping and, as described in Chapter 2, it can be used in projec-
tive textures. Mutual relationships, such as “in front of”, between points in
the virtual scene can be expressed for visibility computation in the user’s
view. Mutual relationship between views can also be used to determine
corresponding pixels that render the same virtual feature point in two or
more overlapping projectors. As described later, this mapping is critical
for geometric registration in seamless multi-projector displays.

The proposed framework is general enough to describe the image syn-
thesis process of most projector-based applications. Any specific projector-
based application is a special case of this general description.

4.1.2 Geometric Components

Irrespective of which three-dimensional virtual scene is being displayed, the
rendering process for a given projector involves three geometric components
that define the display configuration:

1. Projection model for the projector;

2. Shape representation of the display portal surface;

3. User location.

The display portal for a given projector is the segment of the display
surface illuminated by that projector. The user views the displayed virtual
objects through this portal. Although the following discussion is valid
for diverse representations for these three components, we will make some
practical assumptions that simplify the discussion and the algorithms that
follow.

Projector model. The projector image generation can be approximated us-
ing a pin-hole projection model, similar to the pin-hole camera model. In
practice, this is a good approximation if the aperture is small and the ra-
dial distortion in the optical system is minimal. The advantage of assum-
ing a pin-hole model is that the image generation can be mimicked using
the projection matrix of the traditional graphics pipeline. The projection
parameters for a pin-hole device can be defined by the traditional 3 × 4
three-dimensional perspective projection matrix [25, 119, 103, 91, 44]. Let
us denote a two-dimensional pixel by m = [u, v]T and a three-dimensional
point by M = [X,Y,Z]T . The corresponding points in homogeneous co-
ordinates are represented by m̃ = [u, v, 1]T and M̃ = [X,Y,Z, 1]T . The
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relationship between the projector pixel m and the corresponding 3D point
M illuminated on the display surface can be described as follows:

w m̃ = F [R t] M̃,

where w is an arbitrary scale factor, R and t represent the external pa-
rameters (i.e., transformation between the world coordinates system and
the projector coordinate system), and F represents the projector intrinsic
matrix. F can be expressed as

 α γ u0

0 β v0

0 0 1


 ,

where (u0, v0) are the coordinates of the principal point, α and β are the
scale factors in image u and v axes of the projector frame buffer and γ is the
parameter describing the skew of the two image axes. In many cases, there
is no need to explicitly represent the intrinsic and external parameters. We
can use the 3 × 4 concatenated projection matrix P̃ = F [R t]. It depends
on 11 parameters (twelve minus a scale factor) and completely specifies the
idealized pin-hole projection for a projector:

wm̃ = P̃ M̃ . (4.1)

In this sense, the pin-hole projector is the dual of a pin-hole camera. The
projection matrix for both devices is defined by the same set of parameters.
In the traditional graphics pipeline, the 3 × 4 matrix P̃ is upgraded to a
4×4 matrix P . The additional row allows computation of depth values for
visibility queries.

Display portal. The display surface, D, can be represented using a piece-
wise planar approximation, D̂. A common method is to express the surface
using a polygonal mesh. The mesh is in turn defined by a set of vertices
(with local surface orientation) and connectivity between those vertices.
There is a simple quality versus cost trade-off: a mesh with more ver-
tices usually allows a better approximation but requires more storage and
additional computation. The advantage of using a polygonal mesh repre-
sentation is again its compatibility with the geometric primitives used in
graphics hardware.

User location. The user location is represented simply by a three-dimensional
position in the world coordinate system. For stereo or multiple first-person
rendering, the user location may be different for each eye or each view.
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Finally, we are ready to express the relationship between a virtual point
V and its projection mp in the final image, in terms of the projection matrix
P̃ , display surface D̂, and the (tracked) user location T . If TM = k TV

and k > 0

m̃p
∼= P̃M̃

∼= P̃[TV ∧ D̂]

The binary operator ∧ denotes the intersection of a ray and a surface and
∼= indicates equality up to scale. The condition k > 0, ensures the display
portal and virtual object are on the same side of T . When 1 ≥ k > 0,
the virtual object is behind the screen with respect to the user, and when
k > 1, the virtual object is in front of the screen.

4.2 Rendering Framework

Given the geometric relationship as described in Section 3.1 and the as-
sumptions stated previously, we can define the projection of a single vir-
tual point. What approach should we use to compute a complete image
of a given virtual object? We describe a new rendering framework that
addresses the basic problems in image generation: transformation and pro-
jection to compute final pixel coordinates, visibility, and color calculations.

A simple but naive approach would be to compute the required inter-
section and projection for every point on the virtual object. However, a
more sophisticated approach can take advantage of known computer graph-
ics techniques such as scan conversion, ray-casting, image-based rendering
with pixel reprojection, or a look-up using a stored light field.

4.2.1 Rendering Components

Our goal is to render a perspectively correct image of a virtual three-
dimensional scene for a moving user on an irregular surface using a casually
aligned projector. An irregular surface is typically a curved or non-planar
surface which may also be discontinuous (Figure 4.3). A casually aligned
projector is a projector in a roughly desirable but not necessarily predeter-
mined configuration.

In addition to the three geometric components, projector parameters,
display portal, and user location, the rendering framework involves the
following components:



�

�

�

�

�

�

�

�

4.2. Rendering Framework 99

Figure 4.3. Types of irregular display surfaces.

• Virtual object, the input model for the rendering. It is a collection of
geometric or image primitives sufficient to create novel views of that
object.

• Desired view, the perspective view presented to the user. It is an
intermediate view.

• Projected image, which is the final rendering result displayed by the
projector.

4.2.2 Rendering Strategy

We propose a rendering strategy which is described with the following two
logical steps and then presented in more detail in the rest of this section.

(1) Compute desired view through the display portal and map the view
back on to the portal’s idealized display surface;

(2) Compute projector’s view of that augmented portal.

This surprisingly straightforward strategy simplifies existing rendering tech-
niques and enables new algorithms. Note that, depending on the choice of
forward or backward mapping, the sequence of the two logical steps may
be reversed. Figure 4.4 shows the rendering process corresponding to the
situation in Figure 4.1(a). The following discussion, however, is valid for
any projector-display configuration.
The two logical steps are now described in more detail.

(a) First, in the frustum of the desired view, we represent the ray TV

using two parameters on an arbitrary projection plane. This is equiv-
alent to computing the image of V from the user location T on that
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Figure 4.4. The Rendering Framework. The two rendering steps corresponding
to the display configuration shown in Figure 4.1(a).

projection plane. In Figure 4.4 this projection is denoted by the pro-
jection matrix PT and the projected pixel is denoted by mT on the
image plane ΠT . Pixel mT is shaded according to the nearest object
point along the ray TV . To transfer pixel mT to a projector pixel,
we again need to use the intermediate point on the display portal.
The pixel mT is transferred to the nearest point on the display portal
along the ray TmT . Finally, the display portal is augmented with the
image transferred from ΠT via the center of projection T .

(b) In the second step, we find the image of the augmented display portal.
Referring to Equation (4.1), let us say that the projector’s internal
and external parameters are mimicked by the projection matrix PP .
If we render the augmented display portal with this projection matrix,
the point M is transferred to pixel mP .

The two projection matrices are sufficient to describe the pixel projec-
tion, visibility, color computations, and view frustum culling operations in
traditional computer graphics. We consider three examples to demonstrate
how the rendering strategy can be used effectively to construct conceptually
simple rendering algorithms.

4.2.3 Example 1: Non-Planar Surface

In the general case, (i.e., when the irregular display surface is represented
using a piecewise planar representation), we can use a two-pass rendering
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method. The first pass exploits the forward mapping of three-dimensional
virtual points to pixels in the desired view. The second pass involves back-
ward mapping to find projector pixel colors using a variant of conventional
texture mapping.

In the first pass, the desired image for the user is computed and stored
as a texture map. In the second pass, the texture is effectively projected
from the user’s viewpoint onto the polygonal model of the display surface.
The display surface model, with the desired image texture mapped onto it,
is then rendered from the projector’s viewpoint. In OpenGL API, this is
achieved in real time using projective textures [168]. When this rendered
image is projected, the user will see a correct perspective view of the virtual
object.

The additional rendering cost of the second pass is independent of the
complexity of the virtual model [148]. However, due to limited resolution of
the texture used during the second pass, the resultant warped image may
exhibit resampling artifacts. From a practical implementation standpoint,
the artifacts are minimized if the image plane of the view frustum chosen
in the first pass is parallel to the best fit plane of the display surface.

This two-pass technique is sufficient to describe the rendering process for
various projector-display configurations. However, many simplifications are
possible under more restricted situations such as when the user is expected
to be at a fixed location (e.g., a sweet-spot,) when the display surface is
planar, or when the display portal matches the virtual object.

Figure 4.5. Two-pass rendering for a non-planar display surface involves forward
and backward mapping.
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Figure 4.6. Rendering for a planar surface. The pixels mT and mP are related
by a homography.

4.2.4 Example 2: Planar Surface

Consider rendering images for a head-tracked user in CAVE [35]. In the
paper, the authors describe a relatively complex mechanism to render the
images. How can we use our simple two-step rendering strategy? In CAVE,
each projector illuminates a planar rectangular display portal. Hence, we
can use a simplification of the rendering steps. We propose a strategy
using forward mapping for both rendering steps. In the first step, the
view through the display portal mapped back on the display portal can
be rendered directly using a simple off-axis projection matrix PT . The
view frustum for PT is specified by the center of projection, T , and the
rectangular display portal. Thus, the image plane ΠT is parallel to the
display portal. (In OpenGL API, we can use the glFrustum() function
call to set up the matrix.) For the second step, we need to consider the
relationship between the display portal and projector image. In CAVE,
the projector optical axis is orthogonal to the display portal. In addition,
the projected image rectangle exactly matches the display portal rectangle.
Hence, the projector projection matrix PP is the identity, and we do not
need to find the internal parameters of the projector.

What if the projector is oblique with respect to the display portal?
How can we create a perspectively correct image for a head-tracked user
when a projector creates a keystoned quadrilateral image (Figure 4.6)?
As described later, we exploit the well known homography between the
projector image and the display portal. Hence, the transformation PP in
the second step can be expressed in terms of the homography.
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Figure 4.7. Given three angles of relative orientation, how should the input image
be pre-warped to display an axis-aligned rectangular image? (Image reprinted
from [154] c© IEEE.)

4.2.5 Example 3: A Self Correcting Projector

Suppose we want to create a projector that illuminates a “correct” image
on a vertical planar surface even when it is oblique. The user is not head-
tracked, the input is a rectangular image and a “correct” displayed image in
this case is a rectangular image that is aligned with the world horizon and
vertical. In Figure 4.7, the goal is to display the desired image inside the
inscribed rectangle by pre-warping the input image. The required keystone
correction parameters are dependent on the three parameters of rotation,
Rw−p, between the world coordinate system and the projector coordinate
system. The three are essentially angles between the projector optical axis
and the normal of the vertical plane [154]. One can detect the three angles
with gravity-based tilt sensors and a camera. The question is, given the
three angles, how can we pre-warp the input rectangular image so that it
appears correct? At first this may appear as a difficult problem, and one
may be tempted to first compute the planar perspective distortion based
on the three angles. However, using the two-step rendering strategy, we
can create a conceptually simple solution.

The first step is trivial. Since the user is not head-tracked and the
display portal is expected to match the rectangular input image, PT is
the identity. The input image is simply texture mapped on a normalized
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rectangle i.e., within coordinates (−1 : 1,−1 : 1,−1). The second step is
more interesting. Given the projector internal matrix, F , and the rotation,
Rw−p, we can simply use PP = F [Rw−p 0].

The second step essentially imitates the display situation. What is the
projector’s view of a world axis-aligned rectangle on a vertical wall? If
we render such a view and, with the same projector, project the resultant
image back on the vertical wall, we will get back the exact rectangle.

4.3 Calibration Goals

To improve the flexibility of the display setup, we need to reduce the
rigid constraints on the components. Once the geometric parameters of
the display environment are estimated, the system can tune itself to gen-
erate images that look perspectively correct. Thus, we are substituting
the hardware-oriented tasks, e.g., electromechanical adjustment of rigid
infrastructure, with intelligent but computationally intensive software al-
gorithms. From a geometric viewpoint, there are three main calibration
goals in using the proposed rendering framework: parameter estimation,
geometric registration, and intensity blending. The calibration procedures
for individual applications are governed by these goals.

4.3.1 Parameter Estimation

The accurate estimation of geometric quantities—user location, shape of
the display portal, and intrinsic and extrinsic parameters of the projector—
is essential for generating images without distortion or artifacts. The user
location is reported by optical or magnetic tracking sensors [141, 201]. The
shape of the display surface is computed using a depth extraction system
with a camera in the loop or using a mechanical or laser scanning device.
It is also possible to use the projector in two roles: as a source of active
structured light for depth extraction and as a device for displaying per-
spectively correct images. The process of estimating projector parameters
is similar to camera calibration, given the duality.

In addition, relationships among coordinate systems of multiple devices
are required. They include rigid transformation between tracker and pro-
jector coordinate systems and pixel correspondence between overlapping
projectors.

While the techniques for estimating such parameters are well known, it
is very difficult to compute them to a high degree of precision. It is safe
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to assume that the estimated parameters will have non-zero errors. The
goal then is to devise robust techniques to display images that perceptually
approach the desired view for the user.

4.3.2 Geometric Registration

There are two types of registration that are crucial for displaying correct
imagery in augmented reality: (1) precise alignment between the projected
image and the features on the display surface, and (2) geometric agree-
ment between image features in overlapping images projected by multiple
projectors.

For each projector, we need to ensure that the projected image is reg-
istered with respect to the intended display surface features. In other
words, after estimation of the display surface and projection matrix PP of
the projector, if a three-dimensional point M on the display surface maps
to pixel m̃p

∼= PP M̃ , then for correct alignment, pixel mp should physi-
cally illuminate the three-dimensional point M . For planar or panoramic
display applications, the display surface is typically chosen to be locally
smooth so that small errors are not perceptible. In more complex setups,
such as the one described in Chapter 8 (Figure 8.2), the image features
in the rendering of the virtual model of the Taj Mahal need to be reg-
istered with corresponding shape features on the physical model of the
Taj Mahal.

When multiple projectors are used, any small error for individual pro-
jector images will lead to disagreement between projected image features in
an overlap region. This, in turn, will lead to visible gaps and discontinuities
in projected imagery. To achieve seamless images with accurate geometric
alignment, we need to ensure that an image of a virtual three-dimensional
point V from two or more projectors project at the same point on the dis-
play surface. If pixel mpi for each projector i = 1, 2..n, n ≥ 2, illuminates
the same point M on the display surface, then they must all correspond to
a common pixel mT in the desired image.

However, we do not compute explicit projector-to-projector pixel cor-
respondence to achieve the goals. The geometric registration is achieved
implicitly using the proposed rendering framework. This greatly reduces
the cumbersome task of the electromechanical alignment process and elim-
inates two-dimensional image space warps. By imitating the internal pa-
rameters of the projector in the rendering parameters, we can essentially
represent the complete display process.
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4.3.3 Intensity Normalization

Regions of the display surface that are illuminated by multiple projectors
appear brighter, making overlap regions very noticeable to the user. In tra-
ditional multi-projector setups, overlapping projector images are feathered
near the edges. This is also known as soft-edge blending.

In the ideal case, the weights can be easily determined once we have
registered all of the projectors. In practice, there are two types of deviations
that can affect the blended images.

1. Geometric misregistration: Due to small errors in estimated parame-
ters of the geometric components, the projected images do not match
exactly at their respective edges. This type of static misregistration
is due to (a) calibration errors and (b) deviation from the assumed
idealized analytic model of the display components. In addition, over
time, electro-mechanical vibrations disturb the positions of projec-
tors.

2. Intensity variation: The color response of two or more projectors is
likely to be different due to non-linearities. Further, over time, the
response may change.

Hence, there is a need to achieve a smooth transition in the overlap.
The intensities in the resulting superimposition then would have reduced
sensitivity to the static calibration errors and dynamic variations. The
strategy is to assign weights ∈ [0, 1] to attenuate pixel intensities in the
overlap region.

Some choices are shown in Figures 4.8–4.11. In the top two rows of
Figure 4.8(a), black indicates a 0 and grey indicates a 1. The other shades
of grey indicate weights between 0 and 1. The figures show three choices
for intensity weight distribution.

(a) Contribution from a single projector at every point in the overlap.
The overlap is segmented into distinct sub-regions and each sub-
region is illuminated by a single projector. All the intensity weights
are either 0 or 1.

(b) Equal contribution from all projectors in the overlap. In a region
with n overlapping projectors, the weight for all the pixels in that
region is 1/n.

(c) Linear ramps in the overlap, where the weights are 0 near the bound-
ary and increase linearly away from the boundary.
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Figure 4.8. Ideal case, accurate reg-
istration. Top two rows, choice (a):
contribution from a single projector
for each point. Rows 3 and 4, choice
(b): equal contribution from each
projector in the overlap. Rows 5
and 6, choice (c): linear ramps in
the overlap. Bottom row: Per pixel
addition of contributing weights, all
methods result in same solution.

Figure 4.9. Choice (a): Contribu-
tion from a single projector at every
point in overlap. Top three rows
show result of misregistration in case
of projectors moving away from each
other. Top row, projector moves to
left. Second row, projector moves
to right. Third row, resulting addi-
tion shows a dark gap. Bottom three
rows show extra overlap results in a
spiked region that is twice as bright.

Figure 4.10. Choice (b): Equal
contribution from both projectors at
every point in overlap. Top three
rows show projector moving away
from each other, resulting in a vis-
ible valley of lowered intensity. Bot-
tom three rows show extra overlap
results in a narrow brighter regions.

Figure 4.11. Choice (c): Lin-
ear ramps in overlap. Top three
rows show projector moving away
from each other, resulting in an
overlap region with overall slightly
lower intensity. Bottom three rows
show extra overlap results in slightly
brighter overlap regions.

In the ideal case of accurate geometric registration, all three cases be-
have the same. In the presence of small misregistration (either a gap or
an additional overlap), as can be easily observed, feathering is preferred
over other solutions that create visible gaps, valleys, or any other sharp
variation. The specific intensity feathering algorithms are more complex
and described later.
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(a) (b)

(c) (d)

Figure 4.12. The display continuum: The same rendering framework can be
used for different displays surfaces, from (a) arbitrary and unrelated curved and
non-planar surface and (b) traditional planar screen to (c) surfaces that are close
to virtual objects and (d) identical to the virtual object.

4.4 Display Environments and Applications

In Figure 4.12, we show various types of display surfaces for a single projec-
tor application. Whether the display surface is non-planar, planar, or we
are projecting on a closed object, we can use the same rendering framework.
The framework can be also be used in applications where a set of projectors
are used together. As described earlier, the setup could have a static or
moving user and front or rear projection screen. In the next chapters, we
will learn about the specific techniques for spatially immersive displays.

4.5 Summary and Discussion

In this chapter, we reviewed the fundamental geometric concepts in using a
projector for displaying images. Our goal is to understand how a projector
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can be used beyond creating a flat and rectangular image. As we will see
in the following chapters, a projector can be treated as a dual of a cam-
era to create a myriad of applications on planar or non-planar surfaces, as
well as for creating images on closed objects in combination with mirrors
and holograms. For the sake of geometric understanding, we have treated
the projector as a pin-hole projection device, similar to a pin-hole cam-
era. Then, the geometric relationship between the two-dimensional pixels
in the projector frame buffer and the three-dimensional points in the world
illuminated by those pixels is described using perspective projection. How-
ever, in practice, a projector has a non-zero aperture and involves optical
elements. This introduces issues of depth of field (focus), radial distor-
tion, and chromatic aberration. In this book, we do not go into the details
of these issues; however, while describing projector-based applications, we
provide practical guidelines to minimize the impact of these issues.

The proposed geometric framework leads to a simpler rendering tech-
nique and a better understanding of the calibration goals. In the next
chapter, we describe the applications of the framework to form a concrete
basis for explanation and analysis.
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5
Creating Images with Spatial

Projection Displays

In this chapter, we present the calibration and rendering schemes for various
types of display surfaces. We first describe the strategy for planar displays,
arbitrary non-planar displays, and quadric curved displays. Then, we focus
on the specific projector-based augmentation problem where images are
projected not on display screens, but directly onto real-world objects.

5.1 Planar Displays

In Section 4.2.4 we described a single-pass technique to display onto planar
surfaces. That technique is an improvement over the more general two-pass
rendering method for non-planar surfaces. Here, we present a complete set
of techniques to demonstrate the application of the single-pass method.
First, we show how the technique can be integrated with depth-buffer-

(a) (b) (c)

Figure 5.1. (a) The display techniques allow for a wide range of configurations
of roughly aligned projectors and displays; (b) example of arbitrary projector
overlaps before calibration; (c) viewer in the final display environment. (Images
reprinted from [151] c© IEEE.)
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(a) (b)

Figure 5.2. (a) Traditional projectors are orthogonal and create rectangular
images; (b) oblique projectors create keystoned images.

based visibility computation. Then, we extend the concept of homography,
due to planar homographies, to multi-projector tiled displays, and finally
we describe some practical methods to calibrate and render such displays.

Projectors are typically mounted so that their optical axis is perpen-
dicular to the planar display surface. Such configurations are also used in
immersive environments to render perspectively correct imagery for a head-
tracked moving user. They include CAVE [35], PowerWall [143] (m × n

array of projectors), or ImmersiveDesk (back-lit and tilted desktop work-
benches) [36, 146, 1]. By design, typical display systems try to maintain
the image plane parallel to the plane of the display surface. However, this
leads to the need for constant electro-mechanical alignment and calibration
of the projectors, screens, and the supporting structure.

When the projector optical axis is not perpendicular to the display
screen, the resultant image is keystoned and appears distorted
(Figure 5.2(b)). As mentioned in Chapter 3, we will call this type of pro-
jection an oblique projection and the traditional projection an orthogonal
projection (Figure 5.2(a)). In general, when a projector is roughly po-
sitioned, it is likely to be oblique. Even if the projector is orthogonally
positioned in large display systems, after a period of time it can become
oblique due to mechanical or thermal variations. We can address the prob-
lem of rendering perspectively correct images with oblique projectors using
the rendering framework. Our goal is to avoid frequent mechanical adjust-
ments and instead, compensate for the image distortion using the graphics
pipeline. Although techniques to prewarp the images to avoid visible dis-
tortion exist, the technique described here achieves the results without
additional cost of rendering or affecting the visual quality. The planar case
of the rendering framework uses the homography between the points on
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the display screen and the projector pixels, induced due to the planarity
of the screen. By using the homography during rendering, we show that
oblique projectors can be used to easily create immersive displays. The
main advantage is that we can use the traditional graphics pipeline with a
modified projection matrix and an approximation of the depth buffer.

5.1.1 Previous Approach

In most cases, the problem of oblique projection is avoided simply by de-
sign. The orthogonal projectors create well-defined rectangular images. In
some projectors the projected cone appears to be off-axis, but the display
screen is still perpendicular to the optical axis. In workbenches [36], mir-
rors are used, but the resultant image is designed to appear rectangular
(corresponding to rectangular frame buffers). Great efforts are taken to
ensure that the projector image plane is parallel to the display screen and
that the corner pixels are matched to predefined locations on the screen.
Similar to the situation with current panoramic displays mentioned in the
previous section, this leads to expensive maintenance and frequent adjust-
ments of the projectors, screens, and the supporting structure. The cost
of the system itself becomes very high because the supporting structure
needed is usually very large and rigid.

When the projectors are oblique, a popular technique is to use a two-
pass rendering method to prewarp the projected image. In the first pass,
one computes the image of the 3D virtual scene from the viewpoint of the
head-tracked user. The result is stored in texture memory and, in the
second pass, the image is warped using texture mapping. This warped
image, when displayed by the projector, appears perspectively correct to
the user. Such two-pass rendering techniques are used for planar surfaces
[181] as well as for irregular display surfaces [38, 147, 149].

The second rendering pass increases the computation cost and, in the
case of immersive displays, it will also increase the rendering latency. In
addition, texture mapping of the limited resolution image of the result of
the first pass leads to resampling artifacts such as aliasing and jaggies. Due
to the loss in the visual quality, such two-pass techniques are likely to work
well only when high resolution projectors are used.

5.1.2 Single Projector

When the 3D surface points illuminated by all projector pixels lie in a plane,
we can use an algorithm that avoids the additional texture mapping stage.



�

�

�

�

�

�

�

�

114 5. Creating Images with Spatial Projection Displays

The following method achieves the result using a single rendering pass.
A complete application of this algorithm, including the issue of visibility
determination, is discussed later.

Let us re-visit the problem of rendering images of a virtual point V for
a user at T . In this case, the display surface is represented by a plane Π,
however, the optical axis of the projector may be oblique with respect to
the display plane. Since the projector pixel mP illuminates the point M

on the screen, the corresponding rendering process should map point V to
pixel mP . This can be achieved in two steps of the rendering framework.
First, compute the image of V from the user location T , which we denote
by mT using the view frustum PT . Then, find the mapping between mT

and mP (Figure 4.6).
A simple observation is that the two images of a point on the plane

(such as M) are related by a homography induced by the plane of the
screen. Hence, the two images of any virtual point V , mT computed using
PT and mP of the projector, are also related by the same homography.
The homography is well known to be a 3 × 3 matrix defined up to scale,
which we denote by A [44]. This observation allows us to create a new
projection matrix for rendering. The projection matrix is a product of an
off-axis projection matrix, P̃T (from the user’s viewpoint) and the 3 × 3
homography matrix, A. There are various ways to create the projection
matrix P̃T and the corresponding homography matrix A. We describe a
method that updates PT as the user moves, but the homography matrix
remains constant.

Orthogonal projection. The first step in creating image mT for V for a
given user location is the same as the process for displaying images assum-
ing orthogonal projectors (Figure 5.3). The method is currently used in
many immersive display systems. Here we describe a more general tech-
nique. This technique also deals with a possibly non-rectangular projected
image due to keystoning.

Let us consider the definition of P̃T for the user at T . Without loss
of generality, let us assume that the display plane Π is defined by z = 0.
First, create an (world coordinate) axis-aligned rectangle S on Π bounding
the keystoned quadrilateral illuminated by the projector (Figure 5.4). The
projection matrix is specified by the view frustum pyramid created by T

and the four corners of S. Thus, T is the center of projection and S on Π
is the retinal plane. As the user moves, S remains the same, but T , and
hence the projection matrix P̃T , are updated.
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Figure 5.3. For orthogonal projectors, a simple off-axis projection can be used.

If the projector is orthogonal, S can be the same as the rectangular
area illuminated by the projector. However, even if the area is not rectan-
gular (because, say, the shape of the frame buffer chosen for projection is
not rectangular), the projection matrix P̃T can be used to render correct
images.

Figure 5.4. Defining PT using axis-aligned bounding rectangle S.
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Homography. In the second step, the image calculated assuming an or-
thogonal projector is corrected to compensate for the oblique projection
using homography. The homography—between an image created with P̃T

and the image to be rendered in the projector’s frame buffer—is induced
due to the plane of the screen. The homography matrix, A3×3, is well
known to be defined up to scale and maps pixel coordinates from one im-
age to a second image [44, 33]. We need to compute the eight unknown
parameters of A3×3 that relate the two images of V : mT due to P̃T , and
its image in the projector, mP .

mP
∼= A3×3mT ,

 mPx

mPy

1


 ∼=


 a11 a12 a13

a21 a22 a23

a31 a32 1





 mTx

mTy

1


 .

where the symbol ∼= denotes equality up to a scale factor. Note that
the choice of view frustum for P̃T makes this homography independent
of the user location and hence remains constant. If the three-dimensional
positions of points on Π illuminated by four or more pixels of the pro-
jector are known, the eight parameters of the homography matrix, A =
[a11, a12, a13; a21, a22, a23; a31, a32, 1], can be easily calculated. Since the
homography matrix remains constant, it can be computed off-line.

5.1.3 Single-Pass Rendering

We would ideally like to compute the pixel coordinates mP directly from
the 3D virtual point V . This can be achieved by creating a single 3 × 4
projection matrix, AP̃T . Let us consider how this approach can be used
in the traditional graphics pipeline. We need to create a 4 × 4 version of
P̃T , denoted by PT and of A, denoted by A4×4. As a traditional projection
matrix, PT transforms 3D homogeneous coordinates into 3D normalized
homogeneous coordinates (4 element vectors). Typically, one can obtain the
pixel coordinates after the perspective division. We create the new matrix,
A4×4 to transform these normalized 3D coordinates (without perspective
division) to the projector pixel coordinates but try to keep the depth values
intact:

A4×4 =




a11 a12 0 a13

a21 a22 0 a23

0 0 1 0
a31 a32 0 1


 .
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(a) (b)

Figure 5.5. (a) First step using simple off-axis projection matrix PT ; (b) in the
second step, warp using homography A. The modified projection matrix is APT .

The complete projection matrix is P ′
T = (A4×4PT ). (It is easy to ver-

ify that [mPx,mPy,mPz, 1]T ∼= A4×4PT [V, 1]T .) This achieves the desired
rendering and warping using a single projection matrix without additional
cost. It is more efficient than using the general rendering framework which
requires two rendering passes. Since the image in the frame buffer is gen-
erated in a single pass, there are no resampling artifacts. Finally, when the
image is projected on any surface coplanar with Π, the displayed virtual
object appears perspectively correct. This approach is sufficient to render
correct images of virtual three-dimensional points.

However, if the visibility computation is based on the traditional depth
buffer or z-buffer, one important modification is necessary. In this modified
algorithm there is a third logical step. In the first step, we compute the
image of the virtual three-dimensional scene assuming the projector is or-
thogonal (Figure 5.5(a)). Then, we warp this image to compensate for the
oblique projection using the homography between the display plane and
the projector’s image plane (Figure 5.5(b)). The depth values are also af-
fected due to the warping, and hence, in a third step, they are transformed
so that they can be used for visibility computations.

However, all three steps can be implemented using a single 4 × 4 pro-
jection matrix as in traditional rendering using graphics hardware. In this
section, we focus on an application that involves a front-projection display
system, but the techniques are also applicable to rear-projection systems
such as CAVE or Immersive Workbenches.
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5.1.4 Visibility Using Depth Buffer

Although the approach described in Section 5.1.2 creates correct images of
virtual three-dimensional points, it is important to note that the traditional
depth buffer cannot be effectively used for visibility and clipping. Let us
consider this problem after we have rendered the image as described in
Section 5.1.3.

Problems with depth buffer. As we saw earlier, a virtual point V is ren-
dered using a projection matrix P ′

T = A4×4PT (Figure 5.5(b)). The depth
values of virtual points between the near and far plane due to PT are
mapped to [−1, 1]. Assume [mTx,mTy,mTz,mTw]T = PT [V, 1]T and the
corresponding depth value is mTz/mTw ∈ [−1, 1]. After homography, the
new depth value, is actually

mPz =
mTz

(a31mTx + a32mTy + mTw)
,

which (1) may not be in [−1, 1], resulting in undesirable clipping with near
and far plane of the view frustum, and (2) is a function of pixel coordinates.

Let us consider the problem of interpolation during scan conversion
in traditional rendering. The depth values (as well as color, normal, and
texture coordinates) at a pixel need to be computed using a hyperbolic
interpolation. Homogeneous coordinates along with a 4 × 4 perspective
projection matrix (such as PT ) achieve hyperbolic interpolation of depth
values using a simpler linear interpolation (of the reciprocal of the values).
In our case, when using a projection matrix P ′

T = A4×4PT , we are per-
forming two successive hyperbolic interpolations; first for the perspective
projection and second for the homography. At first, it may seem that a
single 4×4 matrix would not be able to achieve the required interpolation.
Fortunately, while the first matrix PT introduces a hyperbolic relationship
in the depth (or ‘z’) direction, the homography matrix A4×4 leads to a
hyperbolic increment along the x and y coordinate axis of the viewing co-
ordinate system. Thus both depth as well as screen space transformation
can be achieved with a single 4 × 4 matrix.

Thus, although the homography does not introduce any inaccuracies in
interpolation of depth values in the frame buffer, the clipping with near
and far planes creates serious problems; some parts of virtual objects may
not be rendered.

Approximation of depth buffer. We can achieve the rendering and warping
in a single pass, however, using an approximation of the depth buffer.
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Figure 5.6. The plot shows depth buffer values along a scan line for points
along constant depth: (a) using PT ; (b) after homography, A4×4PT , the depth
values range beyond [−1, 1]; (c) with an approximation of depth buffer, A′

4×4PT ,
traditional graphics pipeline can be used to render perspectively correct images
for a tracked moving user.

The rendering framework described the choice of view frustum for PT

based on a rectangle S. This chosen rectangle bounds the projected key-
stoned (quadrilateral) area (Figure 5.5(b)). Since S is larger than the dis-
played imagery, the normalized x and y coordinates due to PT , mTx/mTw

and mTy/mTw ∈ [−1, 1] for points displayed inside S. Hence,

(1 − |a31| − |a32|)mTz

(a31mTx + a32mTy + mTw)
∈ [−1, 1].

This scale factor makes sure that the resultant depth values after warp-
ing with homography are ∈ [−1, 1]. This will avoid undesired clipping with
the near and far plane. Further, by construction of PT , the angle between
the projector’s optical axis and the normal of the planar surface is the same
as the angle between the optical axis and the normal of the retinal plane
of the view frustum for PT . To summarize, the modified projection matrix
is A′

4×4PT , where

A′
4×4 =




a11 a12 0 a13

a21 a22 0 a23

0 0 1 − |a31| − |a32| 0
a31 a32 0 1


 . (5.1)
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5.1.5 Multiple Projectors

We can extend the same single-pass rendering and warping technique to
register multiple overlapping projectors to create larger displays on a planar
wall. In this section, we describe a necessary modification. More details
are also available in [156]. Some popular systems using m × n arrays of
projectors are PowerWall [143] and Information Mural [71]. The major
challenge is matching the two images so that the displayed image appears
seamless. Again, this is typically achieved with rigid structure which is
difficult to maintain and needs frequent alignment. We can instead use
roughly aligned projectors or even relatively oblique projectors.

Figure 5.7. Homography between overlapping projectors on planar display
surface.

Consider two overlapping projectors creating seamless images of virtual
three-dimensional scenes on a shared planar surface (Figure 5.7). Let’s say
the projection matrices for the two projectors are P1 and P2. We exploit
the homography between the images in the two projector frame buffers. If
the 3 × 3 homography matrix mapping pixel coordinates from projector 1
to those in projector 2 is A21, then the 3 × 4 projection matrix P̃2 can be
replaced with P̃ ′

2 = A21P̃1.
Note that, as we have seen earlier, although the corresponding 4 × 4

matrix P ′
2 will create correct images of three-dimensional virtual points, we

cannot use the traditional depth buffer for visibility and are forced to use
approximated depth values. If P1 itself is a result of oblique projection,
so that P1 = A′

4×4PT , the corresponding homographies A3×3, and A21

are used together. We will say A21T = A21A3×3. We first create the
corresponding 4×4 matrix A′

21T−4×4 (similar to Equation (5.1)). We then



�

�

�

�

�

�

�

�

5.1. Planar Displays 121

replace P2 with P ′
2 = A21T−4×4PT to achieve correct rendering, warping,

and depth buffer transformation. In practice, since it involves only eight
unknown parameters, it is easier to compute the homography A21 than to
calibrate the projector and compute the projection matrix P2.

It is also necessary to achieve intensity blending of overlapping projec-
tors. The complete problem of intensity feathering was addressed in the
last section under generalized panoramic displays. In this case, however,
due to the exact mapping defined by A21, it is very easy to calculate the
actual quadrilateral (or triangle in some cases) of overlap on the screen
as well as in the projector image space. The intensities of pixels lying
in this quadrilateral in both projectors are weighted to achieve intensity
roll-off [97, 27, 185] and necessary blending. The technique for intensity
blending in the case of two-pass rendering are described with more detail
in Raskar[149] and Surati[181] and are applicable here for a single-pass
rendering with minor modifications. The undesired parts of the projector
image, for example the corners of projected regions outside a defined dis-
play region, can be truncated to create large and rectangular imagery with
multiple projectors. The region in the projector frame buffer is masked off
by rendering a black polygon at the near plane.

Implementation. We describe a case study of a multi-projector planar screen
display [151]. We implemented a system consisting of three overlapping
projectors displaying images on a 12 × 8 foot planar screen. The user is
tracked with an optical tracking system. The homography between the de-
sired image for the user and the first projector’s frame buffer is calculated
using approximately eight points. The mapping between overlapping pro-
jectors’ pixels (again described by a homography) are actually computed
by observing individual pixels of each of the projectors with a camera. The
camera field of view covers the projection of all three projectors.

During preprocessing, one needs to compute the extent of projector
illumination in world coordinates (WC), the transformation between the
tracker and WC, and the homography A3×3. There are many ways of
computing the homography and tracker-WC transformation. For example,
one can have predefined locations on screen with known three-dimensional
coordinates (e.g., corners of the cube in CAVE or a ruled surface on a
workbench). In this case, one can manually, or using a camera-feedback,
find which projector pixels illuminate these markers and then compute the
unknown parameters. The origin in world coordinates is defined to be near
the center of projection of the first projector.
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Usually predefined markers are not available, for example, when one
wants to simply aim a projector at a screen and render head-tracked im-
ages. We describe a technique that computes the homography and trans-
formation simultaneously.

Assume the screen defines the WC: the plane Π ≡ z = 0 and origin
(preferably) near the center of projected quadrilateral. We take tracker
readings of locations on the screen illuminated by projector pixels. We will
compute the transformation between the tracker and WC. Let us denote
the tracker reading for a three-dimensional point M by M trk.

• Assign one of the measured locations illuminated by a projected pixel
as the origin of WC, O, (the tracker measurement effectively giving
the translation between origins in both coordinate systems).

• To find the relative rotation, find the best-fit plane in tracker coordi-
nates for the screen, the normal to the screen denoted the by vector
r3.

• Assign one illuminated pixel in an approximate horizontal direction,
Mx, as a point on the WC x-axis.

• Find the vector M trk
x −Otrk in tracker coordinates, normalize it to get

vector r1. The rotation is R = [r1; r3× r1; r3]. The transformation
is [R (−R ∗ Otrk); 0 0 0 1].

• Find the three-dimensional coordinates of points on the screen illu-
minated by projector pixels

• Finally, Compute the homography A3×3. The homography allows the
computation of extents of projector illumination in WC.

Wei-Chao Chen at the University of North Carolina (UNC) at Chapel
Hill has implemented a stereo display using two completely overlapping
projectors. One projector is used to display images for the left eye and
the second for the right eye. The two images are distinguished by using
polarizing optical filters on the projectors and eyeglasses. He computed
PT for each projector and the common homography matrix A3×3 using the
UNC HiBall tracker. The same tracker is later used for tracking the user’s
head-motion [30].

For multiple overlapping projectors, we actually used a camera to find
the homography between the projected images, and we also use the same
information for computing weighting functions for intensity blending. The
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use of camera feedback for multiprojector displays is described in more
detail later.

Summary of techniques. The sequence of steps suggested for using a single
oblique projector to create a planar immersive display are given here.

During preprocessing:

• Turn on (four or more) projector pixels, mP1...mPn and find, in
tracker coordinates, the position of the illuminated three-dimensional
points on the plane, M1...Mn.

• Compute the equation of the plane and transform the coordinate
system so that it is coplanar with Π ≡ z = 0. We will denote the
transformed points by MΠ

i .

• Find the homography, AΠP , between MΠ
i and mPi. Using AΠP ,

compute three-dimensional points on Π illuminated by corner pixels
of the projector. Then find the axis-aligned rectangle, S, that bounds
the four corners of the illuminated quadrilateral (the min and max of
x and y coordinates).

• For a random user location T , compute PT for a frustum created with
S. Find normalized image coordinates mTi = PT MΠ

i . Compute the
homography A3×3, between mTi and projector pixels mPi. Create
A′

4×4 from A3×3 using Equation (5.1).

During run-time at every frame:

• Update T for the new user location and compute PT (using a graphics
API function such as glFrustum).

• Use A′
4×4PT as the new projection matrix during rendering.

As one can see, the only human intervention involved is finding the three-
dimensional tracker readings Mi for screen points illuminated by four or
more projector pixels mPi.

5.1.6 Applications

The new techniques can easily be used in current immersive display sys-
tems. For example, in immersive workbenches, it is much easier to take
tracker readings at a few points (illuminated by the projector), compute
the homography off-line, and then use the modified projection matrix for
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the rest of the session. There is no need to worry about achieving some
predefined alignment of the projector.

In CAVE, one can roughly align projectors so that they actually create
images larger than the usable size of the screen. Since the usable screen
sections are already marked (we can assume that the markers are stable
unlike the configuration of the projectors and mirror), one needs to only
find the projector pixels that illuminate those markers. The corners of the
cube also allow geometric continuity across the screens that meet at right
angles. The part of the imagery being projected outside the usable screen
area can be masked during rendering.

Finally, this technique is useful for quickly creating a simple immersive
display by setting up a screen, a projector, and a tracking system. For
stereo displays, the off-axis projection matrix PT is different for the left
and right eyes, but the homography matrix A3×3 remains constant.

5.1.7 Issues

The techniques are valid only when the assumed pinhole projection model
(dual of the pinhole camera model) is valid. However, as seen in Figure 5.8,
this assumption is valid for even low-cost single-lens commercial projectors.
However, projectors typically have a limited depth of field and hence, when
they are oblique, all pixels may not be in focus. The imagery is in focus
for only a limited range of angles between the screen plane normal and the
projector optical axis. The intensities across the screen are also not uniform
when the projector image plane is not parallel to the screen. However, this
can be compensated for by changing the intensity weights during rendering
(using, for example alpha blending). In the case of a multi-projector tiled

(a) (b) (c)

Figure 5.8. For a given plane of focus, a projector can be treated as a pin-hole
device. The pictures here show experimental verification of linear perspective
projection: (a) straight line segments in image plane appear straight on a planar
display surface; (b) further, line segments projected by overlapping projectors can
be aligned to sub-pixel accuracy using homography; (c) example of overlapping
text in a warped image.
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(a)

(b)

Figure 5.9. (a) Images displayed by an oblique projector which created key-
stoned imagery corrected using homography; (b) displayed image without and
with intensity blending. (Images reprinted from [151] c© IEEE.)

display, the alpha blending is performed for the overlap region, and hence
it can be extended to include intensity correction for an oblique projector
without any additional cost. The transformation of depth-buffer values
essentially reduces the usable range of depth values, and hence the depth
resolution is also decreased. In terms of resolution, rendering speed, and
visibility computation, the displayed images were visually equivalent to
those generated by orthogonal projection systems.

5.1.8 Discussion

The technique presented in this section allows rendering correct images
even when the projectors are positioned without any precise alignment.
Techniques for prewarping the images using a two-pass rendering are al-
ready available. However, the two major advantages of this technique are
that it does not increase the cost of rendering and does not introduce re-
sampling artifacts such as aliasing. The possibility of rendering images
with oblique projectors that are visually equivalent can eliminate the need
for cumbersome electro-mechanical adjustment of projectors, screens and
the supporting structure.
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5.2 Non-Planar Display

Let us consider the complete procedure for creating a display using a sin-
gle projector on an non-planar display surface. This forms the basis of
discussion for the multi-projector seamless display like the one shown in
Figure 5.1. Conventional projector-based display systems are typically de-
signed around precise and regular configurations of projectors and display
surfaces. While this results in rendering simplicity and speed, it also means
painstaking construction and ongoing maintenance.

The rendering framework provides a procedure for creating images when
all three geometric components—projection model, representation of the
display surface, and user location—are known. Here, we describe a camera-
based method to estimate those parameters and use them in the rendering
framework after some processing. In a limited fashion, Dorsey [38] and
Surati [181] use cameras to find a simple two-dimensional image warping
function for the purpose of two-dimensional image display. But we present a
unified approach for camera-assisted detection of three-dimensional display
configuration and projector-assisted active stereo vision.

The calibration procedures are based on using a stereo camera pair
that is positioned on a wide baseline with each camera oriented to observe
the entire projector-illuminated surface. Figure 5.10 illustrates this lay-
out. Step 1 of the procedure involves calibration of the camera pair using

Figure 5.10. Configuration for single projector. (Image reprinted from [151]
c© IEEE.)
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a physical calibration pattern. Calibration Step 2 involves estimation of
display surface geometry and Step 3 evaluates projector intrinsic and ex-
trinsic parameters. These methods are based on standard computer vision
techniques and are relatively straightforward. However, they systemati-
cally build on each other. The calibration pattern can be retired once the
calibration procedures are complete.

Camera calibration. To calibrate the camera pair, let us position a three-
dimensional calibration pattern with spatially-known feature points within
the intersection of their view frusta. By extracting feature points in the
two-dimensional camera images corresponding to known three-dimensional
points on the calibration pattern, we can determine the 3 × 4 projection
matrix for each camera based on the perspective projection:

[
s u s v s

]T = C̃
[
X Y Z 1

]T
.

The perspective equation maps a three-dimensional point (X,Y,Z) in ob-
ject space to a two-dimensional pixel (u, v) in camera image space, s is an
arbitrary scale factor. The projection matrix C̃, determined up to a scale
factor, represents a concatenated definition of the camera’s intrinsic and
extrinsic parameters assuming a pinhole optics model. With six or more
correspondences between three-dimensional points on the calibration pat-
tern and their mapping in the camera image, the 11 unknown parameters
of C̃ can be solved using a least-squares method [44]. The intrinsic and
extrinsic parameters of the camera can be obtained by a decomposition
of C̃.

Display surface estimation. After the independent calibration of each cam-
era, we can evaluate the geometry of the display surface using triangula-
tion techniques based on correspondences extracted from the stereo image
pair. Correspondences in the images are easily determined since we can
use the projector to sequentially illuminate point after point until we have
built a three-dimensional point cloud representing the display surface. By
binary-coding the projector-illuminated pixels, we can efficiently determine
n stereo correspondences in log2(n) frames. The process of projecting pat-
terns so that they can be uniquely identified by a camera is also known as
an active structured light technique.

This three-dimensional surface representation, which is in the coordi-
nate frame of the physical calibration pattern established in Step 1, is
then reduced into a mesh structure in projector image space using two-
dimensional Deluanay triangulation techniques.
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Projector calibration. As a result of the surface extraction process, for
each projector pixel (u, v), we now have a corresponding illuminated three-
dimensional surface point (X,Y,Z). Using these correspondences, we can
solve for the projector’s projection matrix P as we did for the cameras.

A problem arises when the three-dimensional points of the display sur-
face are co-planar. In this case, the least-square’s method is degenerate due
to the depth-scale ambiguity of viewing planar points; this means there ex-
ists a family of solutions. To develop a unique solution in this case, we can
add surfaces into the scene and repeat the surface extraction procedure
solely for the purpose of eliminating this ambiguity. Once this solution is
achieved, the introduced surfaces are removed from the display environ-
ment.

Two-pass rendering algorithm. The calibration steps give the geometric de-
finition of the two components of the rendering framework: the projection
model of the projector and polygonal approximation of the display surface.
The user location is continuously obtained using a head-tracking system.
We are now ready to use the rendering process based on the rendering
framework. To render perspectively correct imagery on irregular surfaces,
we use the same two-pass rendering method and update the images as the
user moves.

5.2.1 Multiple Projector Display

The remainder of this section will address the issues in scaling the calibra-
tion and rendering techniques from a single projector system to a multi-

Figure 5.11. A panoramic image (100 degree FOV) of the panoramic five pro-
jector display system. (Image reprinted from [151] c© IEEE.)
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projector system. Let us assume we have accurately estimated the para-
meters. The effect of errors is addressed in the work of Raskar[151].

First, to calibrate multiple projectors, we repeat the procedures dis-
cussed in the previous section, but then we must re-register the display
surface definitions and projector parameters for the entire system to a
common world coordinate space.

Second, display surface regions where multiple projectors overlap are
noticeably brighter because of multiple illumination. This is corrected by
attenuating projector pixel intensities in the overlapped regions. Let us look
at a versatile intensity feathering technique using camera-based feedback.

5.3 Projector Overlap Intensity Blending

Regions of the display surface that are illuminated by multiple projectors
appear brighter, making the overlap regions very noticeable to the user. To
make the overlap appear seamless, we assign an intensity weight [0.0− 1.0]
for every pixel in the projector. The weights are assigned following these
guidelines:

1. The sum of the intensity weights of the corresponding projector pixels
is 1 so that the intensities are normalized.

2. The weights for pixels of a projector along a physical surface change
smoothly in and near overlaps so that the interprojector color differ-
ences do not create visible discontinuity in displayed images.

Note that these two conditions cannot always be satisfied and hence
they remain as guidelines. In the next chapter, we discuss the intensity
blending algorithm in more detail, where presence of depth discontinuities
in an overlap region makes a third guideline necessary. Here, we explain
the algorithm assuming no depth discontinuities in the overlap region. We
use an alpha blending technique to attenuate the projector pixel intensities.
We essentially create an alpha mask for each projector, which assigns an
intensity weight [0.0−1.0] for every pixel in the projector. The weight is ad-
ditionally modified through a gamma look-up table to correct for projector
non-linearities.

Although various methods can be used to find the intensity weights,
we use a feathering technique influenced by common techniques used in
blending multiple images for panoramic photomosaics [170, 185]. To find
the alpha mask, we use a camera to view the overlapped region of several



�

�

�

�

�

�

�

�

130 5. Creating Images with Spatial Projection Displays

(a)

(b)

Figure 5.12. (a) The overlap position of three projectors; (b) the alpha masks
created for projectors 1, 2, and 3 using feathering algorithm. (Images reprinted
from [151] c© IEEE.)

projectors. We form a convex hull Hi in the camera’s image plane of the
observed projector Pi’s pixels. The alpha-weight Am(u, v) associated with
projector Pm’s pixel (u, v) is evaluated as follows:

Am(u, v) =
αm(m,u, v)∑

i αi(m,u, v)
, (5.2)

where αi(m,u, v) = wi(m,u, v) ∗ di(m,u, v) and i is the index of the pro-
jectors observed by the camera (including projector m).

In Equation (5.2), wi(m,u, v) = 1 if the camera’s observed pixel of pro-
jector Pm’s pixel (u, v) is inside the convex hull Hi; otherwise wi(m,u, v) =
0. The term di(m,u, v) is the distance of the camera’s observed pixel of
projector Pm’s pixel (u, v) to the nearest edge of Hi. Figure 5.12 shows the
alpha masks created for three overlapping projectors.

The feathering techniques used in photomosaics warp the source image
to a single destination image. However, such a target two-dimensional
panoramic image does not exist when projector images are blended on
(possibly non-planar) display surfaces. Hence, we use the two-dimensional
image of the display surface taken from a calibration camera and compute
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the intensity weights in this two-dimensional (camera) image space. Then,
we transform this alpha mask in camera space into projector image space
by using the same two-pass rendering techniques. With a fixed alpha mask
for each projector, we simply render a textured rectangle with appropriate
transparency as the last stage of the real-time rendering process.

5.3.1 Implementation

Let us look at a system that was built using the ideas described previously.
The system setup includes five 1024 × 768 resolution SHARP LCD pro-
jectors and multiple JVC and Pulnix 640 × 480 resolution cameras. The
projectors are ceiling mounted approximately three to four meters from
the display surfaces. These projectors are casually positioned with multi-
ple overlapping regions to produce a 180 degree field of view when the user
is in the display center.

The calibration of the system (i.e., evaluation of camera and projector
parameters and display surface estimation) is done once as a prerendering
step. This is accomplished using a 0.6 meter cube that was constructed
as the physical target pattern and a Dell NT workstation equipped with
OpenGL graphics, Matrox Meteor II frame grabbers, and MATLAB soft-
ware. The equipment is first used to capture the images of the physical
target pattern and calibrate the cameras. Next, the workstation performs
the structured-light projection and analysis, controlling one projector and
a stereo camera pair at a time. The stereo correspondences acquired by
projecting structured light form the data set needed for projector calibra-
tion, display surface reconstruction and unification, mesh generation, and
alpha mask generation. The actual processing for these steps is done offline
using MATLAB.

The required sampling density of the structure-light patterns depends
on the complexity of the display surfaces and the need to accurately locate
the edges of overlapping projectors for alpha mask generation. For our
purposes, we used sampling density of every 8th and every 32nd display
pixel. By binary encoding the structure-light, this process can be paral-
lelized, and we are able to project and recover 16×12 correspondence points
simultaneously. The complete operation for display surface recovery and
light projector parameter estimation takes approximately 15 minutes per
projector at the highest sampling density and less than one minute for the
lower sampling density.

A moving user is tracked using an Origin Instruments’ DynaSight in-
frared tracker [126]. The user wears a set of infrared LED beacons provided



�

�

�

�

�

�

�

�

132 5. Creating Images with Spatial Projection Displays

(a) (b) (c)

Figure 5.13. (a) Display environment with five projectors; (b) and (c) The
images appear seamless and are updated as the user moves. (Images reprinted
from [151] c© IEEE.)

with the tracker. Tracker readings are acquired and processed (low-pass fil-
tered and transformed into the world coordinates) by a Dell NT workstation
before being dispatched in a network packet to the SGI image generation
host.

The graphics rendering is done on an SGI InfiniteReality2 for each pro-
jector using the OpenGL API. While our rendering pipeline has additional
computational cost due to the image warping steps, this cost is fixed and
is independent of the rendered scene complexity.

Figure 5.13 shows our setup with five projectors forming a seamless
panoramic image.

5.3.2 Special Cases

We presented a general solution for creating a multi-projector large area
display where the display surface can be irregular and the images are correct
for a head-tracked user. The techniques for this most general case can be
simplified under certain conditions such as (1) when the viewer is static
rather than moving, (2) when the display surface is known to be planar,
or (3) the geometry of the display surface is the same as the virtual object
being displayed. Let us look at the issues in a system built for a static user.
Case (2) was described in the earlier part of this chapter and Case (3) is
described later in the chapter.

Static user. Display systems with only a single “sweet spot” are commonly
used because either the application guarantees that the user will always stay
in a single location (e.g., flight simulator) or that many people will view the
images simultaneously from or near the correct position, as in domed dis-
plays such as the Omnimax [105]. The relationship between desired image
and projected image for each projector (i.e., the viewer-to-display mapping
function) needs to be computed only once and subsequently remains fixed
for that location.
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This mapping function can be obtained directly by using a camera to
imitate the viewer at a given location. The camera observes points il-
luminated by projectors in the display environment, establishing viewer-
to-display correspondences. A detailed implementation of this method is
described in Raskar [149]. Using this technique, the rendering process
implements the two stages of the rendering framework: (1) compute the
desired image and load it into texture memory and (2) warp the texture
via the viewer-to-display mapping to produce the correct imagery. Inten-
sity blending of overlapping projectors is handled as in Section 5.2.1. This
special case avoids explicitly solving for three-dimensional parameters, but
limits the user to one position in the display environment.

5.4 Quadric Curved Displays

Curved screens are increasingly being used for high-resolution visualization
environments. We describe a parametric technique to display images on
curved quadric surfaces such as those with spherical or cylindrical shape.
We exploit a quadric image transfer function and show how it can be used to
achieve sub-pixel registration while interactively displaying two- or three-
dimensional data sets for a head-tracked user.

5.4.1 Basics

We present the notation and basics of quadric transfer. Mapping between
two arbitrary perspective views of an opaque quadric surface Q in three-
dimensions can be expressed using a quadric transfer function Ψ. While
planar homography transfers can be computed from four or more pixel cor-
respondences, quadric transfer requires nine or more correspondences. The
quadric transfer can be defined in a closed form using the three-dimensional
quadric surface Q and additional parameters that relate perspective pro-
jections of the two views. The quadric transfer in our case means image
transfer from first view to the second view.

The quadric Q is a surface represented by a 4 × 4 symmetric matrix,
such that three-dimensional homogeneous points X (expressed as a 4 × 1
vector) that lie on the surface satisfy the quadratic constraint,

XT QX = 0.

The quadric Q has 9 degrees of freedom corresponding to the indepen-
dent elements of the matrix. The matrix is symmetric and defined up to
an overall scale.
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The homogeneous coordinates of the corresponding pixels x in the first
view and x′ in the second view are related by

x′ ∼= Bx −
(

qT x ±
√

(qT x)2 − xT Q33x

)
e.

From pixel correspondences (x, x′), we compute the 21 unknowns: 10
for the unknown 3D quadric Q, eight for a 3×3 homography matrix B, and
three more for the epipole e in homogeneous coordinates. The epipole e is
the image of the center of projection of the first view in the second view.
The sign ∼= denotes equality up to scale for the homogeneous coordinates.
Matrix Q is decomposed as follows:

Q =
[

Q33 q
qT d

]
.

Thus, Q33 is the top 3×3 symmetric submatrix of Q and q is a 3-vector.
Q(4, 4), or d, is non-zero if the quadric does not pass through the origin
(i.e., the center of projection of the first view). Hence, it can be safely
assigned to be 1.0 for most display surfaces. The final two-dimensional
pixel coordinate for homogeneous pixel x′ is (x′(1)/x′(3), x′(2)/x′(3)).

The transfer described by 21 parameters has four dependent parameters
[169, 203]. This ambiguity is removed [158] by defining

A = B − eqT , E = qqT − Q33,

so that,

x′ ∼= Ax ±
(√

xT Ex
)

e.

The equation xT Ex = 0 defines the outline conic of the quadric in the
first view. (The outline conic can be geometrically visualized as the image
of the silhouette or the points on the surface where the view rays are locally
tangent to the surface (e.g., the elliptical silhouette of a sphere viewed from
outside the sphere.)) A is the homography via the polar plane between the
first and the second view. The ambiguity in relative scaling between E

and e is removed by introducing a normalization constraint, E(3, 3) = 1.
The sign in front of the square root is fixed within the outline conic in
the image. The sign is easily determined by testing the equation above by
plugging in coordinates for one pair of corresponding pixels.

Note that the parameters of the quadric transfer Ψ = {A,E, e} can
be directly computed from nine or more pixel correspondences in a pro-
jective coordinate system. So it is tempting to follow an approach similar
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to estimating planar homography for planar displays without computing
any Euclidean parameters. However, in practice, it is difficult to robustly
estimate the epipolar relationship in many cases. The discussion below is
limited to a linear estimation but non-linear refinement is highly recom-
mended [158].

Approach. All registration information is calculated relative to a stereo
camera pair. We assume that the stereo camera pair can see the entire
three-dimensional surface. One of the cameras is arbitrarily chosen as the
origin. The cameras here are used to determine only the three-dimensional
points on the display surface and not for any color sampling. Hence, any
suitable three-dimensional acquisition system can be used. The following
is an outline of the technique.

During preprocessing, the following steps are performed:

• For each projector i

– Project structured light pattern with projector

– Detect features in stereo camera pair and reconstruct three-
dimensional points on the display surface

• Fit a quadric Q to all the three-dimensional points detected

• For each projector i

– Find its pose with respect to the camera using the correspon-
dence between projector pixels and three-dimensional coordi-
nates of points they illuminate

– Find the quadric transfer, Ψ0i, between the camera and projec-
tor i

– Find intensity blending weights, Φi, in overlap regions

At run time, the rendering for two-dimensional images or three-dimen-
sional scenes follows these steps.

• Read head tracker and update quadric transfer Ψh0 between virtual
view and camera

• Read the input image in the two-dimensional video or compute the
input image by rendering a three-dimensional scene from the virtual
viewpoint
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• For each projector i

– Pre-warp input image into projector’s frame buffer using quadric
transfer, Ψ0i ◦ Ψh0

– Attenuate pixel intensities with blending weights, Φi

5.4.2 Calibration

The goal is to compute the parameters of quadric transfer Ψ0i = {Ai, Ei, ei}
so that the projected images are geometrically registered on the display
surface. The method to calculate quadric transfer parameters directly from
pixel correspondences involves estimating the 4 × 4 quadric matrix Q in
3D [169, 34] using a triangulation of corresponding pixels and a linear
method. If the internal parameters of the two views are not known, all
the calculations are done in projective space after computing the epipolar
geometry (i.e., the epipoles and the fundamental matrix). We describe an
approach based on Euclidean parameters.

Quadric surface. We use a rigid stereo camera pair C0 and C ′
0 for comput-

ing all the geometric relationships. We arbitrarily choose one of the cameras
to define the origin and coordinate system. We calibrate the small baseline
stereo pair with a small checkerboard pattern [211]. Note that the cameras
do not need to be near the sweet-spot in this setup which is an important
difference with respect to some of the non-parametric approaches.

The stereo pair observes the structured patterns projected by each pro-
jector (Figure 5.14) and using triangulation computes a set of N three-
dimensional points {Xj} on the display surface. The quadric Q pass-
ing through each Xj is computed by solving a set of linear equations
XT

j QXj = 0 for each three-dimensional point. This equation can be writ-
ten in the form

χj V = 0,

where χj is a 1 × 10 matrix which is a function of Xj only and V is a
homogeneous vector containing the distinct independent unknown variables
of Q. With N ≥ 9, we construct a N × 10 matrix X and solve the linear
matrix equation

XV = 0.

Given points in general position, the elements of V (and hence Q) are
the one-dimensional null-space of X.
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Figure 5.14. Images captured by the 640 × 480 resolution camera during cali-
bration. The resolution of each projector is significantly higher at 1024×768 and
yet is captured in only a small part of the camera view.

Projector view. In addition to the quadric Q, we need to estimate the inter-
nal and external parameters of each projector with respect to the camera
origin. We use the correspondence between the projector pixels and co-
ordinates of the three-dimensional points they illuminate to compute the
pose and internal parameters.

5.4.3 Camera to Projector Transfer

The idea is to use the perspective projection parameters of the camera
along with the approximate projection matrix of the projector to find the
camera to projector quadric transfer using linear methods. We then refine
the solution using non-linear optimization.

The quadric transfer parameters Ψ0i = {Ai, Ei, ei} between camera and
projector i are easy to calculate from Q, camera projection matrix [ I | 0 ]
and projector projection matrix [ Pi |ei]:

Ai = Pi − eiq
T , Ei = qqT − Q33.

The parameters found by the linear method can be used as an initial
estimate for nonlinear minimization to refine the results.

5.4.4 Rendering

The rendering involves a two-step approach. For two-dimensional data,
we extract the appropriate input image. For three-dimensional scenes, we
first render the three-dimensional models from the head-tracked viewer’s
viewpoint. In the second step, the resultant image is then warped using
the quadric image transfer into the projector image space.



�

�

�

�

�

�

�

�

138 5. Creating Images with Spatial Projection Displays

5.4.5 Virtual View

When three-dimensional scenes are displayed on a curved screen, the im-
ages are perspectively correct from only a single point in space. We track
this three-dimensional location, the virtual viewpoint, with a head-tracking
system and update the view as the user moves.

We recalculate the quadric transfer Ψi between the virtual view image
space and projector i frame buffer by cascading two transfers Ψ0i ◦ Ψh0,
where Ψ0i is calculated during preprocessing and Ψh0 is updated as the user
moves. Ψh0 is calculated using a linear method from Q and the projection
matrices of the camera and the virtual view.

5.4.6 Display Region

The view frustum for the virtual view is defined using the head-tracked
position and the extents of an oriented bounding box (OBB) around the
display surface. The look-at vector is from the virtual viewpoint toward
the center of the OBB. (Note, the view frustum is only used for computing
the VirtualViewProjection matrix and Ψh0, and not for rendering.)

Figure 5.15. Top row: image in top-right projector’s frame buffer, before and
after attenuation with alpha map Φi; Bottom row: Three other projectors with
intensity correction. Note the outer black areas which are automatically gener-
ated after quadric transfer. (Images reprinted from [158] c© ACM.)
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We crop the view frustum to an aesthetic shape such as a disk or a
screen space rectangle. For three-dimensional applications, we draw a set
of black quadrilaterals to cut out the areas outside the desired display
region. For example, for a rectangular view, the viewport is made by four
large quadrilaterals near the outer edge of the viewport in the frame buffer.
The black quadrilaterals along with rest of the three-dimensional models
get rendered and warped as described below (see also Figure 5.15). For two-
dimensional applications, areas outside the input image to be displayed are
considered black.

5.4.7 Image Transfer Using a Single-Pass Rendering

We present a single-pass rendering solution to prewarp rendered images of a
three-dimensional scene before projection on a curved screen. A single-pass
solution avoids the costly post-rendering warp, and it also eliminates the
aliasing artifacts common in texture mapping of limited resolution input
images. A single-pass solution is possible due to the parametric approach
that does not require a look-up table and involves only a small number of
parameters.

Given a three-dimensional vertex M in the scene to be rendered, we
find its screen space coordinates m in the virtual view. Then, we find the
transferred pixel coordinate mi in the frame buffer of projector i, using
the quadric transfer Ψi = {Ai, Ei, ei}. The polygons in the scene are then
rendered with vertices M replaced with vertices mi. Thus, the rendering
process at each projector is the same. Each projector’s frame buffer au-
tomatically picks up the appropriate part of the virtual view image, and
there is no need to explicitly figure out the extents of the projector.

• At each projector, i

– For each vertex, M

∗ Compute pixel m via VirtualViewProjection(M)

∗ Compute warped pixel mi via quadric transfer Ψi(m)

– For each triangle T with vertices {M j}
∗ Render triangle with two-dimensional vertices {mj

i}

There are two issues with this approach. First, only the vertices in the
scene, but not the polygon interiors, are accurately prewarped. Second,
visibility sorting of polygons needs special treatment.
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After quadric transfer, the edges between vertices of the polygon, theo-
retically, should map to second-degree curves in the projector frame buffer.
But scan conversion converts them to straight line segments between the
warped vertex locations. This problem will not be discernible if only a
single projector is displaying the image. But, overlapping projectors will
create individually different deviations from the original curve and, hence,
the edges will appear misregistered on the display screen. Therefore, it
is necessary to use a sufficiently fine tessellation of triangles. Commercial
systems are already available that tessellate and predistort the input mod-
els on the fly [43, 72, 77] so that they appear straight in a perspectively
correct rendering on the curved screen. So our method is compatible with
fine tessellation provided by such systems. Predistortion of the scene geom-
etry in commercial systems is used to avoid the two-pass rendering, which
involves a texture-mapping result of the first pass. In our case, instead of
predistorting the geometry, we predistort the image space projection. Our
approach, arguably, is more practical thanks to the programmable vertex
shaders now available (see Appendix A).

Scan conversion issues. When pixel locations in the projection of a triangle
are warped, information needs to be passed along so that the depth buffer
will create appropriate visibility computations. In addition, for perspec-
tively correct color and texture coordinate interpolation, the appropriate
“w” values need to be passed. Our solution is to post-multiply the pixel
coordinates with w:

m(x, y, z, w) = VirtualViewProjection(M(X)),
m′

i(x
′
i, y

′
i, w

′
i) = Ψi(m(x/w, y/w), 1),

mi(xi, yi, zi, wi) = [wx′
i/w′

i, wy′
i/w′

i, z, w].

Thus, the z and w values are preserved using explicit assignment. Ho-
mogeneous coordinates of mi have the appropriate final pixel coordinate
(xi/wi, yi/wi) = (x′

i/w′
i, y

′
i/w′

i) due to quadric transfer along with original
depth, (zi/wi) = z/w, and wi = w values. The corresponding code is in
Appendix A and Figure 5.16 shows a photo of the dome displaying a sam-
ple interactive animation that is synchronized and displayed on the dome
with four overlapping projectors.

For rendering two-dimensional input images, we densely tessellate the
virtual view image space into triangles and map the image as a texture
on these triangles. Vertex m of each triangle is warped using the quadric
transfer into vertex (and pixel) mi, as above. Scan conversion automati-
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Figure 5.16. An unmodified 3D rendering application displayed with correct
depth sort and texture mapping without and with intensity blending. (Images
reprinted from [158] c© ACM.)

cally transfers colors and texture attributes at m to mi and interpolates in
between. If required, two-pass rendering of three-dimensional scenes can
also be achieved in this manner, by first rendering the input image due to
VirtualViewProjection.

5.4.8 Intensity Blending

Pixel intensities in the areas of overlapping projectors are attenuated using
alpha blending of the graphics hardware. Using the parametric equations
of quadric transfer, the alpha maps are calculated robustly and efficiently.

For every projector pixel xi in projector i, we find the corresponding
pixels in projector k using the equation

xk
∼= Ψ0k

(
Ψ−1

0i (xi)
)
.

For cross-fading, pixels at the boundary of the projector frame buffer are
attenuated. Hence, the weights are proportional to the shortest distance
from the frame boundary. The weight assigned to pixel xi, expressed in
normalized window pixel coordinates (ui, vi) which are in the range [0, 1],
is

Φi(xi) ∼= d(xi)
/∑

k
d(xk),
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Figure 5.17. Calculated alpha maps Φi for intensity correction of four overlap-
ping projectors. (Images reprinted from [158] c© ACM.)

where d(x) is min(u, v, 1 − u, 1 − v) if 0 ≤ u, v ≤ 1, else d(x) = 0. Thanks
to a parametric approach, we are able to compute corresponding projector
pixels xk and, hence, the weights at those locations at subpixel registration
accuracy. The sum of weights at corresponding projector pixels accurately
adds to 1.0.

At each projector, the corresponding alpha map Φi is loaded as a texture
map and rendered as screen-aligned quadrilaterals during the last stage of
the rendering (Figure 5.17).

5.5 Illuminating Objects

The idea of projector-based augmentation is best used when virtual objects
are close to the physical objects on which they are displayed. For example,
one can replace a physical object with its inherent color, texture, and ma-
terial properties with a neutral object and projected imagery, reproducing
the original appearance directly on the object. Furthermore the projected
imagery can be used to reproduce alternative appearances, including alter-
nate shading, lighting, and, even, animation. The approach is to effectively
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Figure 5.18. The setup of four casually installed projectors, stereo camera pair,
and tracker with a concave dome. The camera pair is not near the sweet-spot.
(Images reprinted from [158] c© ACM.)

lift the visual properties of the object into the projector and then re-project
onto a neutral surface (Figure 4.1). We use the term shader lamps to de-
scribe this mode of operation for projectors. The image-based illumination
of physical objects has been explored by many. But, we believe, two main
challenges have kept the previous efforts to only expensive, large scale, or
one-off implementations.

1. The first problem is geometric registration which is cast as matching
the projection of a single two-dimensional image with an object. The
projection of a perspective device has up to 11 degrees of freedom
(six external and five internal) [44]; therefore, any effort to manually
achieve the registration is likely to be extremely tedious.

2. The second problem is the complete illumination of non-trivial phys-
ical objects in the presence of shadows due to self-occlusion. We
illuminate the shadowed parts of the object by adding more projec-
tors and then address the issue of merging overlapped images from
multiple projectors.
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With the advent of digitally-fed projectors and real-time three-dimen-
sional graphics rendering, a new approach for image-based illumination
is now possible. We approach these problems by exploiting the three-
dimensional geometric relationship between the projector, display surface,
and the user.

5.5.1 Authoring and Alignment

One of the important tasks in achieving compelling visualization is to cre-
ate the association between the physical objects and the graphics primitives
that will enhance those objects when projected. For example, how do we
specify which texture image should be used for the face of a tabletop build-
ing model, or what color distribution will look better for a physical object?
We need the physical object as well as its geometric three-dimensional rep-
resentation and real or desired surface attributes. Many hardware and
software solutions are now available to scan/print three-dimensional ob-
jects and capture/create highly detailed, textured graphics models. The
authoring can also be performed interactively by “painting” directly on
top of the physical objects. The result of the user interaction can be pro-
jected on the objects and also stored on the computer [152]. Ideally, a
more sophisticated user interface would be used to create and edit graphics
primitives of different shape, color, and texture.

To align a projector, first we position the projector approximately and
then adapt to its geometric relationship with respect to the physical object.
That relationship is computed by finding the projector’s intrinsic parame-
ters and the rigid transformation between the two coordinate systems. This
is a classical computer vision problem [44] addressed earlier in the chapter
which is solved using camera-based feedback. Here we use a different ap-
proach. We take a set of fiducials with known three-dimensional locations
on the physical object and find the corresponding projector pixels that il-
luminate them. This allows us to compute a 3 × 4 perspective projection
matrix up to scale, which is decomposed to find the intrinsic and extrinsic
parameters of the projector. The rendering process uses the same internal
and external parameters, so that the projected images are registered with
the physical objects.

5.5.2 Intensity Correction

The intensity of the rendered image is modified on a per-pixel basis to take
into account the reflectance of the neutral surface, the local orientation,
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and the distance with respect to the projector using Equation (7.2). Since
the surface normals used to compute the 1/cos(θP ) correction are available
only at the vertices in polygonal graphics models, we exploit the render-
ing pipeline for approximate interpolation. We illuminate a white diffuse
version of the graphics model (or a model matching appropriate ku(x) of
the physical model) with a virtual white light placed at the location of the
projector lamp and render it with black fog for squared distance attenu-
ation. The resultant intensities are smooth across curved surfaces due to
shading interpolation and inversely proportional to (d(x)2/ku(x)cos(θP )).
To use the limited dynamic range of the projectors more efficiently, we do
not illuminate surfaces with |θP | > 60 (since, for |θ| ∈ [60, 90] the range
1/cos(θ) ∈ [2,∞]). This avoids the low sampling rate of the projected pix-
els on oblique surfaces and also minimizes the misregistration artifacts due
to any errors in geometric calibration. During the calculations to find the
overlap regions, highly oblique surfaces are considered not to be illuminated
by that projector.

5.5.3 Steps

During preprocessing

• Create three-dimensional graphics model, G, of the physical object

• Create three-dimensional graphics model, B, of the background

• Position the projector approximately

• Find perspective pose, P, of the projector with respect to the physical
object

During run-time

• Get user location, U

• Get animation transformation, T

• Modify G’s surface attributes

• Render G using the pose, P, and user location, U

• Transform B using T-1, B

• Render B using the pose, P, and user location, U

• Modify image intensity to compensate for surface orientation
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5.5.4 Occlusions and Overlaps

For complete illumination, using additional projectors is an obvious choice.
This leads to the more difficult problem of seamlessly merging images from
multiple projectors. A naive solution may involve letting only a single
projector illuminate any given surface patch. But, there are two main
issues when dealing with overlapping CRT, LCD, or DLP projectors, which
compel the use of feathering (or cross-fading) of intensities. The first is
the lack of color equivalence between neighboring projectors [99], due to
the manufacturing process and temperature color drift during their use.
The second is the desire to minimize the sensitivity to small errors in the
estimated geometric calibration parameters or mechanical variations.

Feathering, as described earlier, is commonly used to generate seamless
panoramic photomosaics by combining several views from a single location
[186]. Similar techniques are exploited in multi-projector wide field-of-view

Figure 5.19. Intensity weights using feathering methods. The plots show the
contribution of projectors A, B and B′ and the resultant accumulation A+B and
A + B′ along the lit planar surface:(a) simple intensity ramps on planar overlap
create smooth transitions; (b) weights computed using surface normals are not
sufficient; (c) occluders create sharp transitions; (d) our solution, which considers
depth continuity, maintains the local smoothness of intensity weights. (Images
reprinted from [155] c© Springer-Verlag.)
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displays [128, 191, 151], and two-dimensional arrays of flat projections.
In such cases, the overlap region is typically a (well-defined) contiguous
region on the display surface as well as in each projector’s frame buffer.
In the algorithm used in [186, 151], the intensity of a pixel is weighted
proportionally to the Euclidean distance to the nearest boundary (zero
contribution) pixel of the (projected) image. The per-pixel weights are
in the range [0, 1]. They are multiplied with the pixel intensities in the
final rendered image. The pixels weights near the boundary of a source
image are near zero and the pixels contribute very little, so that there is a
smooth transition to the next source image. This leads to the commonly
seen intensity roll-off as shown in Figure 5.19(a). Under ideal conditions
and assuming color equivalence, the weight contribution of both projectors
A + B adds up to 1. Even when projector B’s color response is different
than that of A (say, attenuated-shown as B′), the resultant A+B′ (shown
as dark solid line) transitions smoothly in the overlap region.

5.6 Summary and Discussion

We discussed four different methods for creating images for spatial pro-
jection. They include exploiting homography for planar surfaces, two-pass
rendering for non-planar surfaces, quadric image transfer for quadric curved
surfaces, and Shader Lamps for directly augmenting objects. In the next
chapter, we take the concept of the projector as the dual of a camera fur-
ther and describe a new class of visualization methods by combining optical
see-through elements.
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Generating Optical

Overlays

Spatial optical see-through displays overlay the real environment with com-
puter graphics in such a way that the graphical images and the image of the
real environment are visible at the same time. In contrast to head-attached
or body-attached optical see-through displays, spatial displays generate im-
ages that are aligned with the physical environment. They do not follow
the users’ movements but rather support moving around them. They are
comparable to spatial projection displays—but do not share the opaque
characteristic of such displays.

An essential component of an optical see-through display is the optical
combiner—an optical element that mixes the light emitted by the illu-
minated real environment with the light produced with an image source
that displays the rendered graphics. Creating graphical overlays with spa-
tial optical see-through displays is similar to rendering images for spatial
projection screens for some optical combiners. For others, however, it is
more complex and requires additional steps before the rendered graphics is
displayed and optically combined.

While monitors, diffuse projection screens, and video projectors usu-
ally serve as light emitting image sources, two different types of optical
combiners are normally used for such displays—transparent screens and
half-silvered mirror beam combiners. Rendering techniques that support
creating correct graphical overlays with both types of optical combiners
and with different images sources will be discussed in this chapter. We
make the convention that all the following elements, such as optical com-
biners, image sources, observers, virtual and real environments, etc. are

149
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150 6. Generating Optical Overlays

defined within the same Cartesian coordinate system. This keeps the ex-
planations particularly simple and allows a straightforward implementation
of the techniques.

6.1 Transparent Screens

Transparent screens have two main properties: they are transparent to a
certain degree to allow the transmission of the image of the real environ-
ment, and they also emit the light of the rendered graphics. Observers can
see directly through the screen (and through the image displayed on it) to
the real environment.

In some cases, such screens are active and contain light-emitting ele-
ments. Examples are liquid crystal displays that are modified (by removing
the opaque back light source) to enable their see-through capabilities and
flexible polymers with light-emitting transparent semi-conductors. In other
cases, external image sources, such as video or laser projectors are used to
generate light that is diffused by a transparent projection screen. Exam-
ples include holographic projection screens that diffuse the light in a narrow
angle to achieve an enhanced brightness for restricted viewing angles and
transparent film screens that diffuse the light in a wide angle to support a
more flexible viewing and a higher degree of transparency.

On the one hand, the use of video projectors allows building large
screens that do not necessarily have to be planar. Active screens, on the

(a) (b)

Figure 6.1. (a) Planar active transparent screen; (b) curved transparent projec-
tion screen with multiple projectors.
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other hand, provide more flexibility since they are not constrained to a
stationary configuration. In the future new materials, such as light emit-
ting polymers may allow building active transparent screens that are both
flexible and scalable.

Rendering for transparent screens is essentially equivalent to render-
ing for regular projection screens or monitors. While for planar screens
an affine off-axis projection transformation is sufficient, curvilinear im-
age warping is required for curved screens. For large or extremely curved
screens, the image has to be composed of the contribution displayed by
multiple projectors. The different pieces have to be geometrically aligned
and blended to result in a consistent final image. All these techniques are
explained in detail for opaque screens in Chapters 3 and 5. They are the
same for transparent screens.

Sections 6.3 through 6.5 describe a rendering framework for spatial
optical see-through displays that use mirror beam combiners. Most of
this framework, such as refraction correction and multi-screen and multi-
plane beam combiner transformations, is exactly the same for transparent
screens. The main difference to the mirror beam combiner is that reflection
transformations do not apply in this case. They have to be ignored if
the framework is used for displays with transparent screens. If projection
displays are used to generate images, the outlined screen transformation is
equivalent to the rendering techniques explained in Chapters 3 and 5.

An important fact that needs to be mentioned is that the rendered
image appears directly on the surface of the transparent screen. Similar
to head-attached displays, this causes focus problems if the real environ-
ment to be augmented is not located in the same place as the image. For
transparent screens, this can never be the case since the screen itself (and
therefore the image) can never take up exactly the same space within the
environment. It is not possible for our eyes to focus on multiple distances
simultaneously. Thus, in extreme cases, we can only continuously shift
focus between the image and the real environment, or perceive either one
unfocused.

If stereoscopic graphics need to be displayed on transparent projection
screens, we must pay attention to the materials used. Not all materials pre-
serve the polarization of light that is produced by passive stereoscopic pro-
jection setups—especially when materials are bent to form curved screens.
Transparent film screens, for instance, have the property to preserve polar-
ization in any case—even if bent. Active stereo projection systems do not
cause such problems.
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6.2 Mirror Beam Combiners

Mirror beam combiners are the most common optical combiners because of
their availability and low cost. If they cannot be obtained from an optics
store, they can be homemade in almost any size and shape. For instance,
regular float glass or Plexiglas can be coated with a half-silvered film, such
as 3M’s Scotchtint sun protection film. These materials are easily available
in hardware stores. The advantage of half-silvered film is that it can be
coated onto a flexible carrier, such as thin Plexiglas, that can easily be
bent to build curved displays. The drawback of such a material is its non-
optimal optical properties. Instead of having transmission and reflection
factors of 50%, these materials normally provide factors of approximately
70% reflection and 30% transmission, due to their sun-blocking functional-
ity. An alternative material is the so-called spyglass that offers better and
varying transmission/reflection factors without sun-blocking layers. How-
ever, the reflective film is usually impregnated into float glass—thus it is
not well suited for building curved mirror displays.

Spatial optical see-through displays that apply mirror beam combiners
as optical combiners have to display the rendered graphics on a secondary
screen that is reflected by the mirror optics. The observer sees through the
optical combiner and through the reflected image at the real environment.
The image that appears on the secondary screen usually should not be
visible. To hide it, the secondary screen is often coated with light directing
film, such as 3M’s Light Control Film. Such a film can be used to direct
the displayed image only towards the mirror optics and not to the observer.
Thus, only the reflection of the displayed image can be seen and not the
image itself.

In contrast to transparent screens, mirror beam combiners create an
optical reflection of the secondary screen and the displayed image. There
are no physical constraints in aligning the image closer to the real environ-
ment. The reflected image can even intersect with the real environment.
Consequently, the focus problem of transparent screens can be improved
although not completely solved.

6.3 Planar Mirror Beam Combiners

To render a three-dimensional graphical scene on spatial optical see-through
displays applying planar mirror beam combiners requires neutralizing the
optical transformations that are caused by half-silvered mirrors: reflection
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(a) (b) (c)

Figure 6.2. (a) Affine reflection transformation for planar mirror beam combiner;
(b) a virtual baby observed through a large beam combiner reflecting a horizontal
projection screen; (c) due to parallax effects, virtual objects (e.g., the baby’s arm)
can appear in front of the mirror. (Images (b) and (c) reprinted from [10] c© MIT
Press.)

and refraction. The goal is to render the graphical content and display it on
the secondary screen in such a way that its reflection appears perspectively
correct and aligned with the real environment.

6.3.1 Reflection

A planar mirror beam combiner divides the environment into two sub-
spaces: the one that contains the observer and the secondary screen, and
the one that contains the real environment to be augmented and the phys-
ical light sources that illuminate it.

Note that from a geometric optics point of view, the real environment
behind the mirror equals the mirror’s image space (i.e., the reflection that
appears behind the mirror by looking at it).

Virtual objects that consist of graphical elements (such as geometry,
normal vectors, textures, clipping planes, virtual light sources, etc.) are
defined within the same global world coordinate system in which the real
environment, the observer, the secondary screen, and the mirror beam
combiner are located. In contrast to conventional virtual reality scenarios,
this coordinate system actually exceeds the boundaries of the display screen
and extends into the surrounding real environment (see Figure 6.2).

The virtual objects are either defined directly within the real environ-
ment or they are transformed to it during an object registration process.

We now consider the mirror and compute the reflection of the observer’s
physical eye locations (as well as possible virtual headlights). We then ap-
ply the inverse reflection to every graphical element that is located within
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the real environment. In this manner these graphical elements are trans-
formed and can be projected and displayed on the secondary screen. The
displayed image is optically reflected back by the mirror into the real envi-
ronment (or optically, into the mirror’s image space).

When the setup is sufficiently calibrated, the real environment and the
mirror’s image space overlay exactly. The virtual objects appear in the
same position within the image space as they would within the real envi-
ronment without the mirror (if a direct display possibility was given within
the real environment).

Note that the reflection transformation of planar mirrors is a rigid-body
transformation, and preserves all properties of the transformed geometry.

As discussed in Chapter 2, with known plane parameters of the mir-
ror beam combiner within the world coordinate system, a point in three-
dimensional space can be reflected by

p′ = p − 2(np + d)n, (6.1)

where p′ is the reflection of p over the mirror plane [n, d] = [a, b, c, d].
This is equivalent to multiplying p with the 4 × 4 reflection matrix

R =




1 − 2a2 −2ab −2ac −2ad
−2ab 1 − 2b2 −2bc −2bd
−2ac −2bc 1 − 2c2 −2cd

0 0 0 1


 .

Note that R = R−1.
The reflected viewpoint e′ of the observer (which, for instance, is head-

tracked) can be computed using Equation (6.1) or by multiplying the orig-
inal viewpoint e with the reflection matrix.

The inverse reflection of the virtual scene that is located within the
real environment is simply computed from its reflection with respect to
the mirror plane. Since we assume that the real environment and the mir-
ror’s image space exactly overlay, we can also assume that the reflection
of the graphical elements located within the real environment results in
the inverse reflection of the image space; that is, they are transformed
to their corresponding positions on the observer’s side of the mirror and
can be displayed on the secondary screen. Consequently, the additional
model transformation (i.e., the inverse reflection of the scene) is achieved
by multiplying the reflection matrix onto the current model-view matrix of
the transformation pipeline (between scene transformation and view
transformation).
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Figure 6.3. The integration of reflection transformations into the rendering
pipeline.

Consequently, geometry that is registered to the real environment is
first transformed from object coordinates into the coordinates of the world
coordinate system, then into reflected world coordinates, and finally into
reflected eye coordinates. After the model-view transformation has been
applied, the rendering pipeline is continued in the normal way (see Chap-
ter 2); the reflected eye coordinates are off-axis projected into clip coor-
dinates, then, after the perspective division, transformed into normalized
device coordinates, and finally (via the viewport transformation) mapped
into window coordinates.

By applying the reflection matrix, every graphical element is reflected
with respect to the mirror plane. A side effect of this is that the order of re-
flected polygons is also reversed (e.g., from counterclockwise to clockwise)
which, due to the wrong front-face determination, results in a wrong ren-
dering (e.g., lighting, culling, etc.). This can easily be solved by explicitly
reversing the polygon order . Note that transformations and rendering have
to be done for both viewpoints (left and right) if stereoscopic rendering is
activated.

The reflection transformation can be entirely executed by accelerated
graphics hardware that provides a fixed function rendering pipeline. The
following OpenGL code fragment can be used to configure the rendering
pipeline with reflection transformation:

...

// mirror plane = a,b,c,d

// viewpoint = e[0..2]

// world coordinate system = x/y-axes horizontal plane,
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// z-axis points up

float e[3], e_[3];

float NP;

float R[16];

// compute reflected viewpoint e_ from original viewpoint e

NP = a * e[0] + b * e[1] + c * e[2];

e_[0]= e[0] - 2.0 * (NP + d) * a;

e_[1]= e[1] - 2.0 * (NP + d) * b;

e_[2]= e[2] - 2.0 * (NP + d) * c;

// set up reflection matrix

R[0] = 1-2*a*a; R[1] =-2*a*b; R[2] =-2*a*c; R[3] =0;

R[4] =-2*a*b; R[5] = 1-2*b*b; R[6] =-2*b*c; R[7] =0;

R[8] =-2*a*c; R[9] =-2*b*c; R[10] = 1-2*c*c; R[11]=0;

R[12] = -2*a*d; R[13] =-2*b*d; R[14] =-2*c*d; R[15]=1;

// configure rendering pipeline

glViewport(...);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glFrustum(...);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(e_[0], e_[1], e_[2], e_[0], e_[1], 0, 0, 1, 0);

glMultMatrixf(R);

// reverse polygon order

glFrontFace(GL_CW + GL_CCW - glGetIntegerv(GL_FRONT_FACE));

// draw scene with scene transformation

...

An alternative to a reflection of the entire geometry and viewpoint is to
set up a viewing frustum that is defined by the reflected image plane instead
of the image plane on the physical secondary screen. In Figure 6.2(a), the
secondary screen is reflected from the right sides of the beam combiner to
its left side. The unreflected viewing frustum (right side) can be used if
defined relative to the reflected image plane (left side). For this, the exact
position and orientation of the reflected image plane has to be known. They
can also be derived from the parameters of the mirror plane.

In addition, the displayed image has to be reflected over the on-screen
axis that is perpendicular to the two-dimensional intersection vector (ix, iy)
of the mirror plane and the secondary screen. In a simple example, this in-
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Figure 6.4. Simple example for reflection over on-screen axis.

tersection equals the x-axis (or the y-axis) of the screen coordinate system,
as illustrated in Figure 6.4. In this case, an additional scaling transfor-
mation can be applied after the projection transformation that causes the
fragments to be reflected within the normalized device space. For instance,
glScale(i x, i y, 0) with ix = −1, iy = 0 causes a reflection over the
y-axis for the case that the intersection of the mirror with the screen is on
the x-axis (all in normalized screen/device coordinates). For an arbitrary
intersection vector, however, a scaling transformation alone is not suffi-
cient. An additional rotation transformation is required that first aligns
the intersection vector with either the x- or the y-axis in the screen coordi-
nate system. Then the scaling is transformed along this principle axis (for
example over the x-axis). Finally the reverse rotation transformation has
to be applied to produce the correct effect.

It is important to apply this reflection transformation after the projec-
tion (e.g., before glFrustum() in OpenGL’s reversed matrix stack nota-
tion) since it has to be the final transformation, and it must not influence
other computations, such as lighting and depth culling.

An interesting optical effect can be observed by applying mirrors in
combination with stereoscopic secondary screens; convex or planar mirrors
can optically only generate virtual images. However, in combination with
stereoscopic graphics and the effects caused by stereopsis, virtual objects
can appear in front of the mirror optics (Figure 6.2(c)). We refer to this
effect as pseudo real images. In nature, real images of reflected real objects
can only be generated with concave mirrors. Note that a restricted direct
manipulative interaction with pseudo real images in front of the mirror
optics is supported.
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6.3.2 Refraction

From an optics point of view, the glass or Plexiglas carriers used for optical
combiners (i.e., mirror beam combiner or transparent screens) are lenses
that cause refraction distortion. A homogeneous medium that is bound
by two plane-parallel panels is referred to as a planar lens. The refraction
distortion is small and can be neglected for thin planar lenses, but has
to be corrected for thick plates. Note that the following techniques are
also applicable for transparent screens that suffer from refraction
distortion.

All virtual objects that are registered to the real environment are vir-
tual points that are not physically located behind the optical combiner.
They are images that are created by the optical combiner. Mirror beam
combiners are usually front surface mirrors (i.e., the mirror film coated on
the side of the carrier that faces the image source and the observer) while
transparent screens can be front projected causing the same registration
problem: the displayed image is not physically refracted by the optical
combiner. However, the transmitted light which is emitted by the real en-
vironment and perceived by the observer, is refracted. Consequently, the
transmitted image of the real environment cannot be precisely registered
to the reflected virtual objects, even if their geometry and alignment match
exactly within our world coordinate system. Unfortunately refraction can-
not be undistorted by a rigid-body transformation, but approximations
exist that are sufficient for augmented reality display types.

All optical systems that use any kind of see-through element have to
deal with similar problems. For head-mounted displays, aberrations (op-
tical distortion) caused by refraction of the integrated lenses are mostly
assumed to be static [4]. Due to the lack of eye-tracking technology as a
component of head-mounted displays, the rotation and the exact position
of the eyeballs as well as the movement of the optics in front of the ob-
server’s eyes is not taken into account. Thus, a static refraction distortion
is precomputed for a centered on-axis optical constellation with methods of
paraxial analysis. The result is stored in a two-dimensional look-up table.
During rendering, this look-up table is referenced to transform rendered
vertices on the image plane before they are displayed. Rolland and Hop-
kins [162], for instance, describe a polygon-warping technique that uses the
look-up-table to map projected vertices of the virtual objects’ polygons
to their predistorted location on the image plane. This approach requires
subdividing polygons that cover large areas on the image plane. Instead
of predistorting the polygons of projected virtual objects, the projected
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image itself can be predistorted, as described by Watson and Hodges [200],
to achieve a higher rendering performance.

For spatial see-through displays, however, aberrations caused by re-
fraction are dynamic, since the optical distortion changes with a moving
viewpoint that is normally off-axis and off-centered with respect to the
optical combiner.

For some near-field displays, such as reach-in displays, the displacement
caused by refraction can be estimated [204]. An estimation of a constant
refraction might be sufficient for near-field displays with a fixed viewpoint
that use a relatively thin beam combiner. For larger spatial optical see-
through setups that consider a head-tracked observer and apply a relatively
thick beam combiner, more precise methods are required. In the following
explanation, we want to consider such a display constellation.

Since we cannot predistort the refracted transmitted image of the real
environment, we artificially refract the virtual scene before it is displayed,
in order to make both images match. In contrast to the static transfor-
mation that is assumed for head-mounted displays, refraction is dynamic
for spatial optical see-through displays and cannot be precomputed. In
general, refraction is a complex curvilinear transformation and does not
yield a stigmatic mapping (the intersection of multiple light rays in a single
image point) in any case; we can only approximate it.

In the case of planar lenses, light rays are refracted twice—at their
entrance points and at their exit points. This is referred to as in-out re-
fraction. In the case of planar lenses, the resulting out-refracted light rays
have the same direction as the corresponding original rays, but they are
shifted by the amount ∆ parallel to their original counterparts. Due to
refraction, an object that is physically located at the position po appears
at the position pi. To maintain registration between a virtual object (that
will appear at position po) and the corresponding real object (that will
appear at position pi), the virtual object has to be repositioned to pi.

The offset ∆ can be computed as

∆ = t

(
1 − tan αt

tan αi

)
,

where t is the thickness of the planar lens, αi is the angle between the plane
normal of the plate and the line of sight, and αt is given by Snell’s law of
refraction:

η1 sin αi = η2 sin αt.
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It is constrained to the following boundaries:

lim
(
αi → π

2

)
⇒ ∆ = t,

lim (αi → 0) ⇒ ∆ = t

(
1 − sin αt

sinαi

)
= t

(
1 − 1

η2

)
= const.

A special case of the previous transformation is an on-axis situation
where the incidence angle is perpendicular to the lens and parallel to the
optical axis (i.e., αi = 0). In this situation, the offset equation can be
simplified to ∆ = t (1 − 1/η2).

In the case of an optical combiner that is located in air, the refraction
index η1 is equal to 1. The refraction index η2 is that of the carrier’s base
material (e.g., glass or Plexiglas).

A simple solution to simulate refraction is the assumption that, despite
its optical nature, it can be expressed as a rigid-body transformation. This
is a common approximation used by the three-dimensional computer graph-
ics community to render realistic-looking refraction effects in real time. In
beam-tracing [61], for instance, it was assumed that, considering only parax-
ial rays (entering light rays that are exactly or nearly perpendicular to the
refracting plane), objects seen through a polygon with a refraction index of
η appear to be η times their actual distance. This is because light travels
slower in denser materials by precisely this factor. For this approximation,
the incidence angles of the optical line of sight are not taken into account
but, instead, a constant incidence angle of αi = 0 to the optical axis is
assumed. This, however, covers on-axis situations only. For off-axis sit-
uations that occur with spatial optical see-through displays, the incident

Figure 6.5. Off-axis refraction transformation for planar lenses.
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angle has to be considered. As a rigid-body transformation, refraction can
be expressed by a homogeneous 4 × 4 matrix:

F =




1 0 0 ∆a
0 1 0 ∆b
0 0 1 ∆c
0 0 0 1


 .

The advantage of this simple translation along the plate’s optical axis is
that it can be integrated into a fixed function rendering pipeline and can
be carried out by graphics hardware. The drawback, however, is that
this is only a rough approximation for refraction distortion, since every
vertex is translated by the same amount ∆ which is computed from a
common incident angle (such as the angle between the viewing direction
and the optical axis, for instance). The curvilinear characteristics of optical
refraction and the individual incident angles of the viewing vectors to each
scene vertex are not taken into account.

Programmable rendering pipelines allow per-vertex transformations di-
rectly on the graphics hardware. Thus the correct curvilinear refraction
transformation can be implemented as a vertex shader, rather than as a
rigid-body transformation expressed by a homogeneous matrix.

The following Cg shader fragment can be used to configure a program-
mable rendering pipeline with the refraction transformation:

...

// viewpoint = e[0..2]

// vertex = v[0..3]

// plane normal = n[0..2]

// plane thickness = t

// refraction index of material = r

float3 n,d;

float alpha_i, alpha_t, delta;

// compute viewing vector to vertex

d = e - v;

d = normalize(d);

n = normalize(n);

// compute angle between normal and viewing vector

alpha_i = acos(dot(d,n));

// compute delta

alpha_t = asin(sin(alpha_i) / r);
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Figure 6.6. The integration of reflection transformations into the rendering
pipeline.

delta = t * (1 - (tan(alpha_t)) / tan(alpha_i));

// compute refracted vertex

v.xyz = v.xyz + n * delta;

...

Whether refraction is implemented as a rigid-body transformation or
as a per-vertex transformation, the sequence of the transformations carried
out by the rendering pipeline is important for spatial optical see-through
displays.

Figure 6.6 illustrates the extension of Figure 6.3. The refraction trans-
formation has to be carried out after the scene transformation (either a
rigid-body or a per-vertex transformation). Vertices are transformed from
world coordinates to refracted world coordinates first. If the optical com-
biner is a mirror beam combiner, the refracted vertices are then reflected.
If the optical combiner is a transparent screen, reflection transformation is
not used. Finally, the vertices are mapped into reflected eye coordinates
(either with the reflected or with the unreflected viewpoint, depending on
the optical combiner), projected, converted into window coordinates, ras-
terized, and displayed.

The pseudocode below summarizes the rendering steps for spatial op-
tical see-through displays that use one planar screen and one planar beam
combiner. Only one user is supported.

for left and right viewpoints i
initialize transformation pipeline and polygon order

compute reflected viewpoint e′i = Rei

compute refraction offset ∆i for i
set transformation pipeline: RMFiViP
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reverse polygon order

render scene from e′i
endfor

First, the polygon order and the transformation pipeline have to be set
to an initial state. Then the reflected viewpoint and the view-dependent
refraction offset (∆i) are computed. The transformation pipeline is then set
to the corresponding concatenation of transformation matrices: reflection
transformation (R), model transformation (M), refraction transformation
(Fi, with ei), view transformation (Vi, with e′i), and the projection trans-
formation (P ). Finally, the polygon order is reversed and the scene is
rendered. Note that we assume that the screen coordinate system is equiv-
alent to the world coordinate system. Note also that R might not be static
but has to be recomputed continuously (e.g., if moving components have
to be supported—see Section 6.5).

6.4 Screen Transformation and Curved Screens

If the coordinate system of the secondary screen does not match with the
world coordinate system, an additional screen transformation has to be
added to the rendering pipeline. It expresses the screen’s transformation
within the world coordinate system and is usually a composition of multiple
translation and rotation transformations. Similar to the reflection trans-
formation, not only the reflected geometry but also the reflected viewpoint
has to be mapped into the screen coordinate system.

Once again the sequence in which all transformations are carried out is
important. The screen transformation is applied after the reflection trans-

Figure 6.7. The integration of screen transformations into the rendering pipeline.
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formation and before the view transformation—mapping reflected world
coordinates into reflected screen coordinates. The view transformation has
to be performed with the reflected viewpoint in screen coordinates e′′, that
can be computed by simply applying the screen transformation to the re-
flected viewpoint e′.

To give an example, consider a 30 cm × 40 cm screen that is not aligned
with the world coordinate system. In particular, assume it is rotated by
180 degrees around the z-axis and translated in such a way that the screen’s
y edge is aligned with the edge of a mirror beam combiner, located 20 cm
away from the world origin. In addition, the screen is tilted 30 degrees
about the edge that faces the mirror to achieve a higher contrast and a
better position of the reflected image.

The corresponding OpenGL screen transformation matrix can be cal-
culated as follows:

...

glRotatef(180,0,0,1); //rotate around z-axis by 180 deg

glTranslatef(0,15,0); //translate screen edge to origin

glRotatef(30,1,0,0); //rotate around screen edge by 30 deg

glTranslatef(0,20,0); //translate screen edge to mirror edge

...

Remember that the OpenGL notation has to be read bottom-up (but
it has to be implemented this way). To understand the transformation,

Figure 6.8. Example of a screen transformation.
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it is helpful to think that the misaligned screen coordinate system has to
be transformed back into the world coordinate system, since this corre-
sponds to the transformation that needs to be applied to the rendered
geometry. Reading the OpenGL fragment bottom to top, the screen is
first translated by 20 cm along the positive y-axis of the world coordinate
system aligning the adjacent edge with the world’s origin. It is then ro-
tated around this edge by 30 degrees fitting it to the x/y plane of the
world coordinate system. Then, the screen’s origin position is matched
with the world’s origin position by translating the screen further up the
positive y-axis (by exactly 15 cm which is half of the screen height). Fi-
nally, the screen is rotated by 180 degrees to fully align both coordi-
nate systems. A read-back from OpenGL’s model-view stack (e.g., with
glGetFloatv(GL MODELVIEW MATRIX,S);) allows us to obtain this matrix
and multiply it with the reflected viewpoint before the view transformation
is added.

As described in Chapter 5, projective texture mapping [168] can be
used in combination with two-pass rendering to support single or multi-
ple front/back projections onto a multi-plane or curved display surface.
Projective texture mapping is explained in Chapter 2.

Projective textures utilize a perspective texture matrix to map projection-
surface vertices into texture coordinates of those pixels that project onto
these vertices. A first rendering pass generates an image of the virtual
scene that will look perspectively correct to the user. During the second
pass, this image is projected out from the user’s current point of view onto
a registered virtual model of the display surface using projective texture
mapping. Finally, the textured model is rendered from the projector’s point
of view and the result is beamed onto the real display surface. If multiple
projectors are used, the second pass has to be repeated for each projec-
tor individually. The generated images have to be geometrically aligned,
and color and edge blended appropriately, to realize a seamless transition
between them.

To support planar mirror beam combiners that require affine model
and view transformations in combination with curved secondary screens,
the method previously outlined can be slightly modified. Instead of ren-
dering the original scene from the observer’s actual viewpoint, the reflected
scene has to be rendered from the reflected viewpoint. The reflection trans-
formations that are applied to the scene and the viewpoint depend on the
optics. All other rendering passes remain unchanged. Note that if mul-
tiple planar display surfaces are used, and if one projector is assigned to
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one projection plane, projective textures and two-pass rendering are un-
necessary. Instead, regular multi-pipeline rendering can be used (as it is
done for surround-screen projection systems, such as CAVEs or multi-sided
workbenches).

6.5 Moving Components

Some spatial see-through displays do not require a static constellation of
screens and optical combiners; they rather allow moving them freely within
the world coordinate system during run time. With respect to rendering, it
makes no difference whether the optical combiner and the screen are fixed or
movable. The only modification to the transformations that are described
in the previous section is that the plane parameters of the optical combiner
(which influences reflection and refraction transformations), and/or the
parameters of the screen transformation change continuously. This means
that the rendering pipeline has to be updated every time a component has
been moved; every frame in the worst case.

6.6 Multi-Plane Beam Combiners

More that one planar beam combiner can be utilized to build displays
that provide views on an augmented environment from multiple—very
different—angles, or to support multiple users simultaneously. This ap-
plies to mirror beam combiners as well as to transparent screens. If multi-
ple planar beam combiners need to be supported by an optical see-through
display simultaneously, the rendering pipeline that drives this display can
be configured from the basic elements that have been discussed previously.
Convex mirror assemblies unequivocally tessellate the surrounding space
into individual mirror reflection zones which, for the same point of view,
do not intersect or overlap and consequently provide a definite one-to-one
mapping between the screen space and the reflection space. The constel-
lation of basic transformations for these displays depends on the physical
constellation of optical combiners (e.g., mirror beam combiners or transpar-
ent screens) and image sources (e.g., video projectors or secondary screens).
Several scenarios are discussed in the following sections.
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Figure 6.9. Example of a multi-plane beam combiner constellation: four mirror
beam combiners and one secondary screen that support observing the augmented
real environment from 360 degrees.

6.6.1 Single Viewer

For the following explanation, we assume a multi-plane beam combiner that
provides different perspectives onto the same scene to a single observer.
We also want to assume that mirror beam combiners are used as optical
combiners, and a single secondary screen is used to display the rendered
images. For example, four half-silvered mirrors can be assembled in the
form of an upside-down pyramid frustum that reflects a large, horizontal
projection screen. The real environment that needs to be augmented would
be located inside the pyramid frustum.

The step from single-plane to multi-plane optical see-through displays
is similar to the step from single-plane projection displays (like walls or
workbenches) to multi-plane projection displays (like caves or two-sided
workbenches).

The rendering pipeline is split into several (four in our example) sub-
pipelines. Each sub-pipeline is responsible for rendering a single image
onto the secondary screen. Since only one screen is used in this example,
four separate images have to be rendered into the same frame buffer that
is displayed on the screen on each frame.
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Figure 6.10. Dependent rendering pipelines that support a multi-plane beam
combiner in combination with a single screen and a single observer.

The images differ in their individual mirror transformations (reflection
and, optionally, refraction). The scene and the view transformation is the
same for each sub-pipeline except that individual reflections of the same
viewpoint have to be applied together with the view transformation.

Note that the number of sub-pipelines is doubled for stereoscopic view-
ing. In this case, the left and right stereo images may be rendered into
two different frame buffers; the back-left and the back-right buffer if the
graphics hardware provides a quad buffer.

If the display is calibrated precisely enough (i.e., the parameters of
the pipeline, such as mirror-plane parameters, etc., have been determined
correctly), the different images merge into a single, consistent reflection
from all points of view. The perpendicular mirror constellation that was
chosen in our example ensures that the different images never overlap in
the frame buffer. Only two images and the corresponding two mirrors are
visible from a single point of view at a time. The reflections of these images
result in a single graphical scene (Figure 6.11).
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Figure 6.11. Two images are reflected by two mirrors and merge into a single
consistent graphical scene. (Image reprinted from [9] c© IEEE.)

The sub-pipelines can be carried out sequentially on the same computer
(i.e., by rendering each image into the frame buffer before swapping it).
This divides the frame rate by a factor that equals the number of sub-
pipelines.

Alternatively, hardware image composition technology (such as the
Lightning-2 device [175]) can be applied to distribute the sub-pipelines to
multiple computers and merge the resulting images within a single frame
buffer before the outcome is displayed on the screen. In this case, multiple
rendering nodes and the displays can be connected to a specific display sub-
system. The subsystem allows the image data generated by the connected
nodes to be mapped to any location of the connected displays without
losing much time for transmission and composition.

To support configurations that apply multiple planar beam combiners
and a single screen, the following algorithm can be used for a single user:

for left and right viewpoints i
for each to i front-facing beam combiner j

initialize transformation pipeline and polygon order

compute reflected viewpoint e′i = Rjei

compute refraction offset ∆ij for i and j
set transformation pipeline: RjMFijViP
reverse polygon order

render scene from e′i
endfor

endfor
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(a) (b)

Figure 6.12. Individual views of the same scene generated for two different
observers. (Images reprinted from [9] c© IEEE.)

The scene has to be rendered for each viewpoint and each beam com-
biner. If the configuration of the optics unequivocally tessellates the sur-
rounding space into individual mirror reflection zones which do not intersect
or overlap, a single object that is displayed within the screen space appears
exactly once within the reflection space.

6.6.2 Multiple Viewers

To support multiple viewers, each observer can be assigned to an indi-
vidual beam combiner (and corresponding screen portion and rendering
sub-pipeline).

Instead of using the same viewpoint for the view transformation of each
sub-pipeline, different viewpoints of the assigned observer have to be used.
This means that the generated images are completely independent of each
other and will no longer merge into a single, consistent three-dimensional
scene. They represent the individual views of the augmented scene of each
observer.

If we use the previous display example, the same scene is transformed
and rendered for each observer individually, before all images are displayed
on the same screen at the same time. In this case, each observer is re-
stricted to a limited viewing area that allows observing the scene through
the assigned beam combiner only.

The following algorithm will support such configurations:

for left and right viewpoints i of all viewers

initialize transformation pipeline and polygon order

compute reflected viewpoint e′i = Riei

compute refraction offset ∆i for i
set transformation pipeline: RiMFiViP
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Figure 6.13. Dependent rendering pipelines that support a multi-plane beam
combiner in combination with multiple screens and a single or multiple ob-
server(s).

reverse polygon order

render scene from e′i
endfor

Note that each user is restricted to the viewing zone that is given by
the assigned beam combiner.

6.6.3 Multiple Screens

Using a single screen for multiple beam combiners has the disadvantage
that each sub-pipeline renders its image into a portion of the common
frame buffer. The resolution of a single image is only a fraction of the frame
buffer’s total resolution. To overcome this problem, an individual screen
can be applied in combination with each beam combiner, sub-pipeline, and,
optionally, with each viewer.

This implies that each image is rendered in full resolution into separate
frame buffers that are displayed on different screens. Each sub-pipeline has
to be extended by a screen transformation that copes with each screen’s
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relative position and orientation within the global world coordinate sys-
tem. Note, that single and multiple viewer scenarios are supported by
this frame work depending on the viewpoints that are passed to the view
transformations.

In general such a scenario can only be realized with multi-channel ren-
dering pipelines that offer multiple frame buffers and the possibility to
connect to more than one screen. Nowadays, PC clusters are much more
efficient than monolithic graphics workstations, both from a performance
standpoint and from a financial point of view.

If PC clusters are used, it is important that the entire rendering process
is synchronized correctly. The generated images have to be displayed at ex-
actly the same time. This means that not only scene information has to be
updated on all PCs continuously and at an acceptable speed, but also the
signal that causes the swapping of the rendered images from back buffers to
front buffers might have to be distributed. This swapping synchronization
is called GenLocking and is an essential feature for synchronizing multiple
active stereoscopic screens. While some newer graphics cards can be con-
nected to distribute the GenLock signal directly, older graphics cards do
not provide this feature. However, open source software solutions (called
SoftGenLocking) exist [2] that offer an acceptable workaround. The scene
information is usually distributed over the network, using distributed scene
graph frameworks or other distributed graphics concepts. This ensures that
the same scene state is displayed on each screen at a time. This scene syn-
chronization is referred to as frame locking .

Display configurations that assign an individual screen and beam com-
biner to each user benefit from a higher resolution than those configurations
that split the screen (and its resolution) into different portions. To sup-
port such configurations, an additional screen transformation (S) has to
be introduced (see Section 6.4). This matrix represents a concatenation
of several translations, rotations, and scaling transformations, that map
coordinates from the world coordinate system into an individual coordi-
nate system of the corresponding screen. One can also think of the inverse
transformation of the screen itself within the world coordinate system.

The following algorithm can be used in combination with such configu-
rations:

for left and right viewpoints i of all viewers

initialize transformation pipeline and polygon order

compute reflected viewpoint e′i = Riei

compute refraction offset ∆i for i
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set transformation pipeline: RiMFiViSiP
reverse polygon order

render scene from e′i
endfor

Note, that by keeping track of individual model transformations (M)
and by rendering individual scenes for each user, the display configuration
acts as multiple individual-user displays. Otherwise, multiple users share
and interact with the same scene. To use individual model transforma-
tions and to render the same scene for each user has been proven to be
an effective way of precisely registering virtual objects to real ones can-
celling out slight physical misalignments of the screens and mirrors (whose
measured/calculated parameters that are stored in Ri and Si reflect these
errors) within each M . Thereby, the object transformation that is used
to align real and virtual objects is stored in each M . This also applies to
the algorithm that is presented in Section 6.6.2 although only one screen
is used.

Figure 6.14. Independent rendering pipelines that support individual scenes.
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6.6.4 Individual Scenes

For some multi-user scenarios, a common scene is not required. Rather,
each user observes and interacts with his or her own scene representation
on the same display. The actions that are carried out by a user do not
effect the scene state of the other users.

In this case, the scene transformation becomes individual to each user
and is carried out within each sub-pipeline. This makes all sub-pipelines
completely independent from each other and allows distributing them (to-
gether with copies of the scene description) on separate rendering nodes
without the need of any synchronization mechanism. Now every user is
assigned to completely independent components that are integrated into a
single spatial optical see-through display.

6.7 Curved Mirror Beam Combiners

Optical see-through displays can be assembled from many planar optical
elements (mirror beam combiners or transparent screens). Every element
requires its own rendering sub-pipeline. However, if many small optical
elements are used to approximate curved surfaces, the above rendering
concept quickly becomes inefficient.

Compared to calibrating multiple optical elements, the calibration ef-
fort for a single curved element can be reduced and optical aberrations
that result from miscalibration can be decreased by several orders of mag-
nitude. In addition, a curved optics can provide an edge-free view onto the
augmented scene.

(a) (b)

Figure 6.15. (a) A warped and projected image reflected in a curved (conical)
mirror beam combiner; (b) a virtual cartridge is being placed in a physical printer.
(Images reprinted from [9] c© IEEE.)
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Figure 6.16. Two-pass image warping pipeline for neutralizing curvilinear opti-
cal transformations.

As for curved projection screens (see Chapter 5), the rendering for spa-
tial optical see-through displays that use curved optics (mirror beam com-
biners or transparent screens) has to be warped before being displayed.
This transformation is view-dependent and curvilinear rather than a rigid-
body transformation and requires a per-vertex viewpoint and model trans-
formation. A single accumulation of simple homogeneous transformation
matrices (as described for planar optics) cannot express such a complex
deformation for the entire scene. Consequently, fixed function rendering
pipelines cannot be fully used for rendering graphics on curved optical see-
through displays.

Note that since convex mirrors map a larger portion of the screen space
into a smaller portion within the image space inside the optics, a high den-
sity of pixels can be compressed into a small reflection (Figure 6.15). Con-
sequently, the spatial resolution within the reflection is regionally higher
than the spatial resolution of the display device!

Warping the scene geometry itself requires highly tessellated graphical
models to approximate the curvilinear optical transformation well enough.
Instead, multi-pass rendering is frequently used. Rather than warping
geometry, images of the geometry are warped and displayed. This causes
the same effect, but the image transformation does not depend on the scene
geometry (e.g., its type, its complexity, its shading, etc.).

The first rendering pass generates an image of the graphical overlay
perspectively correct from the viewpoint of the observer. This image con-
tains all visual information that is expected to appear within the real
environment (e.g., shading, shadows, occlusion effects, etc.), and can be
rendered completely in hardware. It is geometrically approximated by a
two-dimensional tessellated grid that is transformed into the current view-
ing frustum in such a way that it is positioned perpendicular to the optical
axis.

The grid vertices and the image’s texture coordinates are transformed
(warped) with respect to the viewpoint, the optics, and the image source.
These transformations are applied on a per-vertex level and neutralize the
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image deformations that are caused by the optics (such as reflection and
refraction of mirror beam combiners and transparent screens) and the im-
age source (such as lens distortion of video projectors, or projections onto
curved screens). As indicated, per-vertex transformations can be imple-
mented as vertex shaders on programmable rendering pipelines.

Finally, the image that was generated during the first pass is mapped
onto the warped grid using texture mapping and bi- or tri-linear texture
filtering , and is displayed during the second pass. This process is repeated
for multiple individual viewpoints (e.g., for stereoscopic viewing and for
multi-user scenarios).

6.7.1 Generating Images

The first rendering pass generates the undeformed graphical overlay with
all the information that is expected to be visible within the real environ-
ment. Conventional graphics techniques that are provided by fixed function
rendering pipelines are sufficient for this step.

(a) (b)

(c) (d)

Figure 6.17. Different steps of image warping process: (a) image generation; (b)
transformation of image grid; (c) texturing; (d) displaying deformed image grid.
(Images reprinted from [9] c© IEEE.)
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To capture the entire virtual scene in the image, the scene’s bounding
sphere is used to define an on-axis viewing frustum from the viewpoint
of the observer. The apex of the frustum is chosen in such a way that
it encloses the bounding sphere exactly. This ensures that the complete
scene is visible in the image and that it covers a large portion of the image.
Finally the scene is rendered through this frustum into a texture memory
block rather than directly into the frame buffer. Older graphics cards do
not allow drawing an image into the on-board texture memory directly. In
this case the scene has to be rendered into the back frame buffer, and then
copied into the texture memory of the graphics card. This step is referred
to as read-back.

New graphics cards do allow rendering the image directly into an auxil-
iary on-board memory block (usually called P-buffer) that can be referenced
during texture mapping. This step is referred to as render-to-texture and
avoids the time-consuming operation of transferring the image information
from the frame buffer into the texture memory.

The following OpenGL code fragment can be used to configure the
correct on-axis frustum for generating the undeformed image of the virtual
scene:

...

// scene’s center = p[0..2]

// scene’s bounding sphere radius = r

// viewpoint = e[0..2], up-vector = u[0..2]

// texture height, texture width = th, tw

float l, d;

float left, right, bottom, top, near, far;

// compute parameters of on-axis frustum

l = sqrt((p[0] - e[0]) * (p[0] - e[0]) +

(p[1] - e[1]) * (p[1] - e[1]) +

(p[2] - e[2]) * (p[2] - e[2]));

d = r * (l - r) / l;

left = -d; right = d;

bottom = -d; top = d;

near = l - r; far = l + r;

// configure rendering pipeline

glViewport(0, 0, tw, th);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glFrustum(left, right, bottom, top, near, far);
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glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(e[0], e[1], e[2],

p[0], p[1], p[2],

u[0], u[1], u[2]);

// draw scene with scene transformation into texture memory

...

The big advantage of this image-based method is that it is completely
independent of the scene’s content and the way this content is rendered. In-
stead of using a geometric renderer, other techniques (such as image-based
and non-photorealistic rendering, interactive ray tracing, volume rendering,
or point-based rendering, etc.) can be employed to generate the image.

The image that has been generated during the first rendering pass has
to be transformed in such as way that it is perceived undistorted while
observing it through or with the display’s combiner optics. To support
these image deformations, a geometric representation of the image plane is
generated initially. This image geometry consists of a tessellated grid (e.g.,
represented by an indexed triangle mesh) which is transformed into the
current viewing frustum in such a way that, if the image is mapped onto
the grid, each line of sight intersects its corresponding pixel. Thus, the
image grid is perpendicular to the optical axis and centered with the scene
geometry. The following deformation steps transform the positions and the
texture coordinates of every grid vertex individually. Note that a pixel-
individual warping would be possible with pixel shaders. However, holes
caused by the stretching deformation would have to be filled accordingly.
Rendering a dense and textured image grid through a vertex shader ensures
a correct interpolation of missing image portions.

6.7.2 Reflection on Convex Mirrors

As discussed in Section 6.6, convex multi-plane mirror assemblies unequivo-
cally tessellate the surrounding space into individual mirror reflection zones
which, for the same point of view, do not intersect or overlap. Consequently,
they provide a definite one-to-one mapping between screen space and re-
flection space. This is also true for curved convex mirrors. Curved convex
mirrors cannot provide true stigmatism between all object-image pairs, but
rather a close approximation which introduces small optical aberrations.
Due to the limited resolution of the eyes, human observers can usually not
perceive these aberrations.
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Images formed by convex mirrors appear to be reduced and deformed
versions of the reflected objects. Hence, the image of the scene that results
from the first rendering pass has to be stretched before displaying it on the
secondary display. This results in the original (unscaled) image after the
physical reflection.

Several curved mirror displays exist that generally don’t predistort the
graphics before they are displayed. Yet, some systems apply additional
optics (such as lenses) to stretch or undistort the reflected image (e.g. [106,
107]). But these devices constrain the observer to a single point of view or
to very restricted viewing zones. However, if a view-dependent rendering
is required to support freely moving observers, interactive rendering and
real-time image warping techniques are needed which provide appropriate
error metrics.

The reflection transformation for displays that use convexly curved mir-
ror beam combiners will be explained based on an example of the conical
mirror display illustrated in the figures shown previously. Any other surface
type can be used in combination with the described techniques.

Each grid point v of the image geometry has to be transformed with
respect to the mirror surface M , the current viewpoint e, and the secondary
screen S and the texture of each grid point in the image that we generated
during the first rendering pass. For all grid vertices v, the intersection i of
the geometric line of sight with the mirror surface has to be computed (that
is, the ray r that is spanned by the eye e and the vertex v). Next, the normal
vector n at the intersection i needs to be determined. The intersection
point, together with the normal vector, gives the tangential plane at the
intersection. Thus, they deliver the individual plane parameters for the per-
vertex reflection. This information is then used to compute the reflection
ray r′ and the intersection i′ of r′ with the secondary screen surface S.

Having a geometric representation (e.g., a triangle mesh) to approxi-
mate the mirror’s and the screen’s surfaces, M and S, supports a flexible
way of describing the dimensions of arbitrary shapes. However, the com-
putational cost of the per-vertex transformations increases with a higher
resolution surface geometry. A high resolution surface description, how-
ever, is required to neutralize the optical reflection distortion effectively.
For triangle meshes, a fast ray-triangle intersection method (such as [113])
is required that automatically delivers the barycentric coordinates of the
intersection within a triangle. The barycentric coordinates can then be
used to interpolate between the three vertex normals of a triangle to ap-
proximate the normal vector at the intersection.
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(a)

(b) (c)

Figure 6.18. Reflection transformation on a conical mirror. (Images (b) and (c)
reprinted from [9] c© IEEE.)

As explained for projection surfaces in Section 5.4.1, a more efficient way
of describing surface shapes for this purpose is to use parametric functions
in the form of F (x, y, z) = 0. Parametric functions to describe mirror and
screen surfaces (M(x, y, z) = 0 and S(x, y, z) = 0) can be used to calculate
the intersections and the normal vectors (using its first order derivatives)
with an unlimited resolution by solving simple equations. However, not all
shapes can be expressed by parametric functions.

Obviously, we have the choice between a numerical and an analytical
approach for describing mirror and screen surfaces. If an analytical so-
lution is given, it should be preferred over the numerical variant. Higher-
order curved surfaces, however, require the application of numerical
approximations.



�

�

�

�

�

�

�

�

6.7. Curved Mirror Beam Combiners 181

The parametric function for the conical mirror example and its first-
order derivatives are

M(x, y, z) =
x2

r2
1

+
y2

r2
2

− z2

h2
= 0

and

n =
[
M

δx
,
M

δy
,
M

δz

]
= 2

[
x

r2
1

,
y

r2
2

,− z

h2

]
.

where r1 and r2 are the cone’s radii with its center located at the world
coordinate system’s origin, and h is the cone’s height along the z-axis.

To intersect the ray r with the mirror surface, it has to be transformed
from the world coordinate system into the coordinate system that is used
by the parametric function. Then it can be intersected easily with the
surface by solving a (in our example, quadratic) equation created by in-
serting a parametric ray representation of r(x, y, z) into the mirror equation
M(x, y, z).

Given the surface intersection i and the normal n at i, the specular
reflection ray can be computed by

r′ = r − 2n(nr).

Finally, r′ has to be transformed from the coordinate system of M into the
coordinate system of S to compute the intersection i′ with S by solving
another equation created by inserting r′ into S.

The following Cg vertex shader fragment can be used to compute the
reflection transformation for conical mirror surfaces (this example applies
to the truncated conical mirror surface illustrated in Figure 6.18):

...

// viewpoint = e[0..2]

// vertex = v[0..3]

// truncated cone parameters: lower radius = r1,

upper radius = r2,

height = h

float3 i, i_, n, r, r_;

float a, b, c, r, s, t, u, l1, l2, l3;

// compute cone parameters

a = r2; b = r2; c = (r2 * h) / (r2 - r1);

// transformation to cone-coordinate system (r = v - e)
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v.z = v.z + (c - h); e.z = e.z + (c - h);

// compute viewing direction (r)

r = v - e; r = normalize(r);

// compute cone intersection

s = (e.x * e.x) / (a * a) +

(e.y * e.y) / (b * b) -

(e.z * e.z) / (c * c);

t = 2.0 * ((e.x * r.x) / (a * a) +

(e.y * r.y) / (b * b) -

(e.z * r.z) / (c * c));

u = (r.x * r.x) / (a * a) +

(r.y * r.y) / (b * b) -

(r.z * r.z) / (c * c);

l1 = (-t + sqrt(t * t - 4.0 * u * s)) / (2.0 * u);

l2 = (-t - sqrt(t * t - 4.0 * u * s)) / (2.0 * u);

i = e + r * l2;

// back-transformation to world coordinate system

i.z = i.z - (c - h);

// compute cone normal

n.x = i.x / (a * a);

n.y = i.y / (b * b);

n.z = i.z / (c * c);

n = normalize(n);

// compute incident ray (i - e)

r = i - e; r = normalize(r);

// compute reflector

r_ = reflect(r,n);

// compute intersection with screen

// (x/y plane in this example)

l1 = -dot(float3(0, 0, 1), i);

l2 = dot(float3(0, 0, 1), r_);

l3 = l1 / l2;

i_ = i + l3 * r_;

// compute projected vertex

v.xyz = i_.xyz; v.w = 1.0;

...
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Note, that the same shader can be used in combination with any other
parametric functions that describe the mirror and the screen surfaces. Only
the surface equation specific parts have to be replaced. Also note the ren-
dering analogy between parametric optical surfaces and parametric projec-
tion surfaces (see Chapter 5).

6.7.3 Refraction

Refraction distortion is discussed for planar lenses in Section 6.3.2. A
vertex transformation is applied to the rendered geometric model between
scene and reflection transformation. To cope with the curvilinearity of
refraction, vertex shaders are preferred over a rigid-body approximation if
programmable function pipelines are available.

For the image-based method, a per-pixel transformation on the im-
age plane would be more efficient than a per-vertex transformation of the
image grid. Pixel shaders of current programmable function pipelines do
support a per-pixel displacement mapping. However, holes that are caused
by stretching deformations have to be filled. Discrete pixel transforma-
tions and the interpolation of empty image portions can be approximated
with vertex shaders. The computation of new texture coordinates for each
vertex allows offsetting of the corresponding pixel position on the image
plane. The positions of pixels in between vertices (i.e., within patches of
the image grid) are then approximated via a linear interpolation of the tex-
ture mapping. As for the reflection transformation, this introduces optical
errors that can be large if the resolution of the image grid is too low.

As shown in Figure 6.19, two surface descriptions (Mo and Mi) are
required to compute in- and out-refracted rays for such optical combiners
since they represent curved, surface-parallel lenses. As for the reflection
transformation, explicit functions in the form of F (x, y, z) = 0 are most
efficient for computing the required intersections i,i′ and the corresponding
parameters of the tangent planes.

Similar to the reflection case, each ray from the viewpoint e to all grid
vertices v has to be processed. Each ray has to be transformed from the
world coordinate system into the coordinate system that is used by the
parametric function and then intersected with the outer in-refracting sur-
face Mi. The computed intersection i and its tangential plane parameters
are used to determine the in-refractor, which is intersected again with the
inner out-refracting surface Mo. The second intersection i′ and its tangen-
tial plane parameters allow computing the out-refractor. Any point on this
ray (x) can be projected onto the image plane from i′. This results in posi-
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Figure 6.19. Image-based in-/out-refraction transformation on curved lens.

tion x′ in projected and normalized device coordinates (e.g., [-1,1]). After
a conversion from device coordinates into normalized texture coordinates
(e.g., [0,1]), the texture coordinates of the pixel that needs to appear at
grid vertex v have been determined. To simulate refraction, these texture
coordinates are simply assigned to v. Note, that x′ can also be computed by
intersecting the out-refractor directly with the image plane. This may re-
quire a different conversion from world coordinate systems into normalized
texture coordinates.

The composition of an appropriate texture matrix that computes new
texture coordinates for the image vertex is summarized in the algorithm
below:1

compute texture normalization correction:

S = scale(0.5, 0.5, 0.5), s = s · translate(1, 1, 0)

compute off-axis projection transformation:

φ = (i′z−1)
i′z

, left = −φ(1 + i′x), right = φ(1 − i′x)
bottom = −φ(1 + i′y), top = φ(1 + i′y)
near = i′z − 1, far = i′z + 1

1This applies for OpenGL-like definitions of the texture and normalized device coor-
dinates.
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P = frustum(left, right, bottom, top, near, far)

compute view transformation:

V = lookat(i′x, i′y, i′z, i
′
x, i′y, 0, 0, 1, 0)

compute new texture coordinate x′ for particular x(v),
including perspective division

x′ = S · (P ·V ·x)
w

As illustrated in Figure 6.19, an off-axis projection transformation is
used, where the center of projection is i′. Multiplying x by the resulting
texture matrix and performing the perspective division projects x to the
correct location within the normalized texture space of the image. Finally,
the resulting texture coordinate x′ has to be assigned to v′.

Note that if the image size is smaller than the size of the allocated
texture memory, this difference has to be considered for the normalization
correction. In this case, the image’s texture coordinates are not bound by
the value range of [0,1].

As mentioned previously, the matrix operations can be replaced by an
explicit ray casting.

For plane parallel lenses, the in-refracting and out-refracting surfaces
are the same but offset by the thickness t of the lens. Explicit in- and
out-refractors do not have to be computed in this case. Rather, the offset
∆ can be computed for every geometric line of sight (v − e) as described
in Section 6.3.2. The new projection on the image plane can be computed
by translating the viewpoint e and the corresponding grid vertex v by the
amount ∆ along the normal of the lens. The new texture coordinates can
be computed by projecting v′ onto the image plane from e′ and converting
the result into the normalized texture space.

Nevertheless, both refraction methods face the following problems for
outer areas on the image:

• Given a geometric line of sight to an outer grid vertex, its correspond-
ing optical line of sight does not intersect the image. Thus, a grid
vertex exists but its new texture coordinate cannot be computed.
This results in vertices with no, or wrong, texture information.

• Given an optical line of sight to an outer pixel on the image, its corre-
sponding geometric line of sight does not intersect the image. Thus,
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(a) (b)

Figure 6.20. Image-based in-/out-refraction transformation on planar lens.

a texture coordinate can be found but an assignable grid vertex does
not exist. Consequently, the portion surrounding this pixel cannot
be transformed. This results in image portions that aren’t mapped
onto the image geometry.

A simple solution to address these problems does not avoid them, but
ensures that they do not occur for image portions which contain visible
information. As described in Section 6.7.1, the image size depends on the
radius of the scene’s bounding sphere. Its radius can simply be increased by
a constant amount before carrying out the first rendering pass. An enlarged
image does not affect the image content, but subjoins additional outer
image space that does not contain any visible information (i.e., just black
pixels). In this way, we ensure that the previously mentioned problems
emerge only at the new (black) regions. Yet, these regions will not be
visible in the optical combiner.

Note, that in contrast to the image-based reflection transformation (Sec-
tion 6.7.2) which transforms grid vertices, the refracted image transform
remaps texture coordinates. However, all image transformations have to
be applied before the final image is displayed during the second rendering
pass.

6.7.4 Screen Transformation and Non-Planar Screens

In cases where the screen coordinate system is not equivalent to the world
coordinate system in which beam combiners, user(s), and scene(s) are de-
fined, an additional screen transformation has to be used to project the
reflected/refracted image-geometry vertices to their correct places. This
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can be achieved with additional affine transformation operations that are
applied to the image-geometry itself, as described in Section 6.4, or by
intersecting the traced rays with the geometry of the transformed screen
plane (e.g., if explicit ray casting is used inside a vertex shader).

If the secondary screen is not planar, an explicit ray-casting approach
still leads to a correct result. The traced rays simply have to be intersected
with a geometric representation of the curved screen.

Note that an approach that uses projective texture-mapping [168] for
planar mirror beam combiners fails for a combination of curved mirror
optics and curved screens. Although the first rendering pass is similar to
the first pass that generates the image (see Section 6.7.1), the second pass
cannot be used, because multiple centers of projection exist (one for each
transformed image vertex).

6.7.5 Displaying Images

During the second rendering pass, the transformed image geometry is fi-
nally displayed within the screen space, mapping the outcome of the first
rendering pass as texture onto its surface.

Note, that if the reflection/refraction transformations of the previous
steps deliver device coordinates, but the secondary screen and the mirror
optics are defined within the world coordinate system, a second projection
transformation (such as glFrustum) and the corresponding perspective di-
visions and viewpoint transformation (such as gluLookAt) aren’t required.
If a plane secondary screen is used, a simple scale transformation suffices to
normalize the device coordinates for example, glScale(1/device width/2,

1/device height/2, 1). A subsequent view-port transformation finally
scales them into the window-coordinate system for example, glViewport(0,
0, window width, window height).

Time-consuming rendering operations that aren’t required to display
the two-dimensional image (such as illumination computations, back-face
culling, depth buffering, and so on) should be disabled to increase the
rendering performance. In this case, the polygon order doesn’t need to be
reversed before rendering, as we noted previously.

Obviously, one can choose between numerical and analytical approaches
to represent curved mirror surfaces. Simple shapes can be expressed as
parametric functions, but higher-order curved mirrors require numerical
approximations. In addition, the grid resolution that is required for the
image geometry also depends on the mirror’s shape. Pixels between the
triangles of the deformed image mesh are linearly approximated during
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rasterization (that is, after the second rendering pass). Thus, some im-
age portions stretch the texture while others compress it. This results in
different regional image resolutions. However, because of the symmetry
of simple mirror setups (such as cones and cylinders), a regular grid res-
olution and a uniform image resolution achieve acceptable image quality.
In Section 6.7.8, a selective refinement method is described that generates
a non-uniform image geometry to minimize the displacement error of the
image portions, the complexity of the image geometry, and, consequently,
the number of vertex transformations and triangles to be rendered.

Since primitive-based (or fragment-based) antialiasing doesn’t apply
in deformed texture cases, bilinear or trilinear texture filters can be used
instead. As with antialiasing, texture filtering is usually supported by the
graphics hardware.

Note that the image’s background and the empty area on the secondary
screen must be rendered in black, because black doesn’t emit light and
therefore won’t be reflected into the reflection space.

6.7.6 Multiple Viewers

To support multi-user applications, the individual viewer images must be
composed and the black background must be color-blended appropriately.
For convex beam combiners the images are stretched within the screen

Figure 6.21. Stretched image geometry projected on secondary screen and re-
flected in conical mirror beam combiner. (Image reprinted from [16] c© Elsevier.)



�

�

�

�

�

�

�

�

6.7. Curved Mirror Beam Combiners 189

space to appear correctly within the reflection space (Figure 6.21), therefore
multiple images for different observers might intersect.

In these cases, individual observers can perceive the (perspectively wrong)
images of other users in addition to their own images. The amount of
intersection depends on the size of the graphical scene, the positions of
the observers, and the parameters of the mirror optics and the secondary
screen. The larger the graphical scene, for instance, the more space on the
secondary screen is required, and conflicting situations become more likely.
Such conflicts also arise for multi-plane beam combiner configurations if
multiple users are allowed to move freely around the display (as it has been
described for a single user in Section 6.6.1).

6.7.7 Concave Beam Splitters

Concave mirrors can generate both real images and virtual images. Light
rays which are reflected off convex mirror assemblies do not intersect. In
contrast, light rays that are reflected off a parabolic concave mirror do in-
tersect exactly within its focal point. For concave mirrors that deviate from
a parabolic shape (e.g., spherical mirrors) the light rays do not intersect
within a single point, but bundle within an area of rejuvenation.

The rendering techniques for curved mirror beam combiners are de-
scribed on the basis of convex mirrors. However, they can be used for con-
cave mirrors without or with only minor modifications to the algorithms.

Figure 6.22 illustrates how, given the viewpoint and the location of the
mirror, the geometry of a cube is transformed by the algorithm described

Figure 6.22. Reflected geometry at a concave mirror.
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(a) (b)

Figure 6.23. (a) Reflecting scene geometry; (b) reflecting image geometry at a
concave mirror.

in Section 6.6.2 (without projection onto the screen plane). Note, that
the vertices of a highly tessellated surface approximation of the cube are
reflected, instead of the vertices of the image geometry.

The portion of the geometry that is located within area A is mapped
to area A′ (behind the mirror’s focal point as seen from the viewpoint).
This mapping has a similar behavior as for convex mirrors. The portion
of the geometry that is located within area B is mapped to area B′ (in
front of the mirror’s focal point as seen from the viewpoint). In this case,
the mapped geometry is flipped and the polygon order is changed. The
geometry that is located on the intersecting surface of A and B is mapped
to the focal point.

Figure 6.23 shows that concave mirrors can be treated just like convex
mirrors. The left image indicates the reflection of the scene geometry it-
self (again, without projection onto the screen plane). The transformed
geometry and the mirror model have been exported to a ray tracer, and
the image that is seen from the viewpoint has been ray traced. The result
is outlined at the lower right of Figure 6.23(a) (dark cube).

It can be seen, that the transformed geometry appears untransformed
as a reflection in the mirror. Note that due to the different orders of
polygons that are located in front of and behind the focal point, polygon
order related options offered by the applied rendering package should be
disabled. Otherwise, additional actions have to be taken to determine the
location of each transformed polygon and its order.

The same experiment has been carried out reflecting the image geome-
try (including the projection onto the screen plane). The image geometry
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was transformed and the image that was generated during the first ren-
dering pass was mapped onto the transformed image grid. Figure 6.23(b)
illustrates that the projected image is a flipped version of the original im-
age. If ray-traced from the given viewpoint, this deformed image appears as
a correct reflection in the mirror (see lower right of the right image). Note
that the contours of the ray-traced result have been highlighted, since the
planar projection of the deformed image does not provide sufficient normal
or depth information to generate correct shading effects with the ray tracer.
Note also, that reflecting the scene geometry and projecting the result onto
the screen plane yields the same results as reflecting and projecting the im-
age geometry.

Mirrors with a mixed convexity (i.e., simultaneously convex and concave
mirrors) can cause multiple images of the same object, or they can reflect
multiple objects to the same location within the image space. In such cases,
the transformations from screen space to reflection space and vice versa are
not definite and are represented by many-to-many mappings. Such types
of mirrors should be decomposed into convex and concave parts (as done
by Ofek [122, 123]) to ensure a correct functioning of the algorithms. Al-
though for many surfaces this can be done fully automatically [172], spatial
optical see-through configurations do not make use of mirrors with mixed
convexities. This is because one of the initial goals of such displays, namely
to unequivocally overlay real environments with computer graphics in an
AR manner, is physically not supported by such mirrors. Consequently,
mirrors with mixed convexities are not considered for spatial augmented
reality.

6.7.8 Non-Uniform Image Geometry

If image warping is used for a non-linear predistortion, the required grid
resolution of the underlying image geometry depends on the degree of cur-
vature that is introduced by the display (e.g., caused by the properties of
a mirror, a lens, or a projection surface).

Pixels within the triangles of the warped image mesh are linearly ap-
proximated during rasterization (i.e., after the second rendering pass).
Thus, some image portions stretch the texture, while others compress it.
This results in different local image resolutions. If, on the one hand, the
geometric resolution of an applied uniform grid is too coarse, texture ar-
tifacts are generated during rasterization (Figure 6.24(a)). This happens
because a piecewise bi - or tri-linear interpolation within large triangles
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(a) (b) (c)

(d) (e)

Figure 6.24. Selectively refined image geometry: (a) distorted image created
with an undersampled uniform image grid; (b) oversampled uniform image grid;
(c) undistorted image; (d) selectively refined image grid; (e) grid portion that
projects onto bounding container. (Images reprinted from [16] c© Elsevier.)

is only a crude approximation to neutralize the curvilinear optical
transformations.

If, on the other hand, the grid is oversampled to make the interpola-
tion sections smaller (Figure 6.24(b)), interactive frame rates cannot be
achieved. In addition to the speed of the first rendering pass, the per-
formance of view-dependent multi-pass methods depends mainly on the
complexity of the image geometry that influences geometric transforma-
tion times and on the image resolution that influences texture transfer and
filter times.

This section describes a selective refinement method [16] that generates
image grids with appropriate local grid resolutions on the fly. This method
avoids oversampling and the occurrence of artifacts within the final image.

The main difficulty for a selective refinement method that supports
curved mirror beam combiners is that in contrast to simpler screens, a
displacement error that defines the refinement criterion has to be computed
within the image space of the mirror optics, rather than in the screen space
of the display. For convexly curved mirror beam combiners, this requires
fast and precise numerical methods. For displays that do not contain view-
dependent optical components (e.g., curved screens), these computations
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are much simpler because analytical methods or look-up tables can be used
to determine the error within the screen space.

Recent advances in level-of-detail (LOD) rendering take advantage of
temporal coherence to adaptively refine geometry between subsequent frames.
Terrain-rendering algorithms locally enhance terrain models by considering
viewing parameters.

Hoppe introduced progressive meshes [65] and later developed a view-
dependent refinement algorithm for progressive meshes [66, 67]. Given a
complex triangle mesh, Hoppe first pregenerates a coarse representation
called base mesh by applying a series of edge collapse operations. A se-
quence of precomputed vertex split operations that are inverse to the cor-
responding edge collapse operations can then be applied to the base mesh’s
regions of interest to successively refine them.

The selection of the appropriate vertex split operations is based on his
refinement criteria. Lindstrom [90] describes a method that generates a
view-dependent and continuous LOD of height fields dynamically in real
time, instead of precomputing a coarse base mesh and a sequence of re-
finement steps. He hierarchically subdivides a regular height field into a
quadtree of discrete grid blocks with individual LODs. Beginning with the
highest LOD, Lindstrom locally applies a two-step surface simplification
method. He first determines which discrete LOD is needed for a particular
region by applying a coarse block-based simplification, and then performs
a fine-grained retriangulation of each LOD model in which vertices can
be removed. To satisfy continuity among the different LODs, Lindstrom
considers vertex dependencies at the block boundaries.

The main difference between both methods is that Lindstrom performs
a dynamic simplification of high-resolution height fields for domains in R2

during rendering. Lindstrom’s mesh definition provides an implicit hier-
archical LOD structure. Hoppe uses refinement steps to low-resolution
LODs of arbitrary meshes during rendering. His mesh definition is more
general and does not require an implicit hierarchical LOD structure. Con-
sequently, the refinement steps and the low resolution base mesh have to be
precomputed. In addition, he uses triangulated irregular networks (TINs)
for triangulation, rather than regular grids. Note that these two types of
refinement methods may be representative for related techniques. Since the
image geometry for spatial optical see-through displays can also be parame-
terized in R2 and provides an implicit hierarchical LOD structure, multiple
LODs or appropriate refinement steps do not need to be precomputed but
can be efficiently determined on the fly. This is similar to Lindstrom’s ap-
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proach. However, simplifying a high-resolution mesh instead of refining a
low-resolution mesh would require a retransformation of all grid vertices of
the highest LOD after a change in the viewpoint occurred. This is very in-
efficient, since for the type of displays that we consider, viewpoint changes
normally happen at each frame.

In contrast to the static geometry that is assumed in Lindstrom’s and
Hoppe’s cases, the image geometry generated for spatial optical see-through
displays is not constant, but dynamically deforms with a moving viewpoint.
Consequently, the geometry within all LODs dynamically changes as well.

This section describes a method that dynamically deforms the image
geometry within the required LODs while selectively refining the lowest-
resolution base mesh during rendering. The method aims at minimizing
the displacement error of the image portions, the complexity of the image
geometry, and, consequently, the number of vertex transformations and
triangles to be rendered.

Note that this method cannot be implemented with the limited capa-
bilities of vertex shaders, yet. Consequently it has to be executed on the
CPU rather than on the GPU. This implies that rendering a high-resolution
uniform image grid on a GPU might be faster than creating a selectively re-
fined image grid on the CPU. Nevertheless, the LOD method is explained to
impart knowledge about displacement errors that are generated by approx-
imating a curvilinear optical transformation with discretized image grids.
Future generations of vertex shaders will offer more possibilities. Recur-
sions that enable the implementation of the following method completely
in a shader might become feasible in the future.

Image triangulation. Instead of transforming and rendering a uniform high-
resolution mesh, one can start from the coarsest geometry representation
and successively refine it locally until certain refinement criteria are satis-
fied. Due to the well-defined structure of the image grid, all possible global
or discrete LODs can be computed at runtime including the highest, which
is the uniform high-resolution representation of the mesh itself.

Figure 6.25 illustrates a quadtree-based image triangulation, which is
similar to Lindstrom’s triangulation method for height fields [90]. While
Figure 6.25(a) shows an unrefined patch at LOD n, Figure 6.25(b) shows
the same patch at LOD n + 1, with lower LOD neighbors. Given a highest
LOD of m, an indexed (2m + 1)× (2m + 1) matrix structure can be chosen
to store the grid vertices.

For illustration purposes the following types of patch vertices can be
differentiated:
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(a) (b)

Figure 6.25. (a) Triangulation of unrefined patch at LOD n; (b) triangulation
of refined patch at LOD n+1 with resolution transitions. (Images reprinted from
[16] c© Elsevier.)

• L-vertices are vertices at the corners of a patch (e.g., at indices
[i,j],[i,l],[k,l] and [k,j] in Figure 6.25(a));

• X-vertices are vertices at the center of a patch (e.g., at index [(k −
i)/2,(l − j)/2] in Figure 6.25(a));

• T-vertices are vertices that split the patch edges after refinement
(e.g., at indices [i,(l−j)/2], [k,(l−j)/2], [(k− i)/2,l], and [(k− i)/2,j]
in Figure 6.25(b))

To refine a patch, it is divided into four sub-patches by computing the
corresponding four T -vertices, as well as the four X-vertices that lie inside
the sub-patches. Note that the matrix structure in this particular case
is equivalent to a quadtree data structure. To ensure consistency during
rasterization, the T -vertices have to be connected to their neighboring X-
vertices wherever a LOD transition occurs (e.g., at all four neighbors of the
refined patch, as shown in Figure 6.25(b)).

Due to the well-defined matrix structure that contains the image grid,
the following conditions are given:

1. A clear relationship between the X-vertices and T -vertices exists.
X-vertices can never be T -vertices and vice versa.

2. Each patch has definite L-vertices, T -vertices, and X-vertices, whose
indices can always be computed.

3. Each X-vertex can be explicitly assigned to a single patch at a specific
LOD.
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4. Each T -vertex can be explicitly assigned to exactly one or two adja-
cent patches at the same LOD.

The triangulation methods described require continuous level-of-detail
transitions [111]. This implies that neighboring patches do not differ by
more than one LOD.

Recursive grid refinement. The objective of this step is to generate an
image grid that provides a sufficient local grid resolution (i.e., appropriate
discrete LODs) to avoid artifacts within the rasterized texture that would
result from undersampling, as well as oversampling.

The following pseudocode illustrates an approach to recursively refine a
grid patch, which initially is equivalent to the lowest LOD (i.e., the patch
at the lowest LOD is outlined by the L-vertices at the four corners of the
image geometry):

RecursiveGridRefinement(i, j, k, l)
1: begin

2: a = (k − i)/2, b = (l − i)/2
3: if GeneratePatch([i, j],[i, l],[k, l],[k, j],[a, b])
4: begin

5: TransformPatchVertices([i, j],[i, l],[k, l],[k, j],[a, b])
6: P = P ∪ {[i, j, k, l]}
7: if RefineFurther([i, j],[i, l],[k, l],[k, j],[a, b])
8: begin

9: RecursiveGridRefinement(i, j, a, b)
10: RecursiveGridRefinement(a, j, k, b)
11: RecursiveGridRefinement(i, b, a, l)
12: RecursiveGridRefinement(a, b, k, l)
13: if j < 2m + 1 TC[a, j] += 1

14: if k < 2m + 1 TC[k, b] += 1

15: if l > 1 TC[a, l] += 1

16: if i > 1 TC[i, b] += 1

17: end

18: end

19:end

The patch that has to be refined is stored at indices [i, j, k, l] within
a matrix structure. Condition (2) allows us to locate the position of the
patch (individual X-vertex) at indices [a, b] (line 2). First, it is evaluated
whether or not a patch has to be generated at all (line 3). The four L-
vertices and the X-vertex are transformed from the image plane to the
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display surface (line 5), as described in detail in Sections 6.7.2 and 6.7.3.
Normally the image plane is located within the image space of the mir-
ror optics. In this case, these mappings composite the individual vertex
model-view transformations to neutralize reflection and refraction, as well
as the projection transformation that maps a vertex onto the display sur-
face. Note that vertices are only transformed once even if the recursive
refinement function addresses them multiple times. This is realized by at-
taching a marker flag to each vertex. A reference to the transformed patch
is stored in patch set P by adding the patch’s indices to P (line 6). In
line 7, a function is called that evaluates the transformed patch based on
predefined refinement criteria and decides whether or not this patch has to
be further refined. The main refinement criterion is described below. If this
decision is positive, the patch is divided into four equal sub-patches, and the
refinement function is recursively called for all of these sub-patches (lines
9–12). Note that Condition (2) also allows us to determine the indices of
the patch’s four T -vertices, which become L-vertices of the sub-patches in
the next LOD. Consequently, the GeneratePatch and the RefineFurther

functions represent the exit conditions for the recursion.
It was mentioned that T -vertices have to be connected to their neighbor-

ing X-vertices whenever an LOD transition occurs to ensure consistency
during rasterization. To detect LOD transitions, a counter (TC) is at-
tached to each T -vertex. This counter is incremented by 1, each time the
corresponding T -vertex is addressed during the recursive refinement (lines
13–16). Note that the if-conditions ensure a correct behavior of the counter
at the image geometry’s boundaries. Due to Condition (4), each counter
can have one of the following three values:

• 0—indicates that the T -vertex is located at a boundary edge of the
image geometry or it is contained by a discrete LOD that is higher
than the required one for the corresponding region.

• 1—indicates a LOD transition between the two neighboring patches
that, with respect to Condition (4), belong to the T -vertex.

• 2—indicates no resolution transition between the two neighboring
patches that belong to the T -vertex.

After the image grid has been completely generated, all patches that
are referred to in P are rendered with appropriate texture coordinates dur-
ing the second rendering pass. Thereby, the counters of the patch’s four
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T -vertices are evaluated. Depending on their values, either one or two tri-
angles are rendered for each counter. These triangles form the final patch.
Counter values of 0 or 2 indicate no LOD transition between adjacent
patches. Consequently, a single triangle can be rendered which is spanned
by the T -vertex’s neighboring two L-vertices and the patch’s X-vertex (this
is illustrated in Figure 6.25(b)). A counter value of 1, however, indicates
a LOD transition. Two triangles have to be rendered that are spanned by
the T -vertex itself, the two neighboring L-vertices, and the X-vertex of the
adjacent patch (this is illustrated in Figure 6.25(a)). A selectively refined
image geometry is shown in Figure 6.24(d).

Generation and refinement criteria. This section discusses the patch
generation and refinement criteria that are implemented within the
GeneratePatch and RefineFurther functions. The input for these func-
tions is the four L-vertices, as well as the X-vertex of a patch. They deliver
the Boolean value true if the patch has to be generated, transformed, ren-
dered, or further refined, or false if this is not the case.

In general, the RefineFurther function can represent a Boolean con-
catenation of multiple refinement criteria (such as maximal patch size, an-
gular deformation, etc.). An important refinement criterion for LOD meth-
ods is the screen space error . Since the computations of this displacement
error are display specific, an important variation of the screen space error
that can be applied for convex mirror beam combiners is described—the
image space error .

Spatial limits. The multi-pass rendering method that is described in Sec-
tions 6.6.1–6.7.7 uses the scene’s bounding sphere to determine the para-
meters of the symmetric viewing frustum and the image size (Figure 6.17).
Since all image generation methods assume a rectangular image shape that
is adapted to today’s screen shapes, the bounding sphere provides enough
information to determine the rectangular image size.

Bounding spheres, however, are only rough approximations of the scene’s
extensions and consequently cover a fairly large amount of void space. This
void space results in grid patches on the image plane whose texture does
not contain visible color information.

To achieve a speed-up, these patches are avoided while creating the im-
age grid. This implies that they are not transformed and refined during
the RecursiveGridRefinement algorithm and that they are not rendered
during the second rendering pass. As a result, an image grid is generated
and rendered that is not rectangular, but dynamically approximates the
silhouette of the scene as perceived from the observer’s perspective (Fig-



�

�

�

�

�

�

�

�

6.7. Curved Mirror Beam Combiners 199

ure 6.24(e)). A condition that causes the recursion to exit in these cases is
implemented within the GeneratePatch function.

A tighter convex container (such as an oriented convex hull or a bound-
ing box) of the scene is evaluated that is generated either in a preprocess for
static objects, or at run-time for animated scenes. For each untransformed
patch that is passed recursively into the RecursiveGridRefinement algo-
rithm, it has to be determined whether the container is visible on that
patch, partially or as a whole. The approximation is twofold. First, the
geometric lines of sight from e to all four L-vertices of the patch are inter-
sected with the front-facing portion of the container. Second, the geometric
lines of sight from e to the front-facing container vertices are intersected
with the patch. If at least one of the resulting rays causes an intersection,
the patch might contain visible color information, and it will be further
processed. If, however, none of the rays cause intersections, the patch is
not treated further (i.e., it won’t be transformed, refined, or rendered). If
the convex container is represented as a triangle mesh, a fast ray-triangle
intersection method [113] is used together with the front-facing container
triangles. Note, that as for vertex transformations, the intersection infor-
mation is buffered and looked up in the memory, rather than recomputing
it multiple times while evaluating adjacent patches.

Oriented convex hulls can be used as containers. It is obvious that
the complexity of the container influences the performance of this method.
Although a precise container can eliminate a maximum number of patches,
the number of intersection tests increases with the container’s number of
vertices and polygons. Experiments have shown that the highest speed-
ups are reached if the container is as simple as an oriented bounding box
or a very coarse, but tighter, convex hull (Figure 6.26). However, the
complexity of the convex hull that maximizes the speed-up and balances
intersection tests with patch generations depends on the scene and the
required rendering precision.

Image space error. The consideration of the screen space error that is deter-
mined relative to a display surface is a common measure for many computer
graphics methods (e.g., [66, 67, 90]). In contrast to traditional displays,
curved mirror beam combiners create a view-dependent, non-planar image
surface which is located inside the mirror optics. Consequently, an ap-
propriate error function has to consider this optical transformation. The
error is determined by first warping the curved image surface into an image
plane and then computing the screen space error on this plane. This error
is referred to as image space error (δis).
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(a) (b)

Figure 6.26. (a) Selective grid refinement for different image space error thresh-
olds; (b) spatially limited grids for different perspectives. (Images reprinted from
[16] c© Elsevier.)

The image space error is a variation of a screen space error that can be
computed for convex mirror beam combiners which present the image plane
within the image space of their optics, rather than on a display surface. The
image space error is defined as the geometric distance between the desired
position (vd) and the actual appearance (va) of a point on the image plane.
Consequently, the image space error is given by

δis = |vd − va| .

It delivers results in image space coordinates (e.g., mm in this case).
In case of convexly curved mirror optics, the image space is the reflection

of the screen space (i.e., the secondary screen in front of the mirror optics)
that optically overlays the real environment inside the mirror optics. In
addition, the optically deformed pixels do not maintain a uniform size
within the image space. They are deformed in exactly the same way as
the entire image after being reflected from the screen space into the image
space, although on a smaller scale. Consequently, the Euclidean distance
between geometric points can be chosen as an error metric, rather than
expressing the image space error with a uniform pixel size.
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(a) (b)

Figure 6.27. (a) Samples on the transformed patch; (b) the distance between
desired and actual appearance of samples near the untransformed patch results
in the image space error. (Images reprinted from [16] c© Elsevier.)

For any given pixel on the transformed patch with texture coordinates
u and v, δis can be computed as follows (Figure 6.27):

First, the pixel’s world coordinate v′′ at u,v within the screen space
(i.e., on the secondary display surface) is determined. Note that the pixels,
which are mapped onto the patch’s transformed vertices, optically appear
at their correct locations on the image plane inside the image space. This
is because their exact mappings have been determined during the patch’s
transformation. This transformation considers the laws of geometric op-
tics (i.e., reflection and refraction laws). Note also that the pixels that
are displayed anywhere else (i.e., inside one of a patch’s triangles) do not
necessarily appear at their correct locations on the image plane. This is
because their positions on the display surface are approximated by a linear
texture interpolation, rather than by optical laws.

The second step is to determine the position of the optical image (v′) of
v′′ within the image space of the mirror optics. The projection of v′ onto
the image plane results in va.

In an ideal case, va is located at the position that also maps to the
texture coordinates u,v within the untransformed patch. We can identify
the location which does this as the desired image position vd. However, if
va �= vd, the image space error δis for this pixel is non-zero.

The image space errors for the four points on the transformed patch
(Figure 6.27(a)) that should map to the patch’s T -vertices on the untrans-
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formed patch (Figure 6.27(b)) as if the image space errors were zero for
these positions can be computed. Obviously, this is not the case in the
example, shown in Figure 6.27(b).

Since the untransformed patch is a rectangular quad , small image space
errors suggest that the optical mapping between the transformed and un-
transformed patch is linear. Furthermore, it can then be concluded that
a linear texture interpolation within the displayed transformed patch pro-
duces approximately correct results while being mapped (i.e., reflected and
refracted) into image space. Consequently, it can be assumed that the
resulting image space errors describe a patch’s curvilinearity at the repre-
sentative pixel locations.

To decide whether or not a patch has to be further refined, the largest
of the four image space errors is determined. If it is above a predefined
threshold value δ̄is the patch has to be further refined and RefineFurther

returns true.

Computing object-image reflections. To compute va from a given viewpoint
e, the object point v′′ and the optic’s geometry is equivalent to finding the
extremal Fermat path from v′′ to e via the optics. In general, this would
be a difficult problem of variational calculus.

Beside ray- and beam-tracing approaches, several methods have been
proposed that approximate reflection on curved mirrors to simulate global
illumination phenomena within rendered three-dimensional
scenes. All of these methods face the previously mentioned problem in
one or the other way.

Mitchell and Hanrahan [111], for instance, solve a multidimensional
non-linear optimization problem for explicitly defined mirror objects (g(x) =
0) with interval techniques. To compute reflected illumination from curved
mirror surfaces, they seek the osculation ellipsoid that is tangent to the
mirror surface, whereby its two focal points match the light source and the
object point.

For a given viewpoint e, Ofek and Rappoport [122] spatially subdivide
the screen space into truncated tri-pyramid shaped cells. In contrast to
solving an optimization problem, they apply accelerated search techniques
to find the corresponding cell that contains the object v′′ at interactive
rates.

While Mitchell’s multidimensional optimization approach is far from
being used at interactive rates, Ofek’s search method offers a good approx-
imation for rendering global illumination effects (such as reflections), but
does not provide the precision required by an optical display.
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Figure 6.28. Object-image reflection via numerical minimization. (Image
reprinted from [16] c© Elsevier.)

In the following, a numerical minimization method to compute the
object-image reflection for specific parametric mirror surfaces (such as
cones and cylinders) is described. For such surfaces, the optimization prob-
lem is reduced to only one dimension. Consequently, the method provides
an appropriate precision at interactive rates.

For the subsequent example, the same cone-shaped mirror surface is
chosen as used for the examples in Sections 6.6.1–6.7.8.

Cones and similar bodies of revolution have the property that multiple
surface points lie on a common plane. For example, all points on the
straight line spanned by a cone’s peak and an arbitrary point on its bottom
circle lie on the same plane. Consequently, individual plane parameters can
be determined for all angles around the cone’s principle axis.

To determine an object’s (v′′
d ) image for a given viewpoint e and mirror

surface g(x) = 0, an arbitrary angle α around the cone’s principle axis
is assumed. Then the surface’s tangent plane TP1 is determined at α by
computing a surface point and the surface normal at α. Since g(x) is an
explicit function, the surface normal can be computed by using its first-
order derivatives g/(∂x). Next, v′′

d is reflected over TP1 to its corresponding
position within the image space, and it is projected onto the image plane.
In Figure 6.28, the projected image point is denoted by v.

To verify the quality of this assumption, v is reflected back into the
screen space and projected onto the display surface. For a given v, g(x)
and e, a simple analytical solution exists to determine this image-object
transformation. The ray spanned by e and v is intersected with g(x) by
solving a simple quadratic equation. In the case of a conical beam com-
biner, the quadratic equation is given by inserting the linear ray equation
into the quadratic equation of a cone and solving for x. The surface inter-
section i, together with the normal vector at i (again determined using the
surface’s first-order derivatives), gives the tangent plane TP2 at i. Reflect-
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ing v and e over TP2 and projecting the reflection of v onto the display
surface using the reflection of e as the center of projection, results in point
v′′. The image-object transformation is illustrated in Figure 6.24(c). Note
that for simplicity, the image-object transformation and the object-image
transformation have been described as simple reflection/projection trans-
formations. Normally, they incorporate refraction as well, as described in
Section 6.7.3.

If the tangent plane at α produces the extremal Fermat path between
v′′

d and e, the geometric distance ∆ between v′′
d and v′′ is zero, TP1 = TP2,

and va = v. Otherwise ∆ is non-zero.
To approximate the correct α, the function is minimized for ∆. Since

this function depends only on α, fast numerical optimizers for one dimen-
sion can be used. However, because its first-order derivatives cannot easily
be derived but it appears to be nicely parabolic near its minimum, Brent’s
inverse parabolic interpolation [23] with bracketing is used.

To speed up the minimization process (i.e., to reduce the number of
function iterations), the function range for a particular v′′

d can be con-
strained. As illustrated in Figure 6.28, the minimization is restricted to
find α between α1 and α2. These boundaries can be determined as follows:
Given e and the untransformed patch that belongs to v′′

d , the projections
on the mirror surface of the untransformed patch at the next lower LOD
are evaluated. The two angles α1 and α2 at the horizontal extrema of
these projections are the corresponding boundary angles. Note that these
projections are determined while transforming the patches (i.e., within
TransformPatchVertices). Thus, for efficiency reasons, they are stored
and looked up in the memory, rather than recomputed again.

Experiments showed that sufficiently precise solutions can be found af-
ter a small number of iterations. Typically, average errors of ∆ = 0.002 mm
are achieved with an average of three iterations.

Error direction propagation. Although the number of iterations is relatively
small, the computational expenses of four minimization steps per patch
result in a noticeable loss of performance. Especially while evaluating the
large number of higher LOD patches, such an approach might not produce
a speed-up.

It can be noted that the direction in which the largest image space error
(i.e., the one of the four patch sides where δis is maximal) propagates is
the same for larger LOD patches that are derived from the same parent
patch.
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However, from which level-of-detail this occurs depends on the display’s
properties. If, for instance, the optics produce well-behaved image defor-
mations, the propagation direction of the largest error is consistent for
relatively high LODs. If, on the other hand, the optics produces noisy
images, the error direction alternates randomly.

To benefit from this situation, we specify a LOD Λ depending on the
optic’s and the display surface’s properties.

For patches that are below Λ, the image space error is determined as
described above. The value of δis is computed at all four edges and the
largest value is found. In addition, the error direction (i.e., the edge where
δis is maximal) is recorded for each patch.

For patches that are above Λ, the error direction of the corresponding
parent patch can be reused and δis can be computed only for the edge in
this direction, rather than at all four edges. By doing this, it is assumed
that the largest error will occur in the same direction as for the parent
patch. Consequently, the number of minimization steps is reduced from
four to one for all patches that are above Λ (i.e., for the majority of all
relevant grid patches). Experiments have shown that this heuristic leads
to a significant speed-up while producing the same final visual output.

Note that although the examples deal with a simple mirror shape (i.e., a
cone), an algorithm that uses a precomputed look-up table (e.g., such as the
one described by Ofek [122]) instead of dynamic numerical minimizations
would either result in fairly large data structures that cannot be efficiently
searched, or in a precision that is not adequate for an optical display.

Display specific components. While the described algorithm is valid for
other displays that require non-linear predistortion, its display-specific com-
ponents have been explained based on a particular mirror display, a cone-
shaped beam combiner. The nature of the additional mirror optics makes
the transformation of the grid patches and the computation of the result-
ing displacement error fairly complex. In fact, the implementation of the
TransformPatchVertices and the RefineFurther functions have been
explained with an emphasis on cone-shaped mirror surfaces. These two
functions represent the display-specific components of our algorithm. For
a mirror display, TransformPatchVertices and RefineFurther have to
consider laws of geometric optics (such as reflection and refraction trans-
formations) to map grid vertices from the image plane onto the display
surface and vice versa. They can be generalized to do the same for other
displays without modifying the general algorithm.
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If, for instance, the algorithm is used to project images onto
curved screens (e.g., a cylindrical or spherical projection device),
TransformPatchVertices would incorporate only projection transforma-
tions (i.e., it would only determine intersections of vertex-individual geo-
metric lines of sight with the display surface). The resulting displace-
ment error that is computed by RefineFurther can then be determined
within the screen space, rather than within an image space. Compared to
our numerical approach for convex mirror displays, this would be less
complex since it involves only simple intersection computations for
which analytical solutions exist. If view dependence is not required,
TransformPatchVertices and RefineFurther could also retrieve precom-
puted values from a look-up table.

For curved mirror beam combiners that require a correction of a non-
linear distortion by applying multi-pass rendering, generating appropriate
local levels of detail instead of applying uniform grids or constant image
geometries allows us to consider the error that is caused from a piecewise
linear texture interpolation and to minimize it by adapting the underlying
geometry.

The method described previously prevents oversampling and texture
artifacts that result from undersampling. If executed on CPUs, a significant
speed-up can be achieved by rendering a selectively refined image geometry
instead of a high-resolution uniform image grid. However, the capability of
per-vertex operations of today’s GPUs beats the computational overhead
that is required for recursion and minimization with a faster transformation
of high-resolution uniform image geometries, as described in Sections 6.6.2
and 6.7.3.

6.8 Summary and Discussion

The basic principles of geometric optics represent the mathematical, phys-
ical, and physiological foundations for this chapter. Planar mirror beam
combiners that produce true stigmatic reflections between all object-image
pairs, and convexly curved mirror beam combiners that represent non-
absolute optical systems represent the main components for the creation of
optical overlays in combination with spatial secondary screens.

If such beam combiners are integrated into the optical path between
observer and secondary screen, the perceived graphical images are trans-
formed and distorted by the optical elements. We have discussed real-time
rendering techniques that are capable of neutralizing these effects for differ-
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ent display configurations in such a way that orthoscopic, stereoscopically,
and perspectively correct and undistorted images can be seen from any
viewing position. Transparent primary screens, such as active or passive
screens, which can be utilized for spatial optical combination have been
outlined briefly, but details on specific rendering techniques that support
them are explained in Chapters 3 and 5.

Mirror beam combiners that consist of a half-silvered mirror layer coated
or impregnated onto or into a transparent base carrier represent a combi-
nation of lens and mirror. Consequently, reflection transformation and
refraction distortion have to be considered.

Since planar mirrors are absolute optical systems, affine model and
viewpoint transformations can be applied for such elements. These trans-
formations can be integrated into traditional fixed function rendering
pipelines and, consequently, can be fully supported by hardware accelera-
tion without causing additional computational costs.

In contrast to this, elements that cause significant refraction and warped
reflection distortion require curvilinear image transformations. A multi-
pass image-warping method avoids a direct access to the scene geometry,
and prevents the time-consuming transformations of many scene vertices.
In addition, it is not restricted to a geometry-based first rendering pass, but
rather supports any perspective image generating rendering method (such
as point-based rendering, image-based rendering, interactive ray tracing
and radiosity, or non-photorealistic rendering). It can be easily configured
and extended to support new optics and display technology, and it is flex-
ible enough to be smoothly integrated into existing software frameworks.
Additionally, it takes as much advantage of hardware-implemented ren-
dering concepts (such as vertex shaders and render-to-texture capability)
as currently possible. Such optics also cause aberrations of non-stigmatic
mappings that cannot be corrected in software. However, due to the limited
retinal resolution of the eyes, small aberrations are not detected.

To efficiently support simultaneous rendering for multiple viewers on
cost-effective rendering platforms (e.g., PCs), a networked cluster of ren-
dering nodes could be used. Each node would carry out the image genera-
tion and deformation for a single observer. However, in terms of displaying
the final images on arbitrary locations of a single projection screen, they
need to be composed within one image. One possibility for doing this is
to utilize coding and streaming technology to transmit the images to a
central node that is responsible for their composition and the presenta-
tion of the resulting image. However, the transmission of the images over
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an all-purpose network (e.g., an Ethernet) as well as their explicit com-
position might represent bottlenecks that slow down the overall rendering
performance significantly. Recent advances in hardware image composi-
tion technology (such as the Lightning-2 device[175]) solve this problem.
Instead of connecting the rendering nodes via an all-purpose network, they
can be connected to a specific display subsystem. These subsystems allow
the image data generated by the connected nodes to be mapped to any
location of the connected displays without losing much time for transmis-
sion and composition. Some devices (such as the Lightning-2 device [175])
are able to scale in both dimensions—the number of rendering nodes and
the number of displays. Such technology also supports efficiently driving
high-resolution displays that are built from a collection of multiple display
units.

For non-mobile applications, several advantages of spatial optical com-
bination over current head-attached optical see-through approaches exist.

• Easier eye accommodation and vergence. Using mirror beam combin-
ers, for instance, the reflected image plane can be brought very close
to the physical location that has to be overlaid. Consequently, mul-
tiple focal planes do not differ greatly. The reflected image remains
at a static position in space if neither mirror combiner nor secondary
screen is not moved. This position is invariant of the user’s location
(Note, the presented content is not). Moving closer to or further
away from the physical location and the reflected image yields the
same natural accommodation and vergence effects. This is not the
case for head-attached displays that present the image at a constant
distance in front of the observer. In this case, the image’s position
and its focal plane do not change for a moving user. Consequently
multiple focal planes (i.e., in the physical world and on the image
plane) make it impossible to focus on real and virtual content at the
same time. Either the real or virtual environment has to be perceived
unfocused. This requires that the observer continuously switches
focus.

• High and scalable resolution. Spatial screens, such as projection dis-
play or monitors, provide a high resolution. If, however, a single
display does not offer the resolution that is required for a particular
application, multiple image sources (such as a video beamer) can be
combined. Packing issues that are related to the miniature displays
which have to be integrated into the limited space for head-attached
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devices are not a problem for spatial configurations. In addition,
the compression characteristics of a convex mirror that map a larger
screen portion into a smaller reflection area causes a high density of
pixels. The spatial resolution of such a display is higher than the
resolution of the secondary screen.

• Large and scalable field of view. The same argumentation for the reso-
lution applies to the field of view. Screens and optics are theoretically
not constrained in their dimensions. Spatial surround screen display,
for instance, can fill out the entire field of view, a characteristic that
cannot be achieved with today’s head-attached devices.

• Improved ergonomic factors. Today’s head-attached displays suffer
from an unbalanced ratio between cumbersome and high-quality op-
tics. Spatial displays do not require the user to wear much technology.
While stereoscopic displays imply the application of light-weight pas-
sive or active glasses, autostereoscopic displays detach any kind of
technology from the user.

• Easier and more stable calibration. While some head-attached dis-
plays can have up to 12 degrees of freedom, spatial optical see-through
configurations generally have significantly less. This implies an eas-
ier and user- or session-independent calibration, and, consequently,
yields more precise overlays.

• Better controllable environment. A limited indoor space can be more
easily controlled than large-scale outdoor environments. This applies
to tracking and illumination conditions and leads to higher precision
and consistency, as well as to better quality.

Beside these advantages, several disadvantages can be found with re-
spect to head-attached approaches:

• Mutual occlusion. Optical beam combiners cannot present mutual
occlusion of real and virtual environments. Consequently, bright real
surfaces overlaid with dark virtual objects optically emphasize the
real environment and let the virtual objects disappear or appear semi-
transparent. A general solution to this problem for spatial optical
see-through displays is presented in Chapter 7;

• Window violation. The window violation or clipping problem is linked
to fish-tank-sized and semi-immersive screens. Graphics that, due
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to a disadvantageous user position, are projected outside the display
area are unnaturally cropped. This effect also appears with the mirror
beam combiners; displayed images that, due to a disadvantageous
user position, cannot be reflected are cropped at the mirror edges as
well.

• Multi-user viewing. The number of observers that can be supported
simultaneously is restricted by the applied optics and screen config-
uration.

• Support of mobile applications. Spatial displays do not support mo-
bile applications because of the spatially aligned optics and display
technology.

• Direct interaction. In most cases, the applied optics prevents a di-
rect manipulative interaction. Real objects might not be touchable
because they are out of arm’s reach or because the additional optics
represents a physical barrier. Indirect interaction methods have to
be used in these cases.

In general, it should be noted that new technology will not only open
new possibilities for the spatial optical see-through concept, but also for
other display concepts, such as head-attached displays. Organic light emit-
ting diodes (OLEDs), for instance, may replace the crystalline LEDs that
are currently being used to build the miniature displays for HMDs.

OLEDs and other light emitting polymers (LEPs) provide the opportu-
nity for cheap and very high-resolution full-color matrix displays that can
give head-attached displays a technological advantage. A variant of OLEDs
are light emitting polymers; they provide the opportunity for the fabrica-
tion of large, flexible, full-color emissive displays with a high resolution, a
wide viewing angle, and a high durability. Large-scale transparent LEPs
may present a future variation of an optical combination with an active
screen. This is also true for other polymers with transparent, light-emitting
semi-conductors. However, LEPs have not yet left the basic research stages
and will not be applicable to build stereoscopic AR displays in the near fu-
ture. But, in combination with autostereoscopic or holographic techniques,
this problem may be solved.

Fog [135] and air [74] displays offer an interesting new means for opti-
cal augmentation by projecting an image into screens composed of fog or
“modified” air (see Figure 6.29).
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Figure 6.29. First generation “Heliodisplay,” an interactive free space display.
(Images courtesy of IO2 Technology [74] c© 2004.)

In the short run, especially high-resolution and bright display devices,
high-performance and cost-efficient rendering hardware, reliable and precise
tracking technology, and advanced interaction techniques and devices will
pave the way for future spatial optical see-through configurations. However,
the underlying technology must be robust and flexible, and the technology
that directly interfaces to users should adapt to users, rather than forcing
users to adapt to the technology. Therefore, human-centered and seamless
technologies, devices, and techniques will play a major role for augmented
reality in the future.
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7
Projector-Based Illumination

and Augmentation

Because of their increasing capabilities and declining cost, video projectors
are becoming widespread and established presentation tools. The ability
to generate images that are larger than the actual display device virtually
anywhere is an interesting feature for many applications that cannot be
provided by desktop screens. Several research groups exploit this potential
by using projectors in unconventional ways to develop new and innovative
information displays that go beyond simple screen presentations.

The Luminous Room [192], for instance, describes an early concept for
providing graphical display and interaction at each of an interior architec-
ture space’s surface. Two-way optical transducers, called I/O bulbs, that
consist of pairs of projector-cameras capture the user interactions and dis-
play the corresponding output. With the Everywhere Displays projector
[138], this concept has been extended technically by allowing a steerable
projection using a pan/tilt mirror. Recently, it was demonstrated how
context-aware hand-held projectors, so-called iLamps, can be used as mo-
bile information displays and interaction devices [158].

Another concept called Shader Lamps [155] attempts to lift the visual
properties of neutral diffuse objects that serve as a projection screen. The
computed radiance at a point of a non-trivial physical surface is mimicked
by changing the BRDF and illuminating the point appropriately with pro-
jector pixels. Animating the projected images allows the creation of the
perception of motion without physical displacement of the real object [157].
This type of spatial augmentation is also possible for large, human-sized
environments, as demonstrated by Low [93].

Projector-based illumination has become an effective technique in aug-
mented reality to achieve consistent occlusion [121, 12] and illumination

213
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effects [15] between real artifacts and optically overlaid graphics. Video
projectors, instead of simple light bulbs, are used to illuminate physical
objects with arbitrary diffuse reflectance. The per-pixel illumination is
controllable and can be synchronized with the rendering of the graphical
overlays. It also makes the combination of high-quality optical holograms
with interactive graphical elements possible [18]. Using a video projector
to produce a controlled reference wave allows a partial reconstruction of
the hologram’s object wave, except at those portions that are overlaid by
integrated graphical elements.

New optical combiners, together with real-time color correction meth-
ods, allow us to effectively superimpose arbitrarily textured, but flat, sur-
faces, such as paintings [19]. This is enabled by thin, transparent film
materials that diffuse a fraction of the light projected onto them. Such a
film can be seamlessly integrated into the frame that holds the artwork.
Any kind of visual information, such as animations or interactive graphical
elements, can be overlaid in correct colors.

A virtual retouching technique that uses video projectors for recon-
structing and enhancing the faded colors of paintings by projecting light
directly onto the canvas is described in Yoshida [209]. An affine correlation
between projection and the result captured by a camera is established man-
ually for each pixel. Users are then able to retouch the original painting
interactively via a desktop GUI.

Other methods allow augmenting arbitrary, geometrically non-trivial,
textured surfaces without the application of special optical combiners, such
as transparent screen materials [20, 59, 116]. They scan the surfaces’ geo-
metric and radiometric properties and carry out a real-time per-pixel dis-
placement and color correction before the images are projected.

In addition to these examples, a variety of other techniques and appli-
cations have been described that utilize projectors and a structured illumi-
nation to achieve special effects. To describe them all is beyond the scope
of this book. Instead, we want to discuss the basic concepts in this chapter.
We will discuss some of their applications in Chapter 8.

7.1 Image-Based Illumination:
Changing Surface Appearance

When we project images of 3D objects onto physical display surfaces, we
in effect introduce those virtual 3D objects into the real world around
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Figure 7.1. The surface appearance of a neutral colored object is changed by
‘painting’ it with projected light. (Images reprinted from [155] c© Springer-
Verlag; see Plate III.)

us. In traditional projector-based displays, the virtual objects appear on
a flat screen. However, once we understand the relationship between the
projector and the geometry of the surface it illuminates, we can project
correct images of virtual objects on physical surface of various geometric
shapes. We can essentially treat those physical surfaces as 3D screens.

Normally in the physical world, the color, texture, and lighting associ-
ated with the surface of a physical object are an integral part of the object.
In computer graphics, this is typically modelled with a bidirectional re-
flection distribution function (BRDF) for the surface. When we illuminate
the object with a white light, the surface reflects particular wavelengths
of light, and we perceive the respective surface attributes. Because our
perception of the surface attributes is dependent only on the spectrum of
light that eventually reaches our eyes, we can shift or rearrange items in
the optical path, as long as the spectrum of light that eventually reaches
our eyes is the same.

Many physical attributes can be incorporated into the light source to
achieve a perceptually equivalent effect on a neutral object. Even non-
realistic appearances can be realized. We can use digital light projectors
and computer graphics to form Shader Lamps that effectively reproduce
or synthesize various surface attributes, either statically, dynamically, or
interactively. While the results are theoretically equivalent for only a lim-
ited class of surfaces and attributes, the results, described below, are quite
realistic and compelling for a broad range of applications.

The need for an underlying physical model is arguably unusual for com-
puter graphics; however it is not so for architects [69], artists, and computer
animators. In addition, various approaches to automatic three-dimensional
fabrication are steadily becoming available. Methods include laminate ob-
ject manufacturing, stereolithography, and fused deposition. It is not un-
reasonable to argue that three-dimensional printing and faxing is coming.
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In the mean time, if necessary, one can use a 3D probe device. We used
such a device (a Faro touch probe arm) for the Taj Mahal model shown in
Figure 8.2.

7.1.1 The Rendering Process

We introduce the idea of rearranging the terms in the relationship between
illumination and reflectance to reproduce equivalent radiance at a surface.
As shown in flatland in Figure 7.2, the radiance in a certain direction
at point x , which has a given BRDF in the physical world (left), can
be mimicked by changing the BRDF and illuminating the point with an
appropriately chosen light source, e.g., a projector pixel (right). Below
we identify a radiance adjustment equation for determining the necessary
intensity of a projector pixel, given the position and orientation of the
viewer and the virtual scene. For a more systematic rendering scheme,
we describe the notion of separating the rendering view—the traditional
virtual camera view—from the shading view—the position of the viewer
for lighting calculations.

First, let us consider the rendering equation, which is essentially a geo-
metrical optics approximation as explained in [76]. The radiance at a visible
surface point x in the direction (θ, φ) that would reach the observer of a
physical realization of the scene is

L(x, θ, φ) = g(x, θ, φ)(Le(x, θ, φ) + h(x, θ, φ)),

where
h(x, θ, φ) =

∫
i

Fr(x, θ, φ, θi, φi)Li(x, θi, φi)cos(θi)dωi

Figure 7.2. The radiance at a point in the direction (right) The radiance as
a result of illumination from a projector lamp. By rearranging the parameters
in the optical path, the two can be made equal. (Image reprinted from [155]
c© Springer-Verlag.)
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and g(x, θ, φ) is the geometry term (visibility and distance), Le(x, θ, φ)
is the emitted radiance of the point (non-zero only for light sources),
and Fr(x, θ, φ, θi, φi) is the bidirectional reflection distribution function
(BRDF) for the point. The integral in h(x, θ, φ) accounts for all reflec-
tion of incident radiance Li(x, θi, φi) from solid angles dωi. Radiance has
dimensions of energy per unit time, area and solid angle.

Treating the projector lamp as a point emitter, the radiance due to
direct projector illumination at the same surface point at distance d(x) but
with diffuse reflectance ku(x) is given by

L′(x, θ, φ) = g(x, θ, φ)ku(x)
IP (x, θP , φP )cos(θP )

d(x)2
, (7.1)

where IP (x, θP , φP ) is the radiant intensity of the projector in the direction
(θP , φP ) and is related to a discretized pixel value via filtering and tone
representation.

We can reproduce radiance L′(x, θ, φ) equivalent to L(x, θ, φ) for a given
viewer location, by solving Equation (7.1) for IP :

IP (x, θP , φP ) =
L(x, θ, φ)d(x)2

ku(x)cos(θP )
, for, ku(x) > 0. (7.2)

Thus, as long as the diffuse reflectance ku(x) is non-zero for all the
wavelengths represented in L(x, θ, φ) , we can effectively represent the sur-
face attribute with appropriate pixel intensities. In practice, however, the
range of values we can display is limited by the brightness, dynamic range,
and pixel resolution of the projector. Thus, for example, we can not make
a red surface appear green, because the wavelength of light correspond-
ing to green color, the diffuse reflectance of a red object, kgreen

u = 0. We
also cannot project onto objects with mirror-like BRDF because the diffuse
reflectance is zero.

The rendering process here involves two viewpoints: the user’s and the
projector’s. A simple approach would be to first render the image as seen by
the user, which is represented by L(x, θ, φ) , and then use traditional image-
based rendering techniques to warp this image to generate the intensity-
corrected projected image, represented by IP (x, θP , φP ) [29, 108]. Thus,
in one way, this is equivalent to rendering and warping the image followed
by intensity correction. This is the 2-pass method of the general rendering
framework. For a changing viewer location, view-dependent shading under
static lighting conditions can also be implemented [37, 88, 58]. However,
the warping can be avoided in the case where the display medium is the
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same as the virtual object. A special case of the general rendering method
is required: for single-pass rendering, we treat the moving user’s viewpoint
as the shading view. Then, the image synthesis process involves rendering
the scene from the projector’s view by using a perspective projection matrix
that matches the projector’s intrinsic and extrinsic parameters, followed by
radiance adjustment. The separation of the two views offers an interesting
topic of study. For example, for a static projector, the visibility and view-
independent shading calculations can be performed just once even when
the user’s viewpoint is changing.

To realize a real-time interactive implementation, we can use conven-
tional 3D rendering APIs, which only approximate the general rendering
equation. The BRDF computation is divided into view-dependent specular
and view-independent diffuse and ambient components. View-independent
shading calculations can be performed by assuming the rendering and shad-
ing view are the same. (The virtual shadows, also view-independent, are
computed using the traditional two-pass shadow-buffer technique.) For
view-dependent shading, such as specular highlights (Figure 7.1), however,
there is no existing support to separate the two views.

View-dependent shading. While the rendering view defined by the projec-
tor parameters remains fixed, the shading view is specified by the head-
tracked moving viewer. For view-independent shading (e.g., diffuse shad-
ing), calculations of the two views can be assumed to be the same. For
view-dependent shading calculations, we show a minor modification to the
traditional view setup to achieve the separation of the two views in a single
pass rendering. There is no additional rendering cost. The pseudocode
below shows the idea using, as an example, OpenGL API.

glMatrixMode( GL_PROJECTION );

glLoadMatrix( intrinsic matrix of projector );

glMultMatrix( xform for rendering view );

glMultMatrix( inverse(xform for shading view) );

glMatrixMode( GL_MODELVIEW );

glLoadMatrix( xform for shading view );

// set virtual light position(s)

// render graphics model

Secondary scattering. Shader Lamps are limited in the type of surface at-
tributes that can be reproduced. In addition, since we are using neutral
surfaces with (presumed) diffuse characteristics, secondary scattering is un-
avoidable and can potentially affect the quality of the results. When the
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(a) (b)

Figure 7.3. (a) A green paper illuminated with white light; (b) the white diffuse
surface on the right is illuminated with green light. In this special case, the
secondary scattering off the white surface below is similar for both parts. (Images
reprinted from [155] c© Springer-Verlag; see Plate VII.)

underlying virtual object is purely diffuse, sometimes the secondary scat-
tering can be used to our advantage. The geometric relationships, also
known as form factors, among parts of the physical objects, are naturally
the same as those among parts of the virtual object. Consider the radiosity
solution for a patch i in a virtual scene with m light sources and n patches:

Bi−intended = kdi

∑
j

BjFi,j

= kdi
(

∑
1≤j≤m

BjFi,j +
∑

m+1≤j≤m+n

BjFi,j).

Here kd is the diffuse reflectance, Bj is the radiance of patch j, and
Fi,j is the form factor between patches. Using Shader Lamps to reproduce
simply the effect of direct illumination (after radiance adjustment), we are
able to generate the effect of m light sources:

Bi−direct = kdi

∑
1≤j≤m

BjFi,j .

However, due to secondary scattering, if the neutral surfaces have diffuse
reflectance ku, the perceived radiance also includes the secondary scattering
due to the n patches, and that gives us

Bi−actual = Bi−direct + Bi−secondary

= kdi

∑
1≤j≤m

BjFi,j + ku

∑
m+1≤j≤m+n

BjFi,j .
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The difference between the desired and perceived radiance is

|(kdi
− ku)(

∑
m+1≤j≤m+n

BjFi,j)|. (7.3)

Thus, in scenarios where kd and ku are similar, we get approximate
radiosity for “free”—projection of even a simple direct illumination ren-
dering produces believable “spilling” of colors on neighboring parts of the
physical objects. From Equation (7.3), the secondary contribution from
the neutral surfaces is certainly not accurate, even if we reproduce the first
bounce exactly. The difference is even larger when the virtual object has
non-lambertian reflectance properties. In some cases it may be possible to
use inverse global illumination methods so that the projected image can
more accurately deliver the desired global illumination effect. Figure 7.3
shows a green and a white paper with spill over from natural white and
projected green illumination. In this special case, the secondary scattering
off the horizontal white surface below is similar for both parts.

Illumination of all visible surfaces. One may wonder, given a physical ob-
ject, what is a good set of viewpoints for the lamps, so that every visible
surface is illuminated by at least one lamp. This problem is addressed by
Stürzlinger [177], where he finds, using a hierarchical visibility algorithm,
a set of camera viewpoints such that every visible part of every surface is
imaged at least once. The problem of determining an optimal set of view-
points is NP-hard and is related to the art gallery problem [127] known in
the field of computational geometry.

7.2 Creating Consistent Occlusion

Spatial augmented reality systems share many positive properties of spatial
virtual reality systems. These displays provide high-resolution, improved
consistency of eye accommodation and convergence, little motion sickness
potential, and the possibility of an integration into common working and
living environments. One of the main challenges for spatial AR systems,
as well as for head-mounted optical see-through displays, is the generation
of correct occlusion effects between virtual and real objects.

The basic problem is that in most cases, the existing environment illu-
mination is applied to lighten the physical scenery. However, light that is
reflected off the real objects’ surface interferes with the optically overlaid
graphics that appear as semi-transparent ghosts which are unrealistically
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(a) (b)

(c) (d)

Figure 7.4. (a) Wrong occlusion effects with normal illumination; (b) occlusion
shadow generated with projector-based illumination; (c) realistic occlusion of the
real object by the virtual one; (d) knowing depth information of real objects
allows the occlusion of virtual objects by real ones. (Images reprinted from [12]
c© IEEE.)

floating in midair (Figure 7.4). For indoor situations, the environment illu-
mination can be controlled and synchronized with the rendering process if
the simple light bulbs are replaced by video projectors (sometimes referred
to as light projectors). This concept is called projector-based illumination.
It requires a physical environment that is initially not illuminated. While
this condition can be man-made for many stationary display situations,
some setups already provide a dark surrounding by default, like the Vir-
tual Showcase [9].

For optical see-through head-mounted displays, a special optics has been
developed by Kiyokawa et al. [79] called ELMO that supports mutual
occlusion. ELMO uses half-silvered mirrors as optical combiners and an
additional semi-transparent LCD panel in front of the conventional optics.
The LCD panel is used to selectively block the incoming light on a per-pixel
basis. This enables virtual objects to occlude real ones. A head-attached
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depth sensor allows them to acquire depth maps of the real environment in
real time. This makes the occlusion of virtual objects by real ones possible.
ELMO faces a number of problems that are linked to the LCD panel: light
attenuation caused by the LCD panel and low response time and resolution
of the LCD panel. However, as the first functioning system of its kind, it
effectively addresses the occlusion problem of optical see-through head-
mounted displays.

Head-mounted projective displays (such as those described by Hua et
al. [70]) require the observer to wear miniature projectors. The projectors
beam the synthetic images directly onto the surfaces of the real objects
that are within the user’s field of view. Since the observer’s viewing frus-
tum can be optically matched with the projection frustum, view-dependent
rendering is possible while benefiting from a view-independent projection
(i.e., depth information for real objects is not required). However, the
real objects’ surfaces have to be coated with a retro-reflective material;
they allow stereoscopic rendering, multi-user applications, and the usage
of such displays within uncontrolled illuminated environments. The occlu-
sion problem of optical see-through displays is not an issue for HMPDs,
since the retro-reflective material avoids the problem of environment light
interfering with the graphical overlays.

Video-projectors have been used to address the occlusion problem for
spatial AR configurations. Noda et al. [121], for instance, have presented
a stationary optical see-through display that uses a video projector to illu-
minate real objects selectively, not lighting those areas that are overlaid by
graphics. However, view-dependent rendering is not possible in this case.
The observer’s viewpoint has to match with the center of projection of the
video projector since the illumination pattern is rendered from this point
using a normal on-axis projection. In this special case, no depth informa-
tion of the real environment is required for a correct rendering. In addition,
stereoscopic rendering is not provided. Later, Naemura et al. [114] pro-
posed an approach that is technically similar to Noda’s. The conceptual
difference, however, is that they apply a hand-held video projector as a real
flashlight to interactively generate shadow effects of virtual objects on real
surfaces. They do not address the occlusion problem of optical see-through
displays, but focus on enhancing such interactive mixed reality applications
by providing additional visual cues through shadows. As in Noda’s case,
no depth information of the real objects is needed.

In the following sections, general projector-based illumination tech-
niques are described that can be applied in combination with spatial op-
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tical see-through AR displays. Off-axis and on-axis situations are treated
in exactly the same way. By using computer-controlled video projectors
as replacements for simple light bulbs, the lighting situation can be fully
controlled on a per-pixel basis. This allows us to produce correct occlu-
sion effects between virtual and real objects by projecting view-dependent
shadows, called occlusion shadows [12], directly onto real objects located
behind virtual ones using projector-based illumination (Figure 7.4).

7.2.1 Single Users

For rendering occlusion shadows, the viewpoints of each user, the intrinsic
and extrinsic parameters of each light projector, as well as the virtual and
the real scene must be known.

The viewpoints are continuously measured with head-tracking technol-
ogy, while the projectors’ parameters are determined only once during a
calibration phase (see Chapter 3 for details on projector calibration). Vir-
tual objects can be interactively manipulated during run-time.

Knowing the scene and the view transformation lets us compute the
perspective projection matrix (V ) of the corresponding viewpoint that
incorporates the model-view transformation with respect to the scene’s
origin.

The projectors can be calibrated to a geometric representation of the
real scene that is registered to its physical counterpart. To do this a semi-
manual calibration routine can be used. The two-dimensional projections of
known three-dimensional fiducials can be marked on the projector’s image
plane. Using these mappings, a numerical minimization method (such as
Powell’s direction set method [144]) is used to solve a perspective N-point
problem. This results in the perspective 4 × 4 projection matrices, P , of
the projector that incorporates the correct model-view transformation with
respect to the scene origin.

If multiple projectors are used, the calibration process has to be re-
peated for each projector separately. More details on geometric calibration
and correct blending of projectors are presented in Chapters 3 and 5.

The basic algorithm given in this section illustrates how to generate
occlusion shadows for a single point of view with the aid of multi-pass
rendering. The depth information of both the real and the virtual content
have to be known. A shadow mask that contains the silhouette of the
virtual content is generated in the first pass (Figure 7.5(a–b)) which is then
mapped onto the known geometry of the real content in the second pass
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(a) (b) (c)

(d) (e) (f)

Figure 7.5. Multi-pass rendering and perspective texture mapping for creating
occlusion shadows.

via perspective texture mapping (Figure 7.5(c–d)). Then, the illumination
for the real content is rendered into the frame buffer.

For now we assume that we project only uniformly colored light onto the
real surfaces from the light projector’s point of view while virtual objects
are illuminated from the positions of the virtual light sources. This illumi-
nation, however, could be computed with a more advanced BRDF model,
producing a correct and matching radiance on real and virtual surfaces
with respect to virtual light sources. We will describe this in Section 7.3.

generate shadow mask (first pass):

set projection matrix to V
render real content into depth buffer

render virtual content into stencil buffer

render illumination for real content into...

...frame buffer (previously cleared to black)

read-back:

transfer frame buffer into texture memory T

render shadow mask (second pass):

set projection matrix to P
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Figure 7.6. Correct occlusion effects for a complex scene: a real dinosaur with
integrated soft-tissue. (Image reprinted from [13] c© IEEE.)

set texture matrix to V + normalization space correction

clear frame buffer to black

render real content into frame buffer using...

...projective texture T

Rendering the real content into the depth buffer ensures a correct oc-
clusion of virtual objects by real ones. The normalization space correction
consists of a scaling by [0.5, 0.5, 1.0], followed by a translation of [0.5, 0.5,
0.5] to map from normalized screen space to normalized texture space1.

Note, that if the graphics card provides a render-to-texture option, the
read-back operation from the frame buffer into texture memory can be
bypassed.

While Figure 7.4 illustrates the entire process on a trivial real scene,
Figure 7.6 shows that the same process is also efficient for complex objects.

7.2.2 Multiple Users

A clear limitation of the basic method described in Section 7.2.1 is the
following fact: If the same real surfaces are simultaneously visible from

1This applies to OpenGL-like definitions of the texture and normalized device coor-
dinates.
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(a) (b)

Figure 7.7. (a) Occlusion shadow of second observer is clearly visible; (b)
wrongly visible occlusion shadow is covered by optically overlaying the corre-
sponding part of the reflectance map. (Images reprinted from [15] c© IEEE.)

multiple points of view (e.g., for different observers), individual occlusion
shadows that project onto these surfaces are also visible from different
viewpoints at the same time.

Consider two observers: for instance, Observer A might be able to see
the occlusion shadow that is generated for Observer B and vice versa. In
addition, the shadows move if the viewers are moving, which might be
confusing (Figure 7.7(a)).

One can think of several methods to reduce or avoid these effects.

Method I: [12] Occlusion shadows generated for other viewpoints are the
umbral hard shadows that are cast by the virtual scene with a light
source positioned at the other viewpoints’ locations. This fact can be
utilized by attaching a point light to each viewpoint, thereby generat-
ing correct lighting effects on the virtual scene’s surfaces in addition
to matching hard shadows on the real scene’s surfaces.

Method II: [12] The interference between individual occlusion shadows can
be minimized by ensuring that they are generated only on those real
surfaces that are visible from the corresponding viewpoint. However,
since the occlusion shadows are finally rendered from the viewpoint
of the projector(s), all view-dependent computations (e.g., back-face
culling and depth buffering) are done for this perspective, not for the
perspectives of the actual viewpoints.

Method III: [15] Each projector is complemented by a video camera that
is used to dynamically scan reflectance information from the surfaces
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of the real objects (Figure 7.5(f)). Knowing this reflectance informa-
tion, however, leads to an effective and general solution. In addition
to the virtual scene, the portions of the real scene (i.e., its registered
reflectance map) that are covered by the occlusion shadows of all
other observers are rendered. If this is done well, we can create a
seamless transition between the real and the virtual portions (Fig-
ure 7.7(b)). For each observer, the occlusion shadows of all other
observers are rendered into the stencil buffer first. This is done by
rendering the real scene’s geometry from each observer’s perspective
and adding the corresponding occlusion shadows via projective tex-
ture mapping. The stencil buffer has to be filled in such a way that
the area surrounding the occlusion shadows will be blanked out in the
final image. Then, the real scene’s reflectance map is rendered into
the frame buffer (also from the perspective of the observer) and is
shaded under the virtual lighting situation. After stenciling has been
disabled, the virtual objects can be added to the observer’s view. A
possibility of obtaining the reflectance map to diffuse real scenes with
projector-camera combinations is described in Section 7.3.

Due to self-occlusion, not all portions of the real content can be lit
by a single light projector. A solution to this problem is to increase the
number of projectors and place them in such a way that the projected light
is distributed over the real content. To guarantee a uniform illumination,
however, surfaces should not be lit by more than one projector at the same
time or with the same intensity. Otherwise, the projected light accumulates
on these surfaces and they appear brighter than others. In Chapter 5, a
crossfeathering method is discussed that balances the contribution of each
projector equally.

7.3 Creating Consistent Illumination

Achieving a consistent lighting situation between real and virtual environ-
ments is important for convincing augmented reality applications. A rich
pallet of algorithms and techniques have been developed that match illu-
mination for video- or image-based augmented reality. However, very little
work has been done in this area for optical see-through AR.

Inspired by the pioneering work of Nakamae et al. [115] and, later,
Fournier et al. [50], many researchers have attempted to create consistent
illumination effects while integrating synthetic objects into a real environ-
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ment. Most of these approaches represent the real environment in the form
of images or videos. Consequently, mainly image processing, inverse render-
ing, inverse global illumination, image-based, and photorealistic rendering
techniques are used to solve this problem. Due to the lack of real-time
processing, these approaches are only applicable in combination with desk-
top screens and an unresponsive2 user interaction. Devices that require
interactive frame rates, such as head-tracked personal or spatial displays,
cannot be supported. Representative for the large body of literature that
exists in this area, several more recent achievements can be highlighted.

Boivin et al. [22] present an interactive and hierarchical algorithm for
reflectance recovery from a single image. They assume that the geomet-
ric model of the scenery and the lighting conditions within the image are
known. Making assumptions about the scene’s photometric model, a vir-
tual image is generated with global illumination techniques (i.e., ray tracing
and radiosity). This synthetic image is then compared to the photograph
and a photometric error is estimated. If this error is too large, the algorithm
will use a more complex BRDF model (step-by-step using diffuse, specular,
isotropic, and finally, anisotropic terms) in the following iterations, until
the deviation between synthetic image and photograph is satisfactory. Once
the reflectance of the real scenery is recovered, virtual objects can be inte-
grated and the scene must be re-rendered. They report that the analysis
and re-rendering of the sample images takes between 30 minutes and several
hours depending on the quality required and the scene’s complexity.

Yu et al. [210] present a robust iterative approach that uses global
illumination and inverse global illumination techniques. They estimate
diffuse and specular reflectance as well as radiance and irradiance from a
sparse set of photographs and the given geometry model of the real scenery.
Their method is applied to the insertion of virtual objects, the modification
of illumination conditions, and to the re-rendering of the scenery from novel
viewpoints. As for Boivin’s approach, BRDF recovery and re-rendering are
not supported at interactive frame-rates.

Loscos et al. [92] estimate only the diffuse reflectance from a set of pho-
tographs with different but controlled real world illumination conditions.
They are able to insert and remove real and virtual objects and shadows
and to modify the lighting conditions. To provide an interactive manipula-
tion of the scenery, they separate the calculation of the direct and indirect
illumination. While the direct illumination is computed on a per-pixel ba-
sis, indirect illumination is generated with a hierarchical radiosity system

2Not real-time.
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that is optimized for dynamic updates [42]. While the reflectance analysis
is done during an offline preprocessing step, interactive frame rates can be
achieved during re-rendering. Depending on the performed task and the
complexity of the scenery, they report re-rendering times for their examples
between 1–3 seconds on a SGI R10000. Although these results are quite
remarkable, the update rates are still too low to satisfy the high response
requirements of stereoscopic displays that support head-tracking (and pos-
sibly multiple users).

Gibson and Murta [55] present another interactive image composition
method to merge synthetic objects into a single background photograph
of a real environment. A geometric model of the real scenery is also as-
sumed to be known. In contrast to the techniques described previously,
their approach does not consider global illumination effects to benefit from
hardware-accelerated multi-pass rendering. Consequently, a reflectance
analysis of the real surfaces is not required, indirect illumination effects
are ignored, and a modification of the lighting conditions is not possible.
The illumination of the real environment is first captured in the form of an
omnidirectional image. Then, a series of high dynamic basis radiance maps
are precomputed. They are used during runtime to simulate a matching
direct illumination of the synthetic objects using sphere mapping. Shadow
casting between real and virtual objects is approximated with standard
shadow mapping. With their method, convincing images can be rendered
at frame rates up to 10fps on an SGI Onyx 2. However, it is restricted to
a static viewpoint.

The main problem for a consistent illumination for optical see-through
approaches is that the real environment is illuminated by physical light
sources while the virtual environment is illuminated based on synthetic light
sources (Figure 7.8(a)). This results in inconsistent shading and shadow
effects unless the virtual light sources approximate the properties (such
as position, direction, intensities, color, etc.) of the physical ones. This,
however, is very inflexible. In contrast to video see-through, the pixel ap-
pearance of the real environment in the video image cannot be modified to
achieve a matching illumination. Consequently, the physical contribution
of the real light sources has to be neutralized to illuminate the entire envi-
ronment based on the virtual lighting situation (Figures 7.8(a) and 7.8(c)).
This is only possible with controllable physical light sources, such as video
projectors.

This section describes methods which create a consistent illumination
between real and virtual components within an optical see-through envi-
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(a) (b) (c)

Figure 7.8. Multi-pass rendering and perspective texture mapping for creating
occlusion shadows.

ronment [15] for example realized by displays such as the ones presented in
Chapters 4, 6, and 8. Combinations of video projectors and cameras can
be used to capture reflectance information from diffuse real objects and
to illuminate them under new synthetic lighting conditions (Figure 7.9).
For diffuse objects, the capturing process can also benefit from hardware

(a) (b)

(c) (d)

Figure 7.9. (a) Unrealistic illumination with correct occlusion; (b)–(d) realistic
illumination under varying virtual lighting conditions with matching shading and
shadows. (Images reprinted from [15] c© IEEE.)



�

�

�

�

�

�

�

�

7.3. Creating Consistent Illumination 231

acceleration supporting dynamic update rates. To handle indirect lighting
effects (like color bleeding) an offline radiosity procedure is outlined that
consists of multiple rendering passes. For direct lighting effects (such as
simple shading, shadows, and reflections) hardware-accelerated techniques
are described which allow interactive frame rates. The reflectance infor-
mation can be used in addition to solve the multi-user occlusion problem
discussed in Section 7.2.

7.3.1 Diffuse Reflectance Analysis

As in Section 7.2, we want to assume that the geometry of both object
types, real and virtual, has been modelled or scanned in advance. While
the material properties of virtual objects are also defined during their mod-
elling process, the diffuse reflectance of physical objects is captured on- or
offline with a set of video projectors and cameras and a structured light
analysis. This sort of analysis is standard practice for many range scanner
setups. But since only diffuse real objects can be considered (a projector-
based illumination will generally fail for any specular surface), a simple
diffuse reflectance analysis can benefit from hardware-accelerated render-
ing techniques. In contrast to conventional scanning approaches, this leads
to dynamic update rates. Figure 7.10 illustrates an example.

Again, the intrinsic and extrinsic parameters of projectors and cam-
eras within the world coordinate system have to be estimated first. Each
device has to be calibrated separately. As described in Section 7.2, two-
dimensional projections of known three-dimensional fiducials can be in-
teractively marked on a projector’s/camera’s image plane. Using these
mappings, a minimization method is used to solve a perspective n-point
problem for each device. This results in the perspective projection matrices
P,C of a projector and a camera. Both matrices incorporate the correct
model-view transformations with respect to the origin of the world coor-
dinate system. Once calibrated, a projector/camera combination can be
used to perform the diffuse reflectance analysis.

Capturing a radiance map. The video projector is used to send structured
light samples to the diffuse physical object and illuminate it with a prede-
fined color Cp and an estimated intensity η. Synchronized to the illumina-
tion, the video camera captures an input image. Since this image contains
the diffuse reflectance of the object’s surface under known lighting condi-
tions it represents a radiance map. White-balancing and other dynamic
correction functions have been disabled in advance. The parameters of
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Figure 7.10. (a) Captured radiance map of a fossilized dinosaur footprint; (b) in-
tensity image rendered for calibrated projector from (a); (c) computed reflectance
map; (d) novel illumination situation; (e) reflectance map under novel illumina-
tion from (d); (f) reflectance map under virtual illumination from (b). (Images
reprinted from [15] c© IEEE.)

the camera’s response function can be adjusted manually in such a way
that the recorded images approximate the real world situation as close as
possible.

Some types of video projectors (such as digital light projectors (DLP))
display a single image within sequential, time-multiplexed light intervals
to achieve different intensity levels per color. If such projectors are used, a
single snapshot of the illuminated scene would capture only a slice of the
entire display period. Consequently, this image would contain incomplete
color fragments instead of a full-color image. The width of this slice depends
on the exposure time of the camera. To overcome this problem, and to be
independent of the camera’s exposure capabilities, we capture a sequence of
images over a predefined period of time. These images are then combined
to create the final diffuse radiance map Irad (Figure 7.10(a)).
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Creating an intensity image. To extract the diffuse material reflectance out
of Irad, the lighting conditions that have been created by the projector have
to be neutralized. OpenGL’s diffuse lighting component, for instance, is
given by Neider [118]:

Ii =
1
r2
i

cos (θi) (DlDm)i ,

where Ii is the final intensity (color) of a vertex i, Dl is the diffuse color of
the light, Dm is the diffuse material property, the angle θi is spanned by
the vertex’s normal and the direction vector to the light source, and the
factor 1/r2

j represents a square distance attenuation.
As described in Section 7.1, an intensity image Iint that contains only

the diffuse illumination can be created by rendering the object’s geometry
(with Dm = 1) from the perspective of the video camera, illuminated by a
point light source (with Dl = Cpη) that is virtually located at the position
of the projector (Figure 7.10(b)).

In addition, hard shadows can be added to the intensity image by apply-
ing standard shadow mapping techniques. Consequently, the background
pixels of Iint, as well as pixels of regions that are occluded from the per-
spective of the light source, are blanked out (Iint(x, y) = 0), while all
other pixels are shaded under consideration of the previous diffuse lighting
equation.

Extracting and re-rendering diffuse reflectance. Given the captured radi-
ance map Irad and the rendered intensity image Iint, the diffuse reflectance
for each surface that is visible to the camera can be computed by

Iref (x, y) =
Irad(x, y)
Iint(x, y)

for Iint(x, y) > 0,

Iref (x, y) = 0 for Iint(x, y) = 0.

Note that the division of the two images can be implemented by a pixel
shader and can be executed in real time on graphics hardware.

The reflectance image Iref is stored, together with the matrix C and the
real object’s world-transformation Oc that is active during the capturing
process, within the same data structure. This data structure is referred to
as the reflectance map (Figure 7.10(c)).

The captured reflectance map can be re-rendered together with the real
object’s geometric representation from any perspective with an arbitrary
world-transformation Oa. Thereby, Iref is applied as a projective texture
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map with the texture matrix3 set to O−1
a OcC. Enabling texture modu-

lation, it can then be relit virtually under novel illumination conditions
(Figures 7.10(d), 7.10(e), and 7.10(f)).

The basic diffuse reflectance analysis method has the following prob-
lems:

1. Due to under-sampling, surfaces which span a large angle φi between
their normal vectors and the direction vectors to the camera can cause
texture artifacts if Iref is remapped from a different perspective.

2. A single reflectance map covers only the surface portion that is visible
from the perspective of the camera.

3. The radiance map can contain indirect illumination effects caused by
light fractions that are diffused off other surfaces (so-called secondary
scattering). The intensity image Iint, however, does not contain sec-
ondary scattering effects since a global illumination solution is not
computed. The extracted reflectance is incorrect in those areas that
are indirectly illuminated by secondary scattering.

4. The projector intensity η has to be estimated correctly.

To overcome the under-sampling problem, the constraint can be made
that only surfaces with φi ≤ φmax are analyzed. All other surfaces will be
blanked out in Iref (i.e., Iref (x, y) = 0). Experiments have shown that
φmax = 60◦ is an appropriate value.

Multiple reflectance maps that cover different surface portions can be
captured under varying transformations, Oc or C. They are merged and
alpha blended during remapping via multi-texturing onto the object’s geo-
metric representation. This ensures that regions which are blanked out in
one reflectance map can be covered by other reflectance maps. To generate
seamless transitions between the different texture maps, bi- or tri-linear
texture filtering can be enabled.

Illuminating the entire scene can cause an extreme secondary scattering
of the light. To minimize the appearance of secondary scattering in Irad,
the scene can be divided into discrete pieces and their reflectance can be
captured one after the other. For this, the same algorithm as described
above can be used. The difference, however, is that only one piece at a time

3Including the corresponding mapping transformation from normalized device coor-
dinates to normalized texture coordinates.
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is illuminated and rendered, Irad and Iint. By evaluating the blanked out
background information provided in Iint, the selected piece we effectively
segmented in Iint and its reflectance can be computed. This is repeated
for each front-facing piece, until Iref is complete.

The projector’s intensity η can be estimated as follows: First, a re-
flectance map is generated with an initial guess of η. This reflectance map
is then remapped onto the object’s geometric representation, which is ren-
dered from the perspective of the camera and illuminated by a virtual point
light source with η located at the projector. The rendered radiance map
Iradv is then compared to the captured radiance map Irad by determining
the average square distance error ∆ among all corresponding pixels. Fi-
nally, an approximation for η can be found by minimizing the error function
f∆. For this, Brent’s inverse parabolic minimization method with bracket-
ing [23] can be used, for example. By estimating η, the constant black-level
of the projector can also be incorporated.

7.3.2 Augmenting Radiance

In computer graphics, the radiosity method [57] is used to approximate a
global illumination solution by solving an energy-flow equation. Indirect
illumination effects, such as secondary scattering, can be simulated with
radiosity. The general radiosity equation for n surface patches is given by

Bi = Ei + ρi

∑n

j=1
BjFij ,

where Bi is the radiance of surface i, Ei is the emitted energy per unit
area of surface i, ρi is the reflectance of surface i, and Fij represents the
fraction of energy that is exchanged between surface i and surface j (the
form-factor).

The simulation of radiosity effects within an optical see-through en-
vironment that consists of diffuse physical and virtual objects, faces the
following challenges and problems:

1. Light energy has to flow between all surfaces—real ones and virtual
ones;

2. Physical objects are illuminated with physical light sources (i.e., video
projectors in our case) which do not share the geometric and radio-
metric properties of the virtual light sources;

3. No physical light energy flows from virtual objects to real ones
(and vice versa). Consequently, the illuminated physical environment
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Figure 7.11. Multi-pass radiosity for augmenting synthetic radiance onto a real
environment. (Images reprinted from [15] c© IEEE.)

causes (due to the absence of the virtual objects) a different radio-
metric behavior than the entire environment (i.e., real and virtual
objects together).

An example is illustrated in Figure 7.11(a)4. The entire environment
consists of three walls, a floor, two boxes, and a surface light source on the
ceiling. We want to assume that the walls and the floor are the geomet-
ric representations of the physical environment, and the boxes, as well as
the light source, belong to the virtual environment. While the diffuse re-
flectance ρi of the physical environment can be automatically captured, it
has to be defined for the virtual environment. After a radiosity simulation5

4A physical mock-up of the Cornell room has been chosen since it is used in many
other examples as a reference to evaluate radiosity techniques.

5A hemi-cube–based radiosity implementation has been used with progressive refine-
ment, adaptive subdivision, and interpolated rendering for our simulations.
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of the entire environment, the radiance values B0
i for all surfaces have been

computed6. Color-bleeding and shadow-casting are clearly visible.
For virtual objects, the computed radiance values are already correct

(Figure 7.11(d)). The rendered image represents a radiance map that is
generated from one specific perspective. Rendering the virtual objects from
multiple perspectives results in multiple radiance maps that can be merged
and alpha-blended during remapping via multi-texturing onto the virtual
geometry (as described for reflectance maps in Section 7.3.1). In this case,
our radiance maps are equivalent to light maps that are often used during
prelighting steps to speed up the online rendering process.

The prelit virtual objects can simply be rendered together with their
light maps and can be optically overlaid over the physical environment.

The physical surfaces, however, have to emit the energy that was com-
puted in B0

i (Figure 7.11(b)). To approximate this, it can be assumed first
that every physical surface patch directly emits an energy E0

i that is equiv-
alent to B0

i . If this is the case, fractions of this energy will radiate to other
surfaces and illuminate them. This can be simulated by a second radiosity-
pass (Figure 7.11(c)), which computes new reflectance values B1

i for all
the physical surfaces, by assuming that E0

i = B0
i , and not considering the

direct influence of the virtual light source.
If we subtract the radiance values that have been computed in both

passes, we receive the scattered light only; that is, the light energy radiated
between the physical surfaces B1

i − B0
i (Figure 7.11(h)).

Consequently,
B2

i = B0
i − (

B1
i − B0

i

)
approximates the energy that has to be created physically on every real
surface patch. To prove this, a third radiosity pass can be applied to
simulate the energy flow between the patches (Figure 7.11(f)). It can be
seen that the remaining energy B1

i −B0
i will be nearly added, and we have

B3
i = B2

i +
(
B1

i − B0
i

) ≈ B0
i .

By removing the virtual objects from the environment and simulating the
second radiosity pass, light energy will also be radiated onto surfaces which
were originally blocked or covered by the virtual objects (either completely
or partially). An example is the shadow areas that have been cast by the
virtual objects. This can be observed in Figure 7.11(h) and Figure 7.11(i).

6Note, that the upper index represents the radiosity pass.
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Negative radiance values are possible for such areas. To avoid this, the
resulting values have to be clipped to a valid range.

The average deviations between B0
i and B1

i , as well as between B0
i and

B3
i , within the three spectral samples red (R), green (G), and blue (B)

are presented in Figure 7.11(h) and 7.11(i), respectively. Treating a video
projector as a point light source B2

i can be expressed as follows:

B2
i = ρiLiFi,

where Li is the irradiance that has to be projected onto surface i by the
projector; Fi is the form factor for surface i, which is given by

Fi =
cos(θi)

r2
i

hi,

where θi is the angle between a surface patch’s normal and the direction
vector to the projector, ri is the distance between a surface patch and the
projector, and hi is the visibility term of the surface patch, seen from the
projector’s perspective.

Extending and solving the previous equations for Li, we obtain (Fig-
ure 7.11(g)):

Li =
B2

i

ρiFi
η.

To cope with the individual brightness of a video projector, the intensity
factor η can be added. How to estimate η for a specific projector is described
in Section 7.3.1. To be consistent with our previously used terminology, we
call Li the irradiance map.

The computed radiance and irradiance values are view independent.
Consequently, irradiance maps for the real objects and radiance maps for
the virtual objects can be precomputed offline.

The real objects are illuminated with projected light during run time by
rendering the generated irradiance map from the viewpoint of the projector
(e.g., as illustrated in Figure 7.11(g)). Virtual objects are rendered with
the computed light maps (e.g., as illustrated in Figure 7.11(d)) and are then
optically laid over the real environment. Due to the view independence of
the method, the augmented scene can be observed from any perspective
(i.e., head-tracking and stereoscopic rendering are possible). However, the
scene has to remain static, since any modification would require the recom-
puting of new radiance and irradiance maps throughout multiple radiosity
passes. This is not yet possible at interactive rates.
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(a) (b)

(c) (d)

Figure 7.12. (a) Photograph of original object under room illumination; (b)
screen shot of captured reflectance relit with virtual point light source and Phong
shading; (c) screen shot of simulated radiosity solution with captured reflectance,
virtual surface light source (shown in Figure 7.11), and two virtual objects (shown
in Figure 7.11); (d) photograph of original object illuminated with the computed
irradiance. (Images reprinted from [15] c© IEEE; see Plate IV.)

Figure 7.12 shows a photograph of (a) the physical object under room
illumination, (b) a screen-shot of captured reflectance maps that have been
re-rendered under novel lighting conditions, (c) a screen-shot of the sim-
ulated radiance situation B0

i , and (d) a photograph of a physical object
that has been illuminated with Li. Note, that small deviations between
the images can be contributed to the response of the digital camera that
was used to take the photograph, as well as to the high black-level of the
projector that, for instance, makes it impossible to create completely black
shadow areas.
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7.3.3 Interactive Approximations: Shading and Shadows

In the following sections, several interactive rendering methods are de-
scribed that make use of hardware acceleration. In particular, techniques
to create matching shading and shadow and reflection effects on real and
virtual objects are discussed. Indirect lighting effects such as color bleeding,
however, cannot be created with these techniques. Yet, they create accept-
able results at interactive frame rates for multiple head-tracked users and
stereoscopic viewing on conventional PCs.

The generation of direct illumination effects on virtual surfaces caused
by virtual light sources is a standard task of today’s hardware-accelerated
computer graphics technology. Real-time algorithms, such as Gouraud
shading or Phong shading are often implemented on graphics boards.

Consistent and matching shading effects on real surfaces from virtual
light sources can be achieved by using video projectors that project appro-
priate irradiance maps onto the real objects. In Section 7.1, it is shown how
to compute an irradiance map to lift the radiance properties of neutral dif-
fuse objects with uniform white surfaces into a precomputed radiance map
of a virtual scene illuminated by virtual light sources. An irradiance map
that creates virtual illumination effects on diffuse real objects with arbitrary
reflectance properties (color and texture) can be computed as follows:

First, the real objects’ captured reflectance map (Iref ) is rendered from
the viewpoint of the projector and is shaded with all virtual light sources
in the scene. This results in the radiance map Irad 1. Then Iref is rendered
again from the viewpoint of the projector. This time, however, it is illu-
minated by a single point light source (Dl = 1 · η) which is located at the
position of the projector. This results in the radiance map Irad 2. Finally,
the correct irradiance map is computed by

L =
Irad 1

Irad 2
.

Note that, in general, this method correlates to the method described in
Section 7.3.2. The difference is the applied illumination model. While in
Section 7.3.2 an indirect global illumination model (radiosity) is used, here
a hardware-accelerated direct model (such as Phong or Gouraud shading)
is used. It is easy to see that Irad 1 corresponds to B2

i and that Irad 2

corresponds to ρiFη.
Note, also, that this method is actually completely independent of the

real objects’ reflectance. This can be shown by balancing Irad 1 with Irad 2.
In this case, the diffuse material property Dm (i.e., the reflectance) is can-
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celled out. Consequently, Irad 1 and Irad 2 can be rendered with a constant
(but equal) reflectance (Dm). If Dm = 1 is chosen, then the irradiance map
is simply the quotient between the two intensity images Iint 1 and Iint 2

that result from the two different lighting conditions, the virtual one and
the real one.

The irradiance map L should also contain consistent shadow informa-
tion. Figure 7.9 illustrates examples with matching shading effects7.

Six types of shadows can be identified within an optical see-through
environment:

1. Shadows on real objects created by real objects and real light sources;

2. Shadows on virtual objects created by virtual objects and virtual
light source;

3. Shadows on virtual objects created by real objects and virtual light
sources;

4. Shadows on real objects created by real objects and virtual light
sources;

5. Shadows on real objects created by virtual objects and virtual light
sources; and

6. Occlusion shadows.

The first type of shadow is the result of occlusions and self-occlusions
of the physical environment that is illuminated by a physical light source
(e.g., a video projector). Since it is focused on controlling the illumination
conditions within the entire environment via virtual light sources, these
shadows have to be removed. This can be achieved by using multiple
synchronized projectors that are able to illuminate all visible real surfaces.
Chapter 5 discusses techniques that compute a correct color and intensity
blending for multi-projector displays.

The second and third shadow types can be created with standard shadow
mapping or shadow buffering techniques. To cast shadows from real ob-
jects onto virtual ones, the registered geometric representations of the real
objects have to be rendered together with the virtual objects when the

7Note that a simple wooden plate has been chosen to demonstrate and to compare
the different effects. However, all techniques that are explained in these sections can be
applied to arbitrary object shapes.
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shadow map is created (i.e., during the first shadow pass). Such geomet-
ric real world representations (sometimes called phantoms [24]) are often
rendered continuously to generate a realistic occlusion of virtual objects
by real ones. Note that these hardware-accelerated techniques create hard
shadows while global illumination methods (such as radiosity) can create
soft shadows. Texture blending, however, allows ambient light to be added
to the shadow regions. This results in dark shadow regions that are blended
with the underlying surface texture, instead of creating unrealistic black
shadows.

Shadow types number (4) and (5) can also be created via shadow map-
ping. However, they are projected on the surface of the real object together
with the irradiance map L, as discussed earlier. Therefore, Irad 1 has to
contain the black (non-blended) shadows of the virtual and the real ob-
jects. This is achieved by rendering all virtual objects and all phantoms
during the first shadow pass to create a shadow map. During the second
pass, the shaded reflectance texture and the generated shadow texture are
blended and mapped onto the objects’ phantoms. A division of the black
shadow regions by Irad 2 preserves these regions. Note that a blending of
the projected shadows with the texture of the real objects occurs physically
if the corresponding surface portions are illuminated (e.g., by a relatively
small amount of projected ambient light).

Occlusion shadows have been described in Section 7.2. They are special
view-dependent shadows created by the projectors on the real objects’ sur-
faces to achieve a realistic occlusion of real objects by virtual ones within
optical see-through augmented environments. They are normally not vis-
ible from the perspective of the observer, since they are displayed exactly
underneath the graphical overlays. Occlusion shadow-maps, however, also
have to be blended to the irradiance map L before it is projected.

The entire process can be summarized in the form of a three-pass ren-
dering algorithm:

\\ first pass

create an intensity image Irad 2 of the real object:

render real object from perspective of light projector...

...having a white diffuse material...

...illuminated by a white virtual point light source...

...located at the projector

\\ second pass

create a shading image Irad 1 of real and virtual objects:

generate shadow map for real and virtual objects
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render real objects from perspective of light projector...

...having a white diffuse material...

...illuminated by the virtual light sources...

...with shadow mapping enabled

compute irradiance image L = Irad 1
Irad 2

\\ third pass

render occlusion shadows from perspective of projector...

...and blend with L

Note that the implementation of the image division to compute the
irradiance map L can be a pixel shader in order to achieve real-time per-
formance.

7.3.4 Interactive Approximations: Reflections

Using hardware-accelerated cube mapping techniques, the virtual represen-
tation of the real environment (i.e., the objects’ geometry together with the
correctly illuminated reflectance map) can be reflected by virtual objects
(Figure 7.13).

Therefore, only the registered virtual representation of the real envi-
ronment has to be rendered during the generation step of the cube map.
Virtual objects are then simply rendered with cube mapping enabled. Note,
that for conventional cube mapping, reflection effects on a virtual object are
physically correct for only a single point, the center of the cube map frusta.
To create convincing approximations, this center has to be matched with

Figure 7.13. Virtual objects reflecting and occluding the real object (wooden
plate). (Images reprinted from [15] c© IEEE.)
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the virtual object’s center of gravity, and the cube map has to be updated
every time the scene changes.

7.4 Augmenting Optical Holograms

A hologram is a photometric emulsion that records interference patterns of
coherent light. The recording itself stores amplitude, wavelength, and phase
information of light waves. In contrast to simple photographs (which can
record only amplitude and wavelength information), holograms have the
ability to reconstruct complete optical wavefronts. This results in a three-
dimensional appearance of the captured scenery, which is observable from
different perspectives.

Optical holograms are reconstructed by illuminating them with mono-
chromatic (purity of color) light; the light has to hit the emulsion at the
same angle as the reference laser beam that was used to record the holo-
gram.

Figure 7.14 illustrates the basics of optical holographic recording and
reconstruction. A laser beam is split into two identical beams. While
one beam (called the reference wave) illuminates the holographic emulsion

Figure 7.14. Recording and reconstruction of optical holograms. (Image
reprinted from [18] c© IEEE.)
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directly, the other beam illuminates the object to be recorded. The light
that is reflected from the object (called the object wave) shines on the
emulsion and creates the fringe pattern together with the reference wave.

If the emulsion is illuminated with a copy of the reference wave, it
interacts with the recorded interference fringes and reconstructs the object
wave which is visible to the observer. The amplitude of the reconstructed
object wave is proportional to the intensity of the reference wave. Its
reconstruction can be controlled with a selective illumination.

There are two basic types of optical holograms: transmission and re-
flection holograms.

A transmission hologram is viewed with the light source and the ob-
server on opposite sides of the holographic plate. The light is transmitted
through the plate before it reaches the observer’s eyes. Portions of the
emulsion that are not recorded or not illuminated remain transparent.

Reflection holograms are viewed with the light source and the observer
on the same side of the holographic plate. The light is reflected from the
plate towards the eyes of the observer. As for transmission holograms, not
recorded or not illuminated portions of the emulsion remain transparent
(without an opaque backing layer).

Among these two basic types of holograms, a large pallet of different
variations exists. While some holograms can only be reconstructed with
laser light, others can be viewed under white light. They are called white-
light holograms.

Some of the most popular white-light transmission holograms are rain-
bow holograms. With rainbow holograms, each wavelength of the light is
diffracted through a different angle. This allows us to observe the recorded
scene from different horizontal viewing positions, but also makes the scene
appear in different colors when observed from different viewing positions.

In contrast to rainbow holograms, white-light reflection holograms can
provide full parallax and display the recorded scene in a consistent but, in
most cases, monochrome color for different viewing positions.

Color white-light holograms (both transmission and reflection types) can
also be produced. Usually the same content is recorded on several emulsion
layers. However, each layer is exposed to laser light with a different wave-
length. When reconstructed, each object wave from each layer contributes
with its individual wavelength. Together, they merge into a colored image.

Today, many applications for optical holograms exist. Examples include
interferometry, copy protections, data storage, and holographic optical
elements.
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Due to their unique capability to present three-dimensional objects to
many observers with almost no loss in visual quality, optical holograms are
often used in museums. They can display artifacts that are not physically
present without the need to build real replicas of the originals. In addition,
medical, dental, archaeological, and other holographic records can be made,
both for teaching and for documentation.

Optical holograms, however, are static and lack interactivity. Excep-
tions are multiplex holograms that are built from multiple narrow (verti-
cal) strip holograms that contain recordings of the same scenery at dif-
ferent time intervals. While moving around the hologram (or spinning a
cylindrically-shaped version around its principle axis), observers can per-
ceive the recorded scene in motion; multiplex holograms are not interactive.

Three-dimensional computer graphics in combination with stereoscopic
presentation techniques represents an alternative that allows interactivity.
State of the art rendering methods and graphics hardware can produce
realistic-looking images at interactive rates. However, they do not nearly
reach the quality and realism of holographic recordings. Autostereoscopic
displays allow for a glass-free observation of computer-generated scenes.
Several autostereoscopic displays exist that can present multiple perspec-
tive views at one time thus supporting multiple users simultaneously. Res-
olution and rendering speed, however, decrease with the number of gen-
erated views. Holographic images, in contrast, can provide all depth cues
(perspective, binocular disparity, motion parallax, convergence, and ac-
commodation) and can be viewed from a theoretically unlimited number
of perspectives at the same time.

Parallax displays are display screens (e.g., CRT or LCD displays) that
are overlaid with an array of light-directing or light-blocking elements. Us-
ing these elements, the emitted light is directed to both eyes differently
allowing them to see individual portions of the displayed image. The ob-
server’s visual system interprets corresponding light rays to be emitted by
the same spatial point. Dividing the screen space into left-right image
portions allows for a glass-free separation of stereo pairs into two or more
viewing zones.

Some displays control the parallax array mechanically or electronically
depending on the viewpoint of the observer to direct the viewing zones more
precisely towards the eyes. Others generate many dense viewing zones, each
of them showing a slightly different perspective of the rendered scene at
the same time. Such displays support multiple users simultaneously, but
do not yet allow high frame rates.
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An example of a parallax display is a parallax barrier display that uses
an array of light-blocking elements (e.g., a light-blocking film or liquid
crystal barriers) in front of a screen. The light-blocking elements are used
to cover portions of the screen for one eye that are visible to the other eye.

Another example is a lenticular sheet display that utilizes refraction of
a lens array (e.g., small cylindrical, prism-like or spherical lenses) to direct
the light into the different viewing zones. Images that are generated with
lenticular sheet displays appear brighter than the ones displayed on barrier
displays. While prisms and cylinders provide a horizontal parallax only,
spherical lenses support a full parallax.

Several research groups are working on computer-generated holograms.
There are two main types, digital holography and electroholography or
computer-generated holograms.

In digital holography [207], holographic printers are used to sequen-
tially expose small fractions of the photometric emulsion with a computer-
generated image. Conventional holograms which display a computer-
generated content are the result. This technique can also be used for the
construction of large-scale, tiled holograms [80]. Although digital holo-
grams can be multiplexed to display scenes in motion, they remain non-
interactive.

Electroholography aims at the computer-based generation and display
of holograms in real time [82, 96]. Holographic fringes can be computed by
rendering multiple perspective images that are combined into a stereogram
[95], or by simulating the optical interference and calculating the interfer-
ence pattern [94]. Once computed, the fringes are dynamically visualized
with a holographic display. Since a massive amount of data has to be
processed, transmitted, and stored to create holograms, today’s computer
technology still sets the limits of electroholography. To overcome some of
the performance issues, advanced reduction and compression methods have
been developed. This results in electroholograms that are interactive, but
small, low resolution, and pure in color. Recent advances on consumer
graphics hardware may reveal potential acceleration possibilities [137].

Combining optical holograms with two-dimensional or three-dimensional
graphical elements can be an acceptable trade-off between quality and inter-
activity (Figure 7.15). While the holographic content provides high quality
but remains static, additional graphical information can be generated, in-
serted, modified, and animated at interactive rates.

Technically, optical combiners such as mirror beam combiners or semi-
transparent screens (see Chapter 6) can be used to visually overlay the out-
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Figure 7.15. A rainbow hologram of a dinosaur skull combined with three-
dimensional graphical elements and synthetic occlusion and shading effects: (a)
the hologram only; (b) optically integrated graphical elements (muscles and other
soft-tissue); (c) and (d) consistent illumination effects between holographic and
graphical content. (Images reprinted from [18] c© IEEE.)

put rendered on a screen over a holographic plate. In this case, however,
the reconstructed light of the hologram will interfere with the overlaid light
of the rendered graphics and an effective combination is impossible. How-
ever, the holographic emulsion can be used as an optical combiner itself,
since it is transparent if not illuminated in the correct way. Consequently,
it provides see-through capabilities.

This section describes how holograms can be optically combined with
interactive, stereoscopic, or autostereoscopic computer graphics [18]. While
Section 7.4.1 explains how correct occlusion effects between holographic and
graphical content can be achieved, Section 7.4.2 outlines how a consistent
illumination is created in such cases.

7.4.1 Partially Reconstructing Wavefronts

A key solution to this problem is to reconstruct the object wave only
partially—not at those places where graphical elements have been inserted.
This requires a point light source capable of selectively emitting light in
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Figure 7.16. An explosion model of the stacked structure of optical layers.
From left to right: glass protection, holographic emulsion, mirror beam combiner
(only for transmission holograms), lenticular lens sheet, LCD array. The light-
rays (darker arrows) are reflected and reconstruct the object wave on their way
back through the emulsion. The stereoscopic images (gray arrows) pass through
all layers until they are merged with the hologram. (Image reprinted from [18]
c© IEEE.)

different directions, creating an “incomplete” reference wave. Conventional
video projectors are such light sources. They are also well suited for view-
ing white-light reflection or transmission holograms, since today’s high-
intensity discharge (HDI) lamps can produce a very bright light.

If autostereoscopic displays, such as parallax displays are used to ren-
der three-dimensional graphics registered to the hologram, then both holo-
graphic and graphical content appear three-dimensional within the same
space. This is also the case if stereoscopic displays with special glasses that
separate the stereo images are used.

Reflection holograms without an opaque backing layer and transmission
holograms both remain transparent if not illuminated. Thus, they can serve
as optical combiners themselves, leading to very compact displays. The
illumination and rendering techniques that are described in these sections
are the same for both hologram types.

Figure 7.16 illustrates an example of how a transmission hologram can
be combined effectively with a flat-panel lenticular lens sheet display (a
variation of a parallax display that utilizes refraction of a lens array to
direct the light into the different viewing zones).

Placing a transmission hologram in front of a mirror beam combiner al-
lows us to illuminate it from the front and to augment it with graphics from
the back. For reflection holograms, this beam combiner is not necessary.
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Figure 7.17. A conceptual sketch of the display constellation. The shaded
areas on the graphical display and on the holographic emulsion illustrate which
portion of the visible image is hologram (black) and which is graphics (gray).
(Image reprinted from [18] c© IEEE.)

A thin glass plate protects the emulsion from being damaged and keeps
it flat to prevent optical distortion. The lenticular lens sheet directs the
light emitted from the LCD array through all layers towards the eyes of the
observer. The projected light is transmitted through the first two layers,
and is partially reflected back (either by the beam combiner in combination
with a transmission hologram or by a reflection hologram), reconstructing
the recorded content. The remaining portion of light that is transmitted
through all layers is mostly absorbed by the screen.

Figure 7.17 illustrates how the selective illumination on the holographic
plate is computed to reconstruct the portion of the hologram that is not
occluded by graphics.

In what follows, we outline how rendering and illumination can be re-
alized with conventional graphics hardware. It is assumed that depth in-
formation of the holographic content (H), as well as a scene description of
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the graphical content (G) are available. Both contents are geometrically
aligned during an offline registered step. If optical markers are recorded
in the hologram together with the actual content, cameras can be used
to perform this registration automatically. In addition, the extrinsic and
intrinsic parameters of the video projector (P ) with respect to the holo-
graphic emulsion (E) have to be known. They are also determined during
an offline calibration step. If it is mechanically possible to mount the holo-
graphic emulsion close to the graphical display (i.e., the distance between
E and D is small), then E and D can be approximated to be identical.

First, an intermediate texture image (T ) is created from V over E by
rendering H into the graphics card’s depth buffer and filling the card’s
frame buffer entirely with predefined light color values. In addition, G is
rendered into depth and stencil buffers. The stencilled areas in the frame
buffer are cleared in black and the result is copied into the memory block
allocated for T .

Note that if a render-to-texture option is provided by the graphics card,
the read-back operation from the frame buffer into the texture memory is
not necessary. The final illumination image (I) is rendered from P by
drawing E into the frame buffer and texturing E’s geometry with T . The
illumination image (I) is beamed onto the holographic emulsion (E) with
the projector (P ).

Second, a rendering image (R) is generated from V over D (off-axis)
by rendering H into the depth buffer and G into depth and frame buffers.
The rendering image (R) is displayed on the graphical display (D).

This can be summarized with the following algorithm:

\\ first pass

create intermediate texture T from V over E:

render H into depth buffer

fill frame buffer with light color

render G into depth and stencil buffer

fill stenciled areas in frame buffer with black

\\ second pass

render E from P textured with T and display on projector

\\ optical inlay

create rendering image R from V over D:

render H into depth buffer

render G into depth buffer and frame buffer

display G on projector



�

�

�

�

�

�

�

�

252 7. Projector-Based Illumination and Augmentation

Figure 7.15(a) shows a photograph of the entire reconstructed hologram
while it is illuminated with a projected uniform light.

By applying the presented techniques, illumination and stereoscopic
images are generated in such a way that graphical and holographic content
can be merged within the same space (Figure 7.15(b)).

7.4.2 Modifying Amplitude Information

The amplitude of the reconstructed object wave is proportional to the
intensity of the reference wave. Beside using an incomplete reference
wave for reconstructing a fraction of the hologram, intensity variations
of the projected light allow us to locally modify the recorded object wave’s
amplitude.

In practice, this means that to create the illumination image (I), shad-
ing and shadowing techniques are used to render the holographic content,
instead of rendering it with a uniform intensity.

To do this, the shading effects caused by the real light sources that
were used for illumination while the hologram was recorded, as well as the
physical lighting effects caused by the video projector on the holographic
plate, have to be neutralized. Then the influence of a synthetic illumination
has to be simulated. This can also be done with conventional graphics
hardware (Figure 7.18). Three intensity images have to be rendered.

For the first image (I1), H is rendered from V over E with a white
diffuse material factor and graphical light sources that generate approxi-
mately the same shading and shadow effects on H as the real light sources
that were used during the holographic recording process. This results in
the intermediate texture T1. I1 is generated by rendering E from P and
texturing it with T1. It simulates the intensity of the recorded object wave.
The same process is repeated to create the second image (I2), but this time,
graphical light sources are used to shade H under the new, virtual lighting
situation. The ratio I2/I1 represents the required intensity of the reference
wave at holographic plate E.

For the third image (I3), E is rendered from P with a white diffuse ma-
terial factor and a virtual point light source located at the projector’s po-
sition. This intensity image represents the geometric relationship between
the video projector as a physical point light source and the holographic
plate:

F =
cos(θ)

r2
.
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Figure 7.18. Light interaction between hologram and graphics: To simulate
virtual shading and shadow effects on the holographic content, the recorded and
the physical illumination effects have to be neutralized. (Image reprinted from
[18] c© IEEE.)

It contains form-factor components, such as the square distance atten-
uation (r2) and the angular correlation (cos(θ)) of the projected light onto
the holographic plate and can neutralize the physical effects of the projector
itself.

The final illumination image (I) can be computed in real time with
I = I2/I1/I3 via pixel shaders. The projection of I onto E will neutralize
the physical and the recorded illumination effects as well as possible and will
create new shadings and shadows based on the virtual illumination. Note
that as described previously, the graphical content has to be stencilled out
in I before displaying it.

During all illumination and rendering steps, hardware-accelerated
shadow mapping techniques are used to simulate real and virtual shadow
effects on H and on G. Finally, synthetic shadows can be cast correctly
from all elements (holographic and graphical) onto all other elements.
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The following algorithm summarizes this approach:

\\ first pass

create intensity image I1:

render H from V over E (white diffuse factor)...

...and graphical light sources that simulate real...

...shading on H -> T1

render E from P textured with T1

\\ second pass

create intensity image I2:

render H from V over E (white diffuse factor)...

...and graphical light sources that simulate virtual...

...shading on H -> T2

render E from P textured with T1

\\ third pass

create intensity image I3:

render E from P (white diffuse factor)...

...and graphical point light source attached to P

\\ fourth pass

create and display illumination image I from P:

I = I2 / I1 / I3 (via pixel shader)

The capabilities of this technique are clearly limited. It produces accept-
able results if the recorded scenery has been illuminated well while making
the hologram. Recorded shadows and extreme shading differences cannot
be neutralized. Furthermore, recorded color, reflections, and higher-order
optical effects cannot be cancelled out either.

Projecting an intensity image that contains new shading and shadow
effects instead of a uniform illumination allows us to neutralize most of
the diffuse shading that is recorded in the hologram and produced by the
projector. The holographic and graphical content can then be consistently
illuminated (creating matching shading and shadow effects) under a novel
lighting.

Figures 7.15(c) and 7.15(d) illustrate the synthetic shading effects that
are caused by a virtual light source. In addition, virtual shadows are cast
correctly between hologram and graphical elements. Although Figure 7.15
illustrates the results with a monochrome transmission hologram, the same
effects are achieved with reflection holograms and color holograms.

Since all the discussed rendering techniques (like shadow mapping and
shading) are supported by hardware-accelerated consumer graphics cards,
interactive frame rates are easily achieved.
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Using the concept described in this section, a pallet of different dis-
play variations can be developed. With only minor changes of the pre-
sented techniques, for example, arbitrarily curved shapes (such as cylindri-
cal shapes being used for multiplex holograms) can be supported instead of
simple planar plates. Even without graphical augmentations, the projector-
based illumination alone has numerous potential uses. In combination with
optical or digital holograms, it can be used to create visual effects. Certain
portions of a hologram, for instance, can be made temporarily invisible
while others can be highlighted. Emerging large-scale autostereoscopic dis-
plays and existing stereoscopic projection screens allow us to up-scale the
proposed concept. Not only the display, but also the holograms can be
composed from multiple smaller tiles to reach large dimensions and high
resolutions.

7.5 Augmenting Flat and Textured Surfaces
(Example: Pictorial Artwork)

A seamless and space efficient way to integrate visual information directly
into pictorial artwork is to use the artwork itself as information display
[19]. It can serve as a diffuse projection screen and conventional video
projectors can be used to display computer graphics together with painted
content (Figure 7.19).

The main difference of this approach is that an arbitrarily textured
surface has to be augmented with colored information. To perceive the
projected imagery in the correct colors and intensities, however, requires
that the influence of the underlying physical color pigments is neutralized.
In most situations, this is not possible if untreated images are simply pro-
jected directly onto arbitrary colored surfaces. The problem is that the
projected light interacts with the color pigments on the canvas and is par-
tially absorbed if the pigment’s color isn’t fully white. The process to
correct these artifacts is called radiometric compensation. .

A solution to this problem is provided by a new film material which
has two properties: (1) it is completely transparent, and (2) it diffuses
a fraction of the light that is projected onto it. The film consists of an
even deposition of fine particles on both sides of a polyester base with no
visible artifacts. It was used for the creation of special effects in Hollywood
movies, such as Minority Report (20th Century Fox, 2002) and Paycheck
(Paramount Pictures, 2003), and sells for $350 per square foot. Initial
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(a) (b)

(c) (d)

Figure 7.19. Results of a color correction process with a single projector on a
real drawing: (a) real drawing (64× 48 cm) under environment light; (b) output
image emitted onto drawing; (c) partially augmented drawing; (d) output image
on a white piece of paper. (Displayed artwork courtesy of the British Museum,
London; images reprinted from [19] c© IEEE; see Plate V.)

measurements have revealed that on average 20% (+/- 1%) of the light
that strikes the film is diffused while the remaining fraction is transmitted
towards the canvas (with or without direct contact). This 0.1 mm thin
transparent film can be seamlessly overlaid over the canvas by integrating
it into the frame that holds the artwork. Off-the-shelf 1100 ANSI lumen
XGA digital light projectors have been used to display images on film and
canvas.

7.5.1 Technical Approach and Mathematical Model

If a light beam with incident radiance L is projected onto the transparent
film material that is located on top of the original artwork, a portion d

of L is directly diffused from the film while the remaining portion t of L

is transmitted through the film. The transmitted light tL interacts with
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(a) (b)

(c) (d)

Figure 7.20. (a)–(d) Close-ups: while the upper body part coincides in drawing
and painting, Michelangelo modified the lower body part. The arrows indicate the
displaced knee and belly sections. They point at the same spot on the drawing.
(Displayed artwork courtesy of the British Museum, London; images reprinted
from [19] c© IEEE.)

the underlying pigment’s diffuse reflectance M on the canvas, and a color
blended light fraction tLM is diffused. The portion tLMt is then trans-
mitted through the film, while the remaining part tLMd is reflected back
towards the canvas where it is color blended and diffused from the same
pigment again. This ping-pong effect between film material and canvas is
repeated infinitely while, for every pass, a continuously decreasing amount
of light is transmitted through the film that contributes to the resulting
radiance R. Mathematically, this can be expressed as an infinite geomet-
ric series that converges towards a finite value. The same is true for the
environment light with incident radiance E that is emitted from uncon-
trollable light sources. Since these light sources also illuminate the canvas
and the film material, the environment light’s contribution to R has to be
considered as well.
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Figure 7.21. Interaction of projected light and environment light with the canvas
and the film material (sequence diagram). (Image reprinted from [19] c© IEEE.)

Figure 7.21 describes this process in the form of a sequence diagram.
Note that in contrast to this conceptual illustration, there is no physical
gap between film material and canvas, and that the light interaction occurs
at the same spot.

If all parameters (L, E, M , t, and d) are known, we can compute the
resulting radiance R that is visible to an observer in front of the canvas:

R = (L + E) d + (L + E) t2M
∑∞

i=0
(Md)i

= (L + E)
(

d +
t2M

1 − Md

)
.

(7.4)

Since R forms the image we expect to see is known, we need to solve
Equation (7.4) for L:

L =
R(

d + t2M
1−Md

) − E.
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(a) (b)

Figure 7.22. Visualization of: (a) Equation 7.9; (b) Equation 7.10 over R, L,
and M (without E, t=80% and d=20%). (Images reprinted from [19] c© IEEE.)

This allows us to compute the incident radiance L that needs to be pro-
jected onto the film and the canvas to create the known result R. The
radiant intensity I of the projector to create L is related to a discretized
pixel value and is given by

I = L
r2

cos α
s,

where r2 cos α is the form-factor component: square distance attenuation
and angular correlation of the projected light onto the canvas. The ad-
ditional factor s allows us to scale the intensity to avoid clipping and to
consider the simultaneous contributions of multiple projectors.

This approach has clear limitations, which are illustrated in Figures
7.22(a) and 7.22(b). Not all radiances R can be produced under every
condition. If M is dark, most of L and E are absorbed. In an extreme
case, the corresponding pigment is black (M=0). In this case, the right
term of the equation that computes R is cancelled out. The remaining left
term, which depends on the diffusion factor d of the film material, sets the
boundaries of the final result that can be produced. The intersection of the
surface with the RL-plane in Figure 7.22(a) illustrates these limitations.
In the worst case of this example, only 20% of R can be generated. This
situation is also reflected in Figure 7.22(b) as the intersection of the surface
with the LR-plane. Here, we want to assume that sr2 cos α = x, which
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results in L = I. For a single video beamer, the projected radiance L and
the radiant intensity I cannot exceed the normalized intensity value of 1
(dotted line). But for creating most of the resulting radiance values, L and
I must be larger. This situation worsens for r2 cos α > x and for E → 1 or
M → 0.

However, the contributions of multiple (n) projectors allow displacing
this boundary with

L =
n∑

i=1

Li and Ii = Li
r2
i

cos αi
si.

If all projectors provide linear transfer functions (e.g., after gamma cor-
rection) and identical brightness, si = 1/n balances the load among them
equally. However, si might be decreased further to avoid clipping and to
adapt for differently aged bulbs.

For both illustrations in Figure 7.22, the environment light E is not
considered and is set to zero. Additional environment light would simply
shift the surface in Figure 7.22(a) up on the R-axis, and the surface in
Figure 7.22(b) down on the L-axis. Note that the mathematical model
discussed previously has to be applied to all color channels (e.g., red, green,
and blue for projected graphical images) separately.

7.5.2 Real-Time Color Correction

The equations described in Section 7.5.1 can be implemented as a pixel
shader to support a color correction in real time. Figure 7.23 illustrates the
rendering process based on an example of Michelangelo’s masterpiece Cre-
ation of Adam. Although we will use this example to explain the process,
it is universal and can be applied with arbitrary background images.

In this example, a copy of an early sanguine sketch of the Adam scene
(now being displayed in the British Museum, London) serves as a real
background image M . Our goal is to overlay it entirely with a registered
photograph R of the actual ceiling fresco painted in the Sistine Chapel.

The first step of the rendering process is to create an input image Ii.
This image can be either dynamically rendered (e.g., as part of a real-
time animation or an interactive experience), it can be played back (e.g.,
frames of a prerecorded movie), or it can be static (e.g., a photograph of
the corresponding ceiling portion, as is the case in our example).

The input image has to be registered to the physical drawing. Registra-
tion is achieved by texture mapping Ii onto a pre-distorted image geometry
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Figure 7.23. Real-time color-correction process with pixel shader. (Displayed
artwork courtesy of the Vatican Museum, Rome; image reprinted from [19]
c© IEEE.)

that is precisely aligned with the physical drawing. The amount of distor-
tion depends on the geometric relation between the video projector and
the canvas. It extends from simple keystone deformations to more complex
curvilinear warping effects (e.g., if lens distortion of the projector has to
be neutralized). Several automatic approaches have been described that
use video cameras and image analysis to align multiple images of tiled
projection screens [31, 208]. A structured light registration benefits from
controllable features, such as projected grid edges or Gaussian matchpoints
that can easily be detected in the camera views with a sub-pixel precision.
In the case described previously, however, a digital representation of the
artistic content has to be registered against its physical representation on
the canvas, rather than registering one projected structured light image
against another one. To detect non-structured artistic features, such as
fine lines, in the artwork and register them automatically against the cor-
responding features in the digital content represents a non-trivial task of
computer vision, especially if projected pixels and physical pigments have
to be aligned very precisely on the canvas. One can be critical about the
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feasibility and precision of an automatic method for this problem. It can be
solved with a manual registration process that benefits from the resolution
of the human visual system. Since the following steps have to be performed
only once, they represent an acceptable solution.

An offline registration process allows us to interactively identify two-
dimensional correspondences between artistic features in the background
image M within the image space—that is, an image of the drawing dis-
played on a control screen—and the physical drawing on the wall. This is
done using a two-dimensional input device, such as a conventional mouse
whose pointer is visible on the control screen and as a projection on the
canvas. A dual output graphics card and an additional video signal split-
ter are used to drive the control screen and one or two projectors. The
result is a set of two-dimensional vertex fiducials with their corresponding
texture coordinates within the image space. The fiducials are Delauny tri-
angulated and the texture coordinates are used to map the correct image
portions of I onto the image geometry. This results in the overlay image
R. It has to be stressed that a precise correspondence between R and M

is important to achieve qualitatively good results. The measurement of 50
to 70 fiducials proved to be sufficient for medium-sized canvases. In con-
trast to uniform grid methods normally applied for projector alignment,
this general geometric registration allows the correlation of arbitrary fea-
tures in the physical drawing with the corresponding pixels of M in the
image space. Thus, it provides an accurate matching which can be region-
ally improved further if linear interpolation within single grid triangles fails
to be precise enough. The registration results do not change if projector
and background image are fixed. Before R is rendered, the color-correction
pixel-shader has to be enabled. Five parameters are passed to it to ensure
that the equations discussed in Section 7.5.1 can be computed.

The first parameter is the environment light E in the form of an inten-
sity texture that has the same size as R. It contains intensity values that
represent the uncontrollable lighting situation on the canvas. The intensity
values can be determined by measuring the irradiance of the environment
light with a light meter for a discrete number of sample spots on the can-
vas’ surface, resulting in the lux values E′. To be processed by the shader,
these values have to be normalized to an intensity space that ranges from
0 to 1. To do this, the same spots are measured again, but this time the
highest intensity possible (i.e., a white image) is projected onto the light
meter which is measured in addition to the environment light. These mea-
surements are equivalent to the total irradiance T ′ = L′ + E′, and also



�

�

�

�

�

�

�

�

7.5. Augmenting Flat and Textured Surfaces 263

carry the unit lux. Since we know that L′ = T ′ − E′ is equivalent to the
scaled intensity value cos α/r2, we can convert the measured radiance of
the environment light from lux into the normalized intensity space with
E = E′/(T ′ − E′) cos α/r2. To approximate the intensity values for the
entire image area in E, all the measured spots are mapped into the image
space, are Delauny triangulated, and the values for the remaining pixels are
linearly interpolated by the graphics pipeline. The values for the remain-
ing pixels are linearly interpolated by the graphics card while rendering
the Delauny mesh. Note that E is constant if the environment light does
not change. For the reasons that are described next, we can assume that
cos α/r2 is constant and equals 1.

The second parameter is the form-factor that represents the geometric
relation between the video projector as a point light source and the canvas.
Since it does not change for a fixed relation between projector and canvas,
it can be precomputed and passed to the pixel shader in the form of an
intensity texture with the same dimensions as E and R. Similar to the
techniques described in the previous sections, this texture can be produced
by the graphics pipeline. A geometric model of the canvas is rendered with
a white diffuse reflectance from the viewpoint of the projector. Attaching
a virtual point light source (also with a white diffuse light component) to
the position of the projector and enabling square distance attenuation pro-
duces intensities that are proportional to cos α/r2. The required reciprocal
can be computed by the pixel shader. Practically (i.e., for normal-sized
canvases and non-extreme projector configurations), the form factor can
be assumed to be constant over all pixels. It is then contained by the
intensity adjustment parameter s.

The third parameter is the background image M . It also has the same
dimensions as E and R. This image can be generated by, for example,
scanning the color values or taking a photograph of the original drawing
under uniform illumination.

The fourth and fifth parameters contain color and intensity adjustment
values that allow fine-tuning of the video projector’s individual color re-
sponse and prevent intensity clipping. They also allow adapting for color
drifts that can be introduced during the capture of the background image
and consideration of the contributions of multiple projectors. Note that
gamma correction has to be applied in advance. This is true for projectors
with non-linear transfer functions as well as for projectors with linear trans-
fer functions that apply a de-gamma mapping on the video input. Gamma
correction is usually supported by the graphics hardware and the video
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driver but can also be carried out by the pixel shader. These values are ad-
justed manually, but the support of automated methods for color-matching
multiple projectors [100] is imaginable.

The output image Io is the final result of this rendering process and will
be displayed by the video projector. If projected geometrically onto the
drawing correctly, the result R′ will be visible. Both images, R and R′ are
mostly identical, except for slight artifacts that are due to the limitations
discussed above. Figure 7.19 shows the result of our example projected
onto the real drawing with a single video projector.

The underlying drawing can be made partially or completely invisible
to display the graphical overlay in the correct colors on top of it. Close-ups
are illustrated in Figures 7.19(e)–(h), in which diverging body parts (such
as belly and knee) are overdrawn and displaced by the projection.

Some intensities and colors that are required to neutralize the under-
lying color pigments cannot be achieved by a single video projector. The
worst case is to turn a black pigment on the canvas into a white color spot.
Figures 7.22(a) and 7.22(b) illustrate that in such a case the required inten-
sity can easily exceed the boundary of 1 in our normalized intensity space.
The pixel shader clips these values to 1 which results in visible artifacts.

The simultaneous contributions of multiple projectors can reduce or
even eliminate these effects. Figure 7.24 shows the extreme case of an input
image that has no geometric correspondences to the underlying background
image. In addition, it attempts to create bright colors (the sky) on top of

(a) (b)

Figure 7.24. Results of color correction process with two projectors: (a) the
limited intensity capabilities of a single projector result in visible artifacts; (b)
the contribution of a second projector reduces these effects. (Displayed artwork
courtesy of the Vatican Museum, Rome and the British Museum, London; images
reprinted from [19] c© IEEE; see Plate VI.)
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dark color pigments on the canvas. In Figure 7.24(a), a single projector is
used. Intensity values that are too large are clipped and result in visible
artifacts. Balancing the intensity load between two projectors reduces these
artifacts clearly (Figure 7.24(b)).

Due to hardware acceleration of today’s graphics cards, the color cor-
rection process can be easily performed in real time. Note that none of
the photographs here have been retouched. Slight variations of color and
brightness are due to different camera responses.

The color correction method has limitations that are mainly defined
by the capabilities of the applied hardware. For example, the restricted
resolution, brightness, contrast, minimum focus distance, and black-level
of video projectors are issues that will certainly be improved by future gen-
erations. The XGA resolution and the brightness of 1100 ANSI lumen of
the low-cost projectors that were used to create the results for this sec-
tion was appropriate for small- and medium-sized paintings in a normally
lit environment. An upscaling is possible by using more projectors, but
downscaling would either result in a loss of effective resolution or in focus
problems.

Black, for instance, is a color that cannot be projected. Instead, the en-
vironment light together with the black level of the projectors, illuminates
areas that need to appear black. However, the human vision system adjusts
well to local contrast effects which makes these areas appear much darker
than they actually are. Even with little environment light, the high black
level of video projectors causes this illusion to fail in extreme situations,
such as the one shown in Figure 7.25. The development of video projectors
indicates that a decrease of the black level and an increase of the contrast
ratio can be expected in the future.

Light can also damage the artwork. Especially ultra violet (UV) and in-
frared (IR) radiation produced by the lamps of video projectors is critical.
Commercially available UV/IR blocking filters can be mounted in front of
the projectors’ lenses to remove most of these unwanted rays while trans-
mitting visible wavelengths. For the remaining visible light portion, a rule
of thumb advises to illuminate valuable and delicate pieces permanently
with no more than 100 lx–150 lx. The potential damage caused by light
is cumulative (e.g., 1 hour with 1000 lx equals 1000 hour with 1 lx) and
depends on the material and color of the painting and the wavelength (i.e.,
the color) of the light. A temporary illumination of a higher light intensity
is not critical. During a 2–3 minute presentation, increased lighting is only
temporary and such highlight situations usually only appear (if at all) for
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(a) (b)

(c) (d)

Figure 7.25. Rembrandt’s self-portrait: (a) copy of original painting as it looks
today (illuminated under environment light); (b)–(d) various cleaning stages to
remove the overpainted layers form 1935(d), 1950(c) and 1980(b) are projected
onto (a). Only black and white photographs of these stages are available. The
high black-level of the video projectors prevents the creation of a totally black
color on the canvas. Extreme regions, such as overlaid hair and hat cannot appear
completely black for this reason. (Displayed artwork courtesy of the Museum het
Rembrandthuis, Amsterdam; images reprinted from [19] c© IEEE; see Plate VIII.)

a short period of time (e.g., a few seconds) at varying locations on the can-
vas. Nevertheless, using the intensity adjustment described, the maximum
light level can be constrained to be below an upper threshold. However,
this might cause visible artifacts depending on the presented content, the
painting, and the environment light (as described in Figure 7.22). Thus, it
is important to reach a good balance between total illumination (projected
light and environment light) over time and convincing presentation effects.
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The method described currently considers only the intensity of the en-
vironment light E. This is adequate for regular white light sources but
will result in artifacts if visible color shading is created on the canvas by
the environment illumination. Without a modification to either the math-
ematical model or the rendering process, the environment light’s color can
be compensated by determining it with the aid of colorimeters, encoding
this information in E, and passing it to the pixel shader.

The presented concept and techniques are applicable in combination
with diffuse pictorial artwork, such as watercolor paintings, pen or ink
drawings, sanguine sketches, or matte oil paintings. Extreme light and
view-dependent effects, such as non-Lambertian specular reflections, self-
shadows, sub-surface scattering , and inter-reflections that are created by
brush strokes, paint material, or canvas textures cannot be handled with
this method. Techniques to augment geometrically non-trivial (i.e., non-
flat) textured surfaces are described in the following section.

7.6 Augmenting Geometrically Non-Trivial
Textured Surfaces

In this section, we describe how a color- and geometry-corrected projection
onto arbitrarily shaped and textured surfaces is possible in real time, and
how calibration can be realized fully automatically, fast, and robustly [20].
Off-the-shelf components, like a consumer LCD video beamer, a CCD cam-
corder, and a personal computer comprising a TV card and a pixel-shading
capable graphics board can be used.

7.6.1 Creating Virtual Projection Canvases

This concept combines camera feedback with structured light projection to
gain information about the screen surface and the environment. Neither
the geometry of the surface nor internal or external parameters of projector
and camera have to be known for calibrating the system. This makes it ex-
tremely robust and easy to use which is crucial for some applications, such
as home entertainment or ad-hoc stereoscopic visualizations in everyday
environments.

A modular camera component has to be temporarily placed approxi-
mately at the sweet-spot of the observers—pointing at the screen surface.
The projection unit (i.e., the projector) can be placed at an arbitrary lo-
cation. Its light frustum must also cover the screen surface area.
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During calibration, the camera mimics the target perspective which is
the optimal viewing position for which the projection unit will be cali-
brated. The user can either define the display area by sketching the out-
lines of a virtual projection canvas over a portion of the camera image, or
it is automatically derived from the margins of the camera field of view.
Lens distortion of the camera is adjusted at the beginning to deliver images
without radial distortion.

The system can then determine all parameters that are required for real-
time geometric predistortion and color correction of video frames delivered
by PAL/NTSC compliant devices like DVD players or game consoles, or
generated by a rendering tool.

After the system has been calibrated, the camera module can be re-
moved. From now on, the projector unit corrects incoming video signals
geometrically and radiometrically in real time. If the corrected images are
projected onto the non-trivial screen surface, they appear as being dis-
played onto a plain white canvas from target perspectives at or near the
observers’ sweet-spot . However, this projection canvas is completely virtual
and does not exist in reality.

7.6.2 Vanishing Shapes

One goal is to geometrically predistort the input images (e.g., video frames
or a rendered image) in such a way that they appear correct if projected
onto a geometrically non-trivial surface and are observed from an area close
to or at the target perspective.

Wide-field-of-view cameras are sometimes used in a sweet-spot posi-
tion to calibrate multiple overlapping projectors [149]. Projecting pixels
and capturing them with the camera results in a projector-to-camera pixel
mapping. For performance reasons, only a subset of projector pixels are
usually displayed and captured, while the mapping for the remaining ones
are linearly interpolated. For arbitrarily shaped surfaces with fine geo-
metric details, however, a high-resolution pixel correspondence has to be
generated in an acceptable amount of time.

To realize this, time-multiplexed line strip scanning techniques as known
from structured light three-dimensional range-finder systems can be adapted
(Figures 7.26(c) and (d)). If the camera is placed at the observers’ sweet-
spot, it equals the target perspective. A variation of a column-row coded
pattern projection method with phase shifting (similar to that proposed in
[60]) is applied to compute a pixel displacement map, which is a look-up
table that maps every camera pixel to the corresponding projector pixel.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.26. (a) Projection onto a scruffy corner; (b) normal uncorrected pro-
jection; (c)–(d) line-strip scanning of surface; (e) geometry-corrected projection
on virtual canvas; (f) final geometry and color-corrected image (Movie footage:
The Jackal, c© 1997 Universal Pictures; images reprinted from [20] c© IEEE; see
Plate XIII.)
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To ensure a correct synchronization between projection and capturing
during the scanning process, the camera’s latency has to be known. Latency
results from hardware image compression and data transfer between camera
and receiving device. It is particularly high for consumer camcorders, since
they do not target real-time image processing applications. The latency
of the camera can be determined automatically at the beginning of the
geometric calibration process. This is done by sending out sample patterns
and measuring the maximum time until these patterns can be detected in
the recorded camera images.

Due to the different resolutions of camera and projector and to their
varying distances and perspectives to the screen surface, the displacement
map does not represent a one-to-one pixel mapping. In fact, it might not be
complete since surface portions can lie in shadow areas. Multiple projector
units can be used in this case. Furthermore, different projected line strips
might project on the same camera pixel. The average values are computed
and stored in the displacement map to achieve a sub-pixel precision.

If projector and camera are calibrated, the entire three-dimensional
geometry of the screen surface can be recovered using the pixel correspon-
dences in the displacement map and triangulation. This is exactly how
some three-dimensional scanners function. However, since both devices are
not expected to be located at known positions, the displacement map al-
lows us only to map each camera pixel from the target perspective into the
perspective of the projector. This is sufficient and results in an undistorted
perspective (Figure 7.26(e)) without having to know the three-dimensional
shape of the screen surface.

To benefit from hardware-accelerated computer graphics, the displace-
ment map can be converted into a texture map (realized with a 32bit/16bit
P-buffer) that stores references for every projector pixel to its correspond-
ing video pixels (stored in the R, G channels) and camera pixels (encoded
in the B, A channels). This texture is then passed as a parameter to a mod-
ern pixel shader to implement a real-time image warping via a pseudo pixel
displacement mapping . Today, pixel shaders are standard components of
many consumer graphics cards and provide per-pixel operations. Besides
the displacement texture map, several other parameter textures are passed
to the pixel shader, such as the uncorrected input image itself. All that
is necessary for a geometric image predistortion is to render a single two-
dimensional rectangle into the entire frame buffer of the projector. This
triggers the rasterization of every projector pixel through the pixel shader
before it is displayed. The colors of incoming pixels are simply overwritten
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by new colors that result from the corresponding input image pixels. It is
possible to find these pixels in the input image with the aid of the displace-
ment texture map. This has the same effect as actually moving the input
image pixels to new positions within the projector frame buffer. Note that
colors are not just copied from input image pixels to projector pixels; they
are also modified to enable a color correction, which will be discussed in
the next section.

This allows warping of every pixel of the input image in real time with-
out geometric information of the screen surface. The final projection can be
perceived geometrically correct at or near the target perspective. Depend-
ing on the shape of the screen surface, a more or less extreme distortion
will be sensed.

Even though the predistorted projected image can now be observed geo-
metrically correct on a non-trivially shaped surface, its uncorrected colors
will still be blended with the texture of the screen surface. In the next
section, the color correction process will be explained.

7.6.3 Neutralizing Textures

If light strikes a surface, only a fraction of its original intensity and color
is reflected back while the rest is absorbed. For Lambertian surfaces (com-
pletely diffuse surfaces), the amount and color of reflected light depends on
several parameters, such as the surface’s material color (M), the light color
and intensity that leaves the source (I), as well as the distance (r) and the
incidence angle (α) of light rays with respect to the surface, together called
form factor (F ). For perfectly diffuse surfaces, Lambert’s law approximates
the diffuse reflection of light for each spectral component (see Lighting and
Shading in Section 2.4.1) with R = IFM , where F = cos(α)/r2.

In addition to the light projected by a video projector, the environment
light is blended with the surface in the same way. Assuming additive color
mixing, Lambert’s law can be extended to take this into account: R =
EM + IFM , where E is the intensity and color of the environment light.
The main difference between environment light and projected light is that
the latter is controllable.

The goal is to neutralize this natural blending effect by projecting an
image (I) in such a way that its blended version on the screen surface is
perceived in its known original colors (R). Since only diffuse Lambertian
screen surfaces are considered (most other surface types are improper for
a video projection), one simply has to solve the equation for I: I = (R −
EM)/FM .
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Because information about internal and external parameters of the pro-
jector or camera is not required, each component (E, M , and F ) cannot
be determined individually. Rather than that, the products EM and FM
can be measured while R is the given input image.

If the video projector displays a bright white image (I = 1) onto the
screen surface within a dark environment (E = 0), then the camera cap-
tures an image that is proportional to FM. Further, if the projector is
turned off (I = 0), an image of the screen surface that is captured under
environment light is proportional to EM. These assumptions imply that
the projector and camera are color- and intensity-adjusted, and that auto-
matic brightness control, focus, and white-balancing are turned off. They
are simple approximations, but allows to determine the required parame-
ters robustly and without performing complicated measurements and using
additional special purpose devices.

(a) (b)

(c) (d)

Figure 7.27. (a) Projection onto a wallpapered pitched roof area; (b) projection
with uncorrected colors; (c) color correction projected onto white piece of paper;
(d) color corrected image on wallpaper. All projections are geometry corrected.
(Images reprinted from [20] c© IEEE; see Plate XII.)
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Representing all these parameters as textures, the pixel shader can
perform this computation in real time (>100 fps on a NVIDIA GeForce
FX6800). As mentioned in the previous section, pixels of images taken
from the camera view (EM and FM ) as well as the input image R are
warped to the view of the projector via pixel displacement mapping. This
ensures a correct concatenation of corresponding pixels. The resulting im-
age I is finally displayed from the perspective of the projector. These
computations are performed on all three RGB color channels separately.
In addition the pixel shader allows for fine-tuning of the output images by
considering manually set color and brightness parameters (also for gamma
correction). In addition, it clips out extreme intensity situations to avert
visible artifacts.

Figure 7.27 illustrates an example of a geometry-corrected projection
onto a wallpapered pitched roof area. If the input image is not color cor-
rected, then the projected colors are blended (Figure 7.27(b)) with the
colors of the screen surface. The texture of the wallpaper interferes with
the video image which results in a disturbing effect. The color-corrected
image (I) is partially shown in Figure 7.27(c) by projecting it onto a white
cardboard. Blending I with the screen surface results in the image shown
in Figure 7.27(d)—which is a close approximation to the original input
image R. In this case, the screen surface becomes almost invisible.

Further examples of projections onto other surface types, such as win-
dow curtains and natural stone walls are presented in Section 8.8.

7.6.4 Limitations

Obviously, the geometry correction, but in particular the color correction,
will fail if the screen surface’s material is absorbing light entirely. This is
also the case if only a part of the visible spectrum that needs to be displayed
is completely absorbed even if other parts are reflected. Fortunately, such
materials, like velvet, are comparatively rare in our everyday environments.
In fact, most diffuse materials produce fairly acceptable results. If the
surface is capable of reflecting a certain fraction of the desired light color,
it is just a matter of how much incident light is required to produce the
required output. If one projector is not capable of generating the necessary
amount of light, multiple projectors can complement each other.

Additionally, there are several technical limitations that lower the cur-
rent quality of this concept. One important factor is the limited resolution
of consumer camcorders. If the camera has to be placed far away from
a large screen surface to capture the entire display area, fine details on
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the surface cannot be detected and corrected. Higher-resolution cameras
(e.g., mega-pixel digital cameras) can be used to provide better quality
images. In fact, most camcorders already combine two devices in one: a
high-resolution digital camera and a video camera that delivers a live video
stream. They facilitate both a fast geometry correction and a high-quality
color correction.

On the projector side, the limited resolution, the low dynamic range,
and the high black level of consumer devices represent the main restrictions.
A too low projector resolution causes too large pixel projections that can-
not cover smaller pigments on the screen surface precisely. In particular,
the black level cannot be controlled and, consequently, contributes to the
environment light. Even in a completely dark room, the black level of a
projector causes the screen surface to be visible all the time. As it is the
case for a normal projection onto a regular canvas, the black level, and the
environment light make it difficult to display dark colors. However, the
human visual system adapts well to local contrast effects. Dark areas sur-
rounded by brighter ones appear much darker than they actually are. Even
though these problems will be solved with future-generation projectors, one
general problem will remain: the limited depth focus of conventional pro-
jectors prevents them from displaying images on screen surfaces that are
extremely curved. Since laser projectors, which are capable of focusing
on non-planar surfaces, are still far too expensive for a consumer market,
the use of multiple projectors is once again a promising solution to this
problem.

Finally, one last issue remains for a projection onto non-planar surfaces:
a single projector can cast shadows on the screen surface that appear as
cuttings in the presented output image from the target perspective. These
shadow areas, however, can be covered by other projectors that contribute
from different directions. This will be explained in the next section.

7.6.5 Using Multiple Projectors

As already mentioned, the use of multiple projectors can enhance the final
quality of the output image. They can complement each other to achieve
higher light intensities and to cancel out individual shadow regions. Their
output images can fully or partially overlap, or they can be completely in-
dependent of each other. In addition, they allow the covering of large screen
surfaces with high-resolution image tiles. This leads to an overall resolu-
tion which cannot be achieved with a single projector. Such configurations
are known as tiled screen displays. An example is shown in Figure 7.26,
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where two partially overlapping projectors generate a high-resolution 16:9
format.

Dual output graphics cards, for instance, can be used to run two pro-
jectors in synchronization (PCI-Express busses support two graphics cards
and the synchronization of four projectors). During the geometry calibra-
tion, two displacement maps are generated sequentially, one for each pro-
jector. Consequently, pixels can be mapped from the camera view into the
perspective of each projector in such a way that they are projected exactly
to the same spot on the screen surface. Thus, for N projectors the individ-
ual light intensities add up to: R = EM +I1F1M +I2F2M + . . .+INFNM .

A balanced load among all projectors can be achieved by assuming that

Ii = I1 = I2 = . . . = IN .

This implies that

R = EM + Ii(F1M + F2M + . . . + FNM),

and one can solve for

Ii = (R − EM)/(F1M + F2M + . . . + FNM).

This is equivalent to the assumption that the total intensity arriving on
the screen surface is virtually produced by a single high-capacity projector.
Physically, however, it is evenly distributed among multiple low-capacity
units. Although each projector sends the same output intensity, the poten-
tially varying form factors cause different fractions to arrive at the screen
surface. These fractions are additively mixed on the surface and lead to
the final result

R = EM + IiF1M + . . . + IiFNM

= EM + (R − EM)(F1M + . . . + FNM)/(F1M + . . . + FNM).

As for a single projector, Ii is computed in real time by a pixel shader
that receives the parameter textures EM and F1M. . .FNM . The form-
factor components FiM can be determined in two ways, either by sequen-
tially sending out a white image (I=1) from each projector and captur-
ing each component one by one, or by capturing a single image that is
proportional to F1M + . . . + FNM by sending each projector’s maximum
contribution simultaneously. Although the latter method is conceptually
more compact, the first method prevents the camera’s CCD/CMOS sensor
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from being overmodulated . Shadow regions caused by individual projec-
tors are captured in the form factor components. Consequently, they are
cancelled out automatically as a side effect. This, however, implies that
the projectors are placed in a way that each surface portion can be reached
by at least one projector. Smooth transitions among different contribu-
tions can be achieved with cross-fading techniques that are common for
multi-projector setups.

7.7 Summary and Discussion

Video projectors offer many possibilities for augmented reality applications.
While some of them are fairly well investigated, others are still unexplored.
The unique ability to control the illumination on a per-pixel basis and
to synchronize it to a rendering application allows us to solve existing
problems and to create new applications. These “intelligent” light sources
are sometimes referred to as smart projectors.

Figure 7.28. Geometrically corrected stereo-pairs of 3D scene projected onto a
natural stone wall: (top) without radiometric compensation; (middle) with ra-
diometric compensation; (bottom) radiometrically corrected stereoscopic walk-
through projected onto a papered wall. (Prototype realized by the Bauhaus-
University Weimar; see Plate IX.)
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Radiometric, photometric, and geometric image compensation enables
an ad-hoc and view-dependent (i.e., head-tracked) stereoscopic visualiza-
tion on everyday surfaces, as shown in Figure 7.28.

Smart Projectors are video projectors enhanced with sensors to gain
information about the environment. Although cameras are the most com-
mon sensor types used for smart projector implementations, other sensors,
like tilt-sensors, have been used. Completely calibrated and mounted as a
single camera-projector unit or realized with separated components, some
smart projectors allow a dynamic elimination of shadows cast by the user
[179], an automatic keystone correction on planar screens [178], or a man-
ually aligned shape-adaptive projection on second-order quadric display
surfaces [158], like cylinders, domes, ellipsoids, or paraboloids. For projec-
tion planes, multiple projector units can be automatically registered based
on their homographic relationships that are determined with the aid of cam-
eras [208]. In this case, camera feedback is also used for intensity blending
and color matching [100, 101] of multiple projector contributions. Cali-
brated stereo cameras together with projectors allow us to directly scan
the three-dimensional geometry of an arbitrary display surface. This en-
ables an undistorted projection for a known head-tracked observer position
[151]. Synchronized projector-camera pairs can encode structured light into
color images that are imperceptible to the human observer [32]. This allows
a simultaneous acquisition of depth information and presentation of graph-
ical content. Radiometric compensation allows projection onto colored and
textured surfaces.

Today’s projectors still face technological limitations, such as high black
level, relatively low resolution, dynamic range, and depth focus. These
issues may be solved with future projector generations.

Projectors in the near future, for instance, will be compact, portable,
and with the built-in awareness which will enable them to automatically
create satisfactory displays on many of the surfaces in the everyday environ-
ment. Alongside the advantages, there are limitations, but we anticipate
projectors being complementary to other modes of display for everyday
personal use in the future and to have new application areas for which
they are especially suited. LEDs are replacing lamps, and reflective, in-
stead of transmissive displays (DLPs, LCOS), are becoming popular. Both
lead to improved efficiency requiring less power and less cooling. DLP and
LCOS projectors can display images at extremely high frame rates, cur-
rently 180 Hz and 540 Hz respectively, but lack video bandwidth. Several
efforts are already in the making and are very promising.
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A future mobile projector may double as a “flat panel” when there
is no appropriate surface to illuminate, or ambient light is problematic.
Super bright, sharp infinite focus laser projectors are also becoming wide-
spread which may allow shape-adaptive projection without focus and am-
bient lighting problems. Other multi-focal projection techniques may also
solve the fixed focus problems for conventional projection technologies. Fi-
nally novel lamp designs, especially those based on LEDs or lasers are
creating smaller, lighter, efficient, and long-life solutions.

Two important problems in augmented reality, object identification and
determining the pose of the displayed image with respect to the physical
object, can be solved, for instance, by using photosensing RFID tags. This
is being explored as a radio frequency identification and geometry (RFIG)
discovery method [159].
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8
Examples of Spatial AR

Displays

This chapter provides a link between the previous, more technical, chap-
ters and an application-oriented approach and describes several existing
spatial AR display configurations. We first outline examples that utilize
the projector-based augmentation concept in both a small desktop (e.g.,
the Shader Lamps approach) and a large immersive (e.g., the Being There
project) configuration. In addition, an interactive extension, called iLamps,
that uses hand-held projectors is described. Furthermore, several spatial
optical see-through variations that support single or multiple users such as
the Extended Virtual Table and the Virtual Showcase are explained. It is
shown how these techniques can be combined with projector-based illumi-
nation techniques to present real and virtual environments consistently. A
scientific workstation, the HoloStation, is described. It allows the combi-
nation of optical hologram records of fossils with interactive computer sim-
ulations. Finally, two implementations (Augmented Paintings and Smart
Projectors) are presented; they use real-time radiometric correction and
geometric warping to augment artistic paintings with multimedia presen-
tations, as well as to make projector-based home entertainment and ad-hoc
stereoscopic visualizations in everyday environments possible without arti-
ficial canvases.

Potential application areas for the display configurations described in
this chapter are industrial design and visualization (e.g., Shader Lamps,
iLamps, Extended Virtual Table, Smart Projector), scientific simulations
(e.g., HoloStation), inertial design and architecture (e.g., Being There),
digital storytelling and next-generation edutainment tools for museums
(e.g., Virtual Showcase and Augmented Paintings), and home entertain-
ment (e.g., Smart Projector). However, the interested reader can easily
imagine further application domains, such as those in an artistic context.

279
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Figure 8.1. Concept of Shader Lamps. Physical textures (above) and Shader
Lamp textures (below) (Images reprinted from [155] c© Springer-Verlag.)

Another goal of this chapter is to show that spatial augmented real-
ity display configurations can be used successfully and efficiently outside
research laboratories. The Virtual Showcase, for instance, has been pre-
sented to more than 120, 000 visitors of more than 11 exhibitions in mu-
seums, trade shows, and conferences. Unattended running times of four
months and more are an indicator of the fact that it is possible to make
the technology (soft and hardware) robust enough to be used by museums
and in other public places.

8.1 Shader Lamps

Consider a special case of spatial augmented reality. The idea is to replace
a physical object with its inherent color, texture, and material properties
with a neutral object and projected imagery, reproducing the original ap-
pearance directly on the object. Furthermore, the projected imagery can
be used to reproduce alternative appearances, including alternate shading,
lighting, and even animation. The approach is to effectively ”lift” the vi-
sual properties of the object into the projector and then reproject them
onto a neutral surface. We use the phrase Shader Lamps to describe this
mode of operation for projectors [155]. Consider the effect shown in Fig-
ure 7.1. The underlying physical object is a white diffuse vase. (The other
objects such as the book and flowers are also real objects.) Can we make
this white vase appear to look like it is made of marble, plastic or metal?
Can we change the color or texture? The pictures show that the vase
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(a) (b)

Figure 8.2. (a) Underlying physical model of the Taj Mahal; (b) the Taj Mahal
enhanced with Shader Lamps. (Images reprinted from [155] c© Springer-Verlag.)

can be effectively ’painted’ by projecting an image with view-independent
diffuse shading, textures, and intensity correction. The view-dependent ef-
fects such as specular highlights are generated for a given user location by
modifying reflectance properties of the graphics model. The figure shows
the appearance of a red plastic and a green metallic material on the clay
vase.

Although, there have been other attempts at augmenting appearances
of objects by projecting color or texture, those effects are very limited and
have been achieved for only specific applications. The real challenge in
realizing this as a new medium for computer graphics lies in addressing the
problems related to complete illumination of non-trivial physical objects.
The approach presented here offers a compelling method of visualization for
a variety of applications including dynamic mechanical and architectural
models, animated or “living” dioramas, artistic effects, entertainment, and
even general visualization for problems that have meaningful physical shape
representations. We present and demonstrate methods for using multiple
Shader Lamps to animate physical objects of varying complexity, from a
flower vase (Figure 7.1), to some wooden blocks, to a model of the Taj
Mahal (Figure 8.2)

Object textures. In the simplest form, techniques such as Shader Lamps
can be used to dynamically change the color of day-to-day objects, to add
useful information in traditional tasks, or to insert instructional text and
images. For example, engineers can mark the areas of interest, like drilling
locations, without affecting the physical surface. As seen in the Taj Mahal
example (Figure 8.2), we can render virtual shadows on scaled models. City
planners can move around such blocks and visualize global effects in 3D on
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a tabletop rather than on their computer screen. Since 2001, Hiroshi Ishii
et al. have started to look beyond flat tabletops to augment (morphable)
terrains [140].

For stage shows, we can change not just the backdrops, but also create
seasons or aging of the objects in the scene. Instead of beaming laser vector
images haphazardly onto potentially non-planar surfaces and hoping they
do not get too distorted, we can create shapes with laser displays on large
buildings by calibrating the laser device with respect to a 3D model of the
building. We can also induce apparent motion, by projecting animated
texture onto stationary objects. In [157], we describe a collection of tech-
niques to create believable apparent motion. Interesting non-photorealistic
effects can also be generated using recently available real-time rendering
algorithms [153].

Interactive surface probing. An interactive 3D touch-probe scanning sys-
tem with closed-loop verification of surface reconstruction (tessellation)
can be realized by continuously projecting enhanced images of the partial
reconstruction on the object being scanned. This process will indicate use-
ful information to the person while scanning, such as the required density
of points, the regions that lack samples, and the current deviation of the
geometric model from the underlying physical object.

8.1.1 Tracking, Detection and Control

So far we have presented techniques for a head-tracked moving user, but
assumed that the projector and display surfaces are static (Figure 8.3 (a)).
However, the geometric framework is valid even when the projector or
display surface is movable (Figure 8.3(b)). Let us consider the three pos-
sibilities when one of the three components; the user, projector or display
surface, is dynamic.

User tracking. User location is crucial for view-dependent effects. As we
saw in the last chapter, with simple head tracking, a clay vase can appear
to be made of metal or plastic. We can also render other view-dependent
effects, such as reflections. The concept can be extended to some larger
setups. Sculptors often make clay models of large statues before they cre-
ate the molds. It may be useful for them to visualize how the geometric
forms they have created will look with different materials or under different
conditions in the context of other objects. By projecting guiding points or
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(a) (b)

Figure 8.3. (a) In the geometric framework for applications discussed so far, the
projector and display surface are assumed static; (b) however, the same geometric
relationship can be expressed for dynamic projector and movable display surfaces.

lines (e.g. wire-frame), from the computer models, the sculptors can verify
the geometric correctness of the clay models.

Image-based illumination can be very effectively used in movie studios
where static miniature sets are painstakingly built and then updated with
fine details. By projecting detailed textures on coarse geometry, the work
can be completed with sophisticated photo-editing programs. Modification
of such sets becomes much easier. The same idea can be further used to
simplify the match-moving process as well. Match-moving involves register-
ing synthetic 3D elements to a live shot. The difficulty arises in accurately
determining the eleven camera parameters, intrinsics, and pose, at every
frame of the shot. During post-processing, those exact camera parameters
are needed for rendering the 3D elements. Using spatially augmented re-
ality, we can instead project the synthetic 3D elements directly onto the
miniature sets. If the synthetic element is a moving character, we can
project simply the silhouette. In either case, the 3D elements will appear
perspectively correct with appropriate visibility relationships with respect
to the camera. Recall the important advantage of SAR over head-mounted
augmented reality with respect to dynamic misregistration—reduced or no
sensitivity to errors in rotation. The same idea can be exploited here. In
fact, the projection of perspectively correct images on the miniature set
requires only the 3D location of the camera optical center (3 parameters).
It depends neither on the five internal parameters nor on the three rota-
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Figure 8.4. Extending the geometric framework to tracked projectors: the pro-
jector, augmented with a camera and tilt sensor, can automatically detect relative
orientation with respect to a vertical planar screen; the three angles can be used
for keystone-correction without the aid of any external devices. (Images reprinted
from [154] c© IEEE.)

tional parameters of the camera. The reduction in search space can greatly
improve the match-moving registration quality.

8.1.2 Projector Tracking

Projectors are getting lighter and smaller; they are now micro-mobile and
ultra-portable. What are some applications of movable projectors?

Changing pose. Using steerable, but otherwise fixed projectors, [208] and
[139] have created interesting applications. In [208], Ruigang Yang et al. at
the University of North Carolina (UNC) have described a planar seamless
display using a set of projectors whose beams can be steered using a rotating
mirror. For image generation, they use the same geometric framework and
exploit the technique described in Section 5.1.5. In [139], Claudio Pinhanez
describes the “Everywhere Display” projector to augment planar surfaces
in offices with prewarped two-dimensional sprites. Raskar and Beardsley
have created a so-called self-correcting projector [154]. The three rotational
angles are computed automatically in near-real time as follows. The eleva-
tion and roll, which are angular displacements out of the horizontal plane
are detected using gravity-based tilt sensors (Figure 8.4). The azimuth
angle in the horizontal plane is computed using a rigidly attached camera
which analyzes the projected image. No external fiducials, which can be
fixed in the world coordinates to create a Euclidean frame of reference, are
needed. The section below on iLamps describes more applications.

Changing internal parameters. The pin-hole projection model has been a
powerful abstraction for representing geometric relationships. However, in
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addition to the internal and external parameters, the projection model can
be improved by considering the optics, e.g., radial distortion, aperture, and
focus issues, of a realistic projector. Majumder and Welch [102] at UNC
have used optical properties, such as the focus, dynamic range, and color
gamut of a projector to create novel effects, in what they call “Computer
Graphics Optique.” The idea is to exploit overlapping projectors to su-
perimpose and add images rendered by separate graphics pipelines. For
example, the effective color gamut of a displayed image can be improved
beyond the range of a single projector.

8.1.3 Illuminating Dynamically Moving Objects

We can extend the framework in a different direction by allowing the display
surface to move. There are two choices for the type of image generation.
The virtual object may remain fixed in the world coordinates or appear to
move with the display surface. If the display portal is used as a window into
the virtual world, the desired view of the user should be maintained so that
changes in display surface position remain transparent to the user. On the
other hand, for example, in spatially augmented reality, the display surface
is expected to retain its current state of shading and remain attached to
associated virtual objects. In both cases, the geometric framework can be
used with a minor modification. In the first case, the virtual object is not
transformed and stays attached to the world coordinate system. In the
second case, the virtual object is transformed in the same manner as the
display surface.

A movable display portal that remains transparent to the user can be
used, for example, for a magic lens system [7]. The user can move around
the display surface and the virtual objects behind it become “visible.” A
movable and tracked white paper, when illuminated, can provide an x-ray
vision of parts inside an engine or cables behind a wall.

We can also illuminate real objects so that the surface textures appear
glued to the objects even as they move. To display appropriate specu-
lar highlights and other view-dependent effects, it may be easier to move
the object in a controlled fashion rather than track one or more users.
For example, in showroom windows or on exhibition floors, one can show
a rotating model of the product in changing colors or with different fea-
tures enhanced. When users can be assumed to be watching from near a
sweet-spot, rotating along a fixed axis allows a single degree of freedom
but enables multiple people to simultaneously look at the enhanced object
without head-tracking.
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Figure 8.5. Extending the geometric framework to tracked display surfaces: two
projectors illuminate tracked white objects. (Images reprinted from [6] c© ACM.)

A good example of a display with six-degree of freedom movement is
a compelling 3D paint system built by Deepak Badhyopadhyay et al. [6]
at UNC (Figure 8.5). A two-handed painting interface allows interactive
shading of neutral colored objects. Two projectors illuminate the tracked
object held in one hand while a paintbrush is held in the other hand.
The painted-on appearance is preserved throughout six-degrees-of-freedom
movement of the object and paintbrush. There is no intensity feathering,
so regions in projector overlap may appear brighter. The intensity blend-
ing algorithm presented in Section 5.5.4 works in the presence of depth
discontinuities, but it is too slow to work in real time. Robust intensity
blending of two or more projectors on a movable display surface remains
an interesting research problem.

Intensity blending without explicit feathering can be used for some new
applications. Consider an interactive clay modelling system as a 3D version
of “connect-the-dots” to provide feedback to a modeler. For example, two
synchronized projectors could successively beam images of the different
parts of the intended 3D model in red and green. A correct positioning of
clay will be verified by a yellow illumination. On the other hand, incorrect
position of the surface will result in two separate red and green patterns.
After the shape is formed, the same Shader Lamps can be used to guide the
painting of the model or the application of a real material with matching
reflectance properties.

8.2 Being There
A compelling example of spatial augmentation is the walk-through of vir-
tual human-sized environments like those built by Kok-Lim Low et. al. in
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Figure 8.6. Spatially augmenting large environments: (Top left) virtual model;
(Top right) physical display environment constructed using styrofoam blocks;
(Bottom row) augmented display—note the view dependent nature of the display,
the perspectively correct view through the hole in the wall and the windows.
(Images courtesy of Kok-Lim Low [93]; see Plate X.)

the Being There project at UNC [93]. Instead of building an exact detailed
physical replica for projection, the display is made of simplified versions.
For example, primary structures of building interiors and mid-sized archi-
tectural objects (walls, columns, cupboards, tables, etc.), can usually be
approximated with simple components (boxes, cylinders, etc.). As seen
in Figure 8.6, the display is made of construction styrofoam blocks. The
main architectural features that match the simplified physical model re-
tain 3D auto-stereo, but the other details must be presented by projecting
view-dependent images. Nevertheless, the experiment to simulate a build-
ing interior is convincing and provides a stronger sense of immersion when
compared to SID, as the user is allowed to really walk around in the virtual
environment. However, strategic placement of projectors to allow complete
illumination and avoiding user shadows is critical.
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8.3 iLamps: Mobile Projectors

Most AR systems have continued to use static projectors in a semi-permanent
setup, one in which there may be a significant calibration process prior to
using the system. Often, the systems are specifically designed for a par-
ticular configuration. But the increasing compactness and cheapness of
projectors is enabling much more flexibility in their use than is found cur-
rently. For example, portability, and cheapness open the way for clusters
of projectors which are put into different environments for temporary de-
ployment, rather than a more permanent setup. As for hand-held use,
projectors are a natural fit with cell phones and PDAs. Cell phones pro-
vide access to the large amounts of wireless data which surround us, but
their size dictates a small display area. An attached projector can maintain
compactness while still providing a reasonably-sized display. A hand-held
cell-phone–projector becomes a portable and easily-deployed information
portal.

These new uses will be characterized by opportunistic use of portable
projectors in arbitrary environments. The research challenge is how to
create Plug-and-disPlay projectors which work flexibly in a variety of situ-
ations. This requires generic application-independent components, in place
of monolithic and specific solutions.

Consider a basic unit which is a projector with an attached camera and
tilt sensor. Single units can recover 3D information about the surrounding
environment, including the world vertical, allowing projection appropriate
to the display surface. Multiple, possibly heterogeneous, units are deployed
in clusters, in which case the systems not only sense their external environ-
ment but also the cluster configuration, allowing self-configuring seamless
large-area displays without the need for additional sensors in the environ-
ment. We use the term iLamps to indicate intelligent, locale-aware, mobile
projectors.

8.3.1 Object Adaptive Projection

We describe object augmentation using a hand-held projector, including a
technique for doing mouse-style interaction with the projected data. Com-
mon to some previous approaches, we do object recognition by means of
fiducials attached to the object of interest. Our fiducials are piecodes, col-
ored segmented circles like the ones in Figure 8.7, which allow thousands
of distinct color-codings. As well as providing identity, these fiducials are
used to compute camera pose (location and orientation) and, hence, pro-
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(a) (b)

Figure 8.7. Context-aware displays: (a) augmentation of an identified surface;
(b) guidance to a user-requested object in storage bins. (Images reprinted from
[158] c© ACM.)

jector pose since the system is fully calibrated. We use four coplanar points
in known position in a homography-based computation for the pose of the
calibrated camera. The points are obtained from the segments of a single
piecode, or from multiple piecodes, or from one piecode plus a rectangular
frame. For good results, augmentation should lie within or close to the
utilized points. With projector pose known relative to a known object,
content can be overlaid on the object as required.

Advantages of doing object augmentation with a projector rather than
by annotated images on a PDA include (1) the physical size of a PDA
puts a hard limit on presented information; (2) a PDA does augmentation
in the coordinate frame of the camera, not the user’s frame, and requires
the user to context-switch between the display and physical environment;
(3) a PDA must be on the user’s person while a projector can be remote;
(4) projection allows a shared experience between users. Eye-worn displays
are another important augmentation technique, but they can cause fatigue,
and there are stringent computational requirements because of the tight
coupling between user motion and the presented image (e.g., a user head
rotation must be matched precisely by a complementary rotation in the
displayed image). Projection has its own disadvantages—it is poor on dark
or shiny surfaces and can be adversely affected by ambient light; it does not
allow private display. But a key point is that projector-based augmentation
naturally presents to the user’s own viewpoint, while decoupling the user’s
coordinate frame from the processing. This helps in ergonomics and is
easier computationally.

A hand-held projector can use various aspects of its context when pro-
jecting content onto a recognized object. We use proximity to the object
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to determine level-of-detail for the content. Other examples of context for
content control would be gestural motion, history of use in a particular
spot, or the presence of other devices for cooperative projection. The main
uses of object augmentation are (1) information displays on objects, either
passive display, or training applications in which instructions are displayed
as part of a sequence (Figure 8.7(a)); (2) physical indexing in which a user is
guided through an environment or storage bins to a requested object (Fig-
ure 8.7(b)); (3) indicating electronic data items which have been attached
to the environment. Related work includes the Magic Lens [7], Digital Desk
[202], computer augmented interaction with real-world environments [160],
and Hyper mask [120].

Mouse-style interactions with augmentation data. The most common use
of projector-based augmentation in previous work has been straightforward
information display to the user. A hand-held projector has the additional
requirement over a more static setup of fast computation of projector pose,
so that the augmentation can be kept stable in the scene under user mo-
tion. But a hand-held projector also provides a means for doing mouse-
style interactions—using a moving cursor to interact with the projected
augmentation, or with the scene itself.

Consider first the normal projected augmentation data; as the projector
moves, the content is updated on the projector’s image plane, so that the
projected content remains stable on the physical object (Figure 8.8). Now,
assume we display a cursor at some fixed point on the projector image
plane, say at the center pixel. This cursor will move in the physical scene

Figure 8.8. Absolute stabilization projects to a fixed location, regardless of
projector position. (Images reprinted from [159] c© ACM.)
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Figure 8.9. During interactive projection, a moving cursor can be tracked across
a projection that is static on the display surface to do mouse-like interaction with
projected data. In these images, the background pixels are intentionally rendered
in red to show the extent of projection. The pointer remains at the center of the
projector field while displayed desktop remains stable within the surface features.
(Images reprinted from [159] c© ACM.)

in accordance with the projector motion. By simultaneously projecting
the motion-stabilized content and the cursor, we can emulate mouse-style
interactions in the scene (Figure 8.9). For example, we can project a menu
to a fixed location on the object, track the cursor to a menu item (by
a natural pointing motion with the hand-held projector), and then press
a button to select the menu item. Alternatively, the cursor can be used
to interact with the physical scene itself, for example doing cut-and-paste
operations with the projector indicating the outline of the selected area and
the camera capturing the image data for that area. In fact, all the usual
screen-based mouse operations have analogs in the projected domain.

8.4 The Extended Virtual Table

Virtual reality provides the user with a sense of spatial presence (visual,
auditory, or tactile) inside computer-generated synthetic environments.

Opaque, head-mounted displays (HMDs) and surround-screen (spatially
immersive) displays such as CAVEs, and domed displays are VR devices
that surround the viewer with graphics by filling the user’s field of view. To
achieve this kind of immersion, however, these devices encapsulate the user
from the real world, thus making it difficult or even impossible in many
cases to combine them with habitual work environments.
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Other, less immersive display technology is more promising to support
seamless integration of VR into everyday workplaces. Table-like display
devices and wall-like projection systems allow the user to simultaneously
perceive the surrounding real world while working with a virtual environ-
ment.

This section describes an optical extension for workbench-like single-
sided or multiple-sided (that is, L-shaped) projection systems called the
Extended Virtual Table [10]. A large beam splitter mirror is used to extend
both viewing and interaction space beyond the projection boundaries of
such devices. The beam splitter allows an extension of exclusively virtual
environments and enables these VR display devices to support AR tasks.
Consequently, the presented prototype features a combination of VR and
AR. Because table-like display devices can easily be integrated into habitual
work environments, the extension allows the linkage of a virtual with a real
workplace, such as a table-like projection system, with a neighboring real
workbench.

8.4.1 Physical Arrangement

The Extended Virtual Table (xVT) consists of a virtual and a real work-
bench (Figure 8.10) and supports active stereoscopic projection, head-
tracking of a single user, and six-degrees-of-freedom (6-DOF) tracking of
input devices.

A large front surface beam splitter mirror separates the virtual work-
bench from the real workspace. With the bottom leaning onto the projec-
tion plane, the mirror is held by two strings that are attached to the ceiling.

(a) (b)

Figure 8.10. (a) Conceptual sketch; (b) photograph of the xVT prototype.
(Images reprinted from [10] c© MIT Press.)
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The length of the strings can be adjusted to change the angle between the
mirror and the projection plane or to allow an adaptation to the work-
bench’s slope. A light source is adjusted in such a way that it illuminates
the real workbench, but does not shine at the projection plane.

In addition, the real workbench and the walls behind it are covered
with a black awning to absorb light that otherwise would be diffused by
the wallpaper beneath it and would cause visual conflicts if the mirror were
used in a see-through mode. Note that a projector-based illumination (see
Chapter 7) would solve this problem.

Finally, a camera is used to continuously capture a video stream of the
real workspace, supporting an optical tracking of paper markers that are
placed on top of the real workbench.

8.4.2 General Functioning

Users can either work with real objects above the real workbench or with
virtual objects above the virtual workbench. Elements of the virtual envi-
ronment, which are displayed on the projection plane, are spatially defined
within a single world coordinate system that exceeds the boundaries of the
projection plane, covering also the real workspace.

The mirror plane splits this virtual environment into two parts that
cannot be visible simultaneously to the user. This is due to the fact that
only one part can be displayed on the projection plane (which serves as
a secondary screen in the AR mode and as a primary screen in the VR
mode). The user’s viewing direction is continuously determined to support
an intuitive visual extension of the visible virtual environment. If, on the
one hand, the user is looking at the projection plane, the part of the envi-
ronment that is located over the virtual workbench is displayed. If, on the
other hand, the user is looking at the mirror, the part of the environment
located over the real workbench is transformed, displayed, and reflected in
such a way that it appears as a continuation of the other part in the mirror.

Using the information from the head-tracker, the user’s viewing direc-
tion is approximated by computing the single line of sight that originates
at his or her point of view and points towards his or her viewing direction.
The plane the user is looking at (that is, the projection plane or mirror
plane) is the one that is first intersected by this line of sight. If the user is
looking at neither plane, no intersection can be determined, and nothing
needs to be rendered at all.

In case the user is looking at the mirror, the part of the virtual envi-
ronment behind the mirror has to be transformed in such a way that, if
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displayed and reflected, it appears stereoscopically and perspectively cor-
rect at the right place behind the mirror.

As described in Chapter 6, a slight modification to the common fixed
function rendering pipeline allows us to use a simple affine transformation
matrix that reflects the user’s viewpoint (that is, both eye positions that
are required to render the stereo images) and to inversely reflect the virtual
environment over the mirror plane.

If the graphical content from the viewer’s averting side of the mirror is
inversely reflected to the opposite side and is then rendered from the view-
point that is reflected, the projected virtual environment will not appear
as a reflection in the mirror. The user will see the same scene that he or
she would perceive without the mirror if the projection plane were large
enough to visualize the entire environment. This effect is due to the neu-
tralization of the computed inverse reflection by the physical reflection of
the mirror, as discussed in Chapter 6. and can be done without increasing
the computational rendering cost.

The mirror-plane parameters can be determined within the world co-
ordinate system in multiple ways: an electromagnetic tracking device, for
example, can be used to support a three-point calibration of the mirror
plane. An optical tracking system can be used to recognize markers that
are temporarily or permanently attached to the mirror. Alternatively, be-
cause the resting points of the mirror on the projection plane are known
and do not change, its angle can be simply measured mechanically.

Note, that all three methods can introduce calibration errors caused by
either tracking distortion (electromagnetic or optical) or human inaccuracy.

To avoid visual conflicts between the projection and its corresponding
reflection especially for areas of the virtual environment whose projections
are close to the mirror, a graphical clipping plane can be rendered that
exactly matches the mirror plane. Visual conflicts arise if virtual objects
spatially intersect the side of the user’s viewing frustum that is adjacent to
the mirror, because, in this case, the object’s projection optically merges
into its reflection in the mirror. The clipping plane culls away the part
of the virtual environment that the user is not looking at. Note that the
direction of the clipping plane can be reversed, depending on the viewer’s
viewing direction while maintaining its position. The result is a small gap
between the mirror and the outer edges of the viewing frustum in which no
graphics are visualized. This gap helps to differentiate between projection
and reflection and, consequently, avoids visual conflicts. Yet, it does not
allow virtual objects that are located over the real workbench to reach
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(a) (b)

(c) (d)

Figure 8.11. (a) and (b) A large coherent virtual content; (c) and (d) two
independent virtual contents viewed in the mirror or on the projection plane.
The real workspace behind the mirror (left side) is not illuminated. (Images
reprinted from [10] c© MIT Press.)

through the mirror. The clipping plane can be activated or deactivated
for situations in which no, or minor, visual conflicts between reflection and
projection occur to support a seamless transition between both spaces.

If the real workspace behind the beam splitter mirror is not illuminated,
the mirror acts like a full mirror and supports a non-simultaneous visual
extension of an exclusively virtual environment (that is, both parts of the
environment cannot be seen at the same time). Figure 8.11 shows a large
coherent virtual scene whose parts can be separately observed by either
looking at the mirror or at the projection plane.

Figure 8.12 shows a simple example in which the beam splitter mirror
is used as an optical combiner. If the real workspace is illuminated, both
the real and the virtual environment are visible to the user, and real and
virtual objects can be combined in the AR manner. Note that the ratio of
intensity of the transmitted light and the reflected light depends upon the
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(a) (b)

(c)

Figure 8.12. (a) and (b) A virtual object is pushed through the mirror; (c) a
clipping plane is attached to the mirror—ray casting and optical tracking within
an augmented real environment, a virtual cartridge is mounted into a real printer.
(Images reprinted from [10] c© MIT Press.)

angle between the beam splitter and the projection plane. Acute angles
highlight the virtual content, and obtuse angles let the physical objects
shine through brighter.

Virtual objects can be exchanged between both sides of the mirror in
different ways, in the see-through mode as well as in the opaque mode. For
example, they can be picked with a tracked stylus-like interaction device,
either directly or from a distance over the virtual workbench, or indirectly
over the real workbench. Virtual objects can then be pushed or pulled
through the mirror (see Figure 8.12), either directly or indirectly.

As illustrated in Figure 8.12(c), a virtual laser beam that is cast from
the stylus through the mirror is used to select and manipulate (that is, to
move and place) virtual objects behind the mirror plane. This ray tool
allows for interaction with virtual objects on a remote basis and offers an
indirect object placement by “beaming” the object back and forth along
the ray.
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Virtual-virtual and real-virtual object collision detection is applied over
the real and the virtual workbench to simulate a realistic interaction behav-
ior between objects. This fundamental collision detection capability, for in-
stance, enables us to implement gravity-based automatic object placement
methods. Real-virtual object occlusion is implemented by rendering black
“phantoms,” which are geometric placeholders for the real objects, into the
depth buffer. The application of projector-based illumination (Chapter 7),
instead of a simple analog light source, also allows for a correct virtual-real
object occlusion. This is not shown in Figure 8.12.

8.4.3 A Comparison with Head-Mounted Displays

The Extended Virtual Table has three major drawbacks: mobility, direct
interaction with augmented real objects, and single-user application.

Stable and precise long-range tracking will be available in the near fu-
ture, enabling AR applications using HMDs and head-mounted projector
displays to be highly mobile. Nevertheless, the intention of the xVT as
a spatial AR display is to combine two table-like workplaces in which the
users focus on the workspace above the workbenches. For this, neither
long-range tracking nor a high degree of mobility is required.

Head-mounted displays also offer direct interaction with augmented real
objects that are in arm’s reach of the user. In the case of the xVT, the
mirror represents a physical barrier for the user’s hands and the input de-
vices and, to a large degree, prevents direct interaction with superimposed
objects. It is possible to either directly interact with real objects on the
real workbench and with virtual objects on the virtual workbench, or indi-
rectly interact with virtual objects above the real workbench through the
mirror.

Although HMDs provide an individual image plane for each participant
of a multiple user session, users of large projection systems have to share
the same image plane. Thus, multiple-user scenarios are difficult to realize
with such technology. Because the xVT also uses a single large projection
plane, it has the same problem. However, some projection solutions exist
that simultaneously support two and more users. The problems of multi-
user use is addressed with the following display example.

8.5 The Virtual Showcase
The Virtual Showcase [9] has the same form-factor as a real showcase mak-
ing it compatible with traditional museum displays (Figure 8.13). Real
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Figure 8.13. Illustration of Virtual Showcase applications in museums.

scientific and cultural artifacts are placed inside the Virtual Showcase al-
lowing their three-dimensional graphical augmentation. Inside the Virtual
Showcase, virtual representations and real artifacts share the same space
providing new ways of merging and exploring real and virtual content.
The virtual part of the showcase can react in various ways to a visitor en-
abling intuitive interaction with the displayed content. These interactive
showcases represent a step towards ambient intelligent landscapes, where
the computer acts as an intelligent server in the background and visitors
can focus on exploring the exhibited content rather than on operating
computers.

In contrast to the Extended Virtual Table, Virtual Showcases offer the
possibility to simultaneously support multiple head-tracked viewers and
to provide a seamless surround view on the augmented real environment
located within the showcase.

8.5.1 Physical Arrangement

A Virtual Showcase consists of two main parts, a convex assembly of beam
splitters mirrors and one or multiple graphics secondary displays. Head-
tracking and 6-DOF tracking of interaction devices are also used.

Many different versions of Virtual Showcases have been developed (see
Figure 8.14 and various figures in Chapters 4 and 6). Some of them use a
large projection display and curved, cone-shaped mirror optics, and others
use multiple monitors in addition to planar pyramid-shaped mirror optics.
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(a) (b) (c)

(d) (e)

Figure 8.14. Different Virtual Showcase variations: (a) single-user display;
(b)–(d) multi-user display; (e) seamless surround view.

These variations serve as illustrative examples to explain several of the
rendering techniques described in Chapter 6.

While the pyramid-shaped prototypes simultaneously support up to
four viewers, the cone-shaped prototypes provide a seamless surround view
onto the displayed artifact for fewer viewers. Optional components of the
Virtual Showcase are additional video projectors that are used for a pixel-
precise illumination of the real content (e.g., to create consistent occlusion
and illumination effects) and video cameras to receive feedback from the
inside of the display. Techniques that use these components are described
in Chapter 7.

8.5.2 General Functioning

By assigning each viewer to an individual mirror, the pyramid-like Vir-
tual Showcase prototype can support up to four observers simultaneously.
Looking through the mirror optics allows the users to see the reflection of
the corresponding screen portion at the same time, and within the same
spatial space as the real object inside the showcase.
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Since convex mirror assemblies tessellate the screen space into indi-
vidual mirror reflection zones which do not intersect or overlap, a single
pixel that is displayed on the secondary screen appears (for one viewpoint)
exactly once as a reflection. Consequently, a definite one-to-one mapping
between the object space and the image space is provided by convex mirror
assemblies.

Observed from a known viewpoint, the different images optically merge
into a single consistent mirror image by reflecting the secondary screen,
whereby this image space visually equals the image of the untransformed
image space geometry.

Building Virtual Showcases from one single mirror sheet, instead of us-
ing multiple planar sections reduces the calibration problem to a single
registration step and consequently decreases the error sources. In addi-
tion, the edges of adjacent mirror sections (which can be annoying in some
applications) disappear. It provides a seamless surround view onto the dis-
played artifact. However, using curved mirror optics requires a curvilinear
of the image before it is displayed. How to warp the image for curved beam
splitter mirrors is also described in Chapter 6.

8.5.3 A Platform for Augmented Reality Digital Storytelling

Museums are facing more and more competition from theme parks and
other entertainment institutions. Some museums have learned that their
visitors do not only want to be educated, but also to be entertained. Conse-
quently they are investigating new edutainment approaches. Technologies
such as multimedia, virtual reality, and augmented reality, in combination
with appropriate interaction and storytelling techniques, may become the
new presentation forms of museums in the future.

Interactive digital storytelling techniques are being used in combination
with new media forms, such as virtual reality and augmented reality.

The technological progress that is being made within these areas allows
for the shifting of interactive digital storytelling more and more into the
third dimension and into the physical world. One of the main advantages
of this transition is the possibility to communicate information more effec-
tively with digital means by telling stories that can be experienced directly
within a real environment or in combination with physical objects. The
user experience is thus transformed from relating different pieces of infor-
mation to one another to “living through” the narrative. The perceptual
quality and the unique aura of a real environment (e.g., a historical site) or
object (e.g., an ancient artifact) cannot be simulated by today’s technol-
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ogy. Thus it is not possible to substitute them with virtual or electronic
copies without them losing their flair of originality. This circumstance can
be a crucial reason for using augmented reality as a technological basis for
interactive digital storytelling.

To use the Virtual Showcase as a digital storytelling platform [14], five
major components can be identified: content generation, authoring, pre-
sentation, interaction, and content management .

Conventional content types (such as three-dimensional models, anima-
tions, and audio, etc.) can be generated, authored, and presented with

(a) (b)

(c) (d)

(e)

Figure 8.15. Storytelling with the Virtual Showcase: (a) the physical skull
of Deinonychus is placed inside the display; (b) a scanned skull geometry is
registered to the real counterpart; (c) different muscle groups are augmented; (d)
the paranasal air sinuses and the bony eye rings are integrated into the skull; (e)
the skin is superimposed on the skull. (Images reprinted from [13] c© IEEE.)
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spatial AR displays, such as the Virtual Showcase; these are the same as
the content types that are essential for traditional or VR digital story-
telling. More interesting, however, are the unconventional content types
that are specific to augmented reality, or even to spatial augmented reality.
For example, static and dynamic illumination of the real objects is an un-
conventional content that can be created, authored, managed, interacted
with, and presented within a digital story.

In an early case study, the Virtual Showcase was used to communicate
the scientific findings in dinosaur soft-tissue reconstruction [13] of a lead-
ing paleontologist to novice museum visitors in an interesting and exciting
way. Several layers of soft tissue were overlaid over the physical skull and
animated to illustrate their functions (Figure 8.15).

Projector-based illumination was used to create consistent occlusion
effects between muscles and bones. Text labels and audio narrations (a
verbal explanation by the palaeontologists) were presented in sync to the
animations, and two users were supported simultaneously.

At the time of the writing of this book, more than two hundred thou-
sand visitors have experienced this demonstration during several public
events. The positive feedback on technological quality and acceptance of
such an approach that was gathered throughout informal user studies gives
an indication of the potential of augmented reality in areas such as edutain-
ment. Some of these exhibits required the display to run unattended for
as long as three months, demonstrating that the technology can be made
robust enough to be used in public places, such as museums.

8.6 The HoloStation

A hologram is a photometric emulsion that records interference patterns
of coherent light. The recording itself stores the amplitude, wavelength,
and phase information of light waves. In contrast to simple photographs,
which can record only amplitude and wavelength information, holograms
can reconstruct complete optical wavefronts. This results in the captured
scenery having a three-dimensional appearance that can be observed from
different perspectives. Two main types of optical holograms exist: trans-
mission and reflection holograms. To view a transmission hologram, the
light source and observer must be on opposite sides of the holographic plate.
The light is transmitted through the plate before it reaches the observer’s
eyes. Those portions of the emulsion not recorded or illuminated remain
transparent. To view a reflection hologram, the light source and observer
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must be on the same side of the holographic plate. The light reflects from
the plate toward the observer’s eyes. As with transmission holograms, un-
recorded or non-illuminated portions of the emulsion remain transparent.
These two hologram types have generated a spectrum of variations. Al-
though some holograms can be reconstructed only with laser light, others
can be viewed only under white light. Rainbow holograms, one of the
most popular white-light transmission hologram types, diffract each wave-
length of the light through a different angle. This lets viewers observe the
recorded scene from different horizontal viewing positions but also makes
the scene appear in different colors when observed from different points. In
contrast to rainbow holograms, white-light reflection holograms can pro-
vide full parallax and display the recorded scene in a consistent color for
different viewing positions. Monochrome holograms are most common, but
high-quality full-color holograms do exist. Today, computer graphics and
raster displays offer a megapixel resolution and the interactive rendering
of megabytes of data. Holograms, however, provide a terrapixel resolution
and are able to present an information content in the range of terrabytes
in real time. Both are dimensions that will not be reached by computer

Figure 8.16. Illustration of a holographic workstation—the HoloStation. (Im-
ages reprinted from [18] c© IEEE.)
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graphics and conventional displays within the next years, even if Moore’s
law proves to hold in the future.

Chapter 7 discussed how to utilize projector-based illumination for re-
constructing optical holograms in such a way that they can be augmented
with computer graphics [18]. The subsequent sections here describe sev-
eral desktop configurations, called HoloStations, which use this concept
(Figure 8.16).

8.6.1 Physical Arrangement

The desktop prototypes shown in Figure 8.17 consist entirely of off-the-shelf
components, including either an autostereoscopic lenticular-lens sheet dis-
play with integrated head-finder for wireless user tracking (Figure 8.17(a))
or a conventional CRT screen with active stereo glasses, wireless infrared
tracking, and a touch screen for interaction (Figure 8.17(b)).

Both prototypes use LCD projectors for reconstructing the holographic
content. A single PC with a dual-output graphics card renders the graph-
ical content on the screen and illuminates the holographic plate on the
video projector. In both cases, the screen additionally holds further front
layers—glass protection, holographic emulsion, and optional beam splitter
mirror (used for transmission holograms only). Interaction with the graph-
ical content is supported with a mouse, a transparent touch screen mounted
in front of the holographic plate, or a 6-DOF force-feedback device.

(a) (b)

Figure 8.17. HoloStation prototypes: (a) autostereoscopic version with head-
finder and force-feedback; (b) active stereoscopic version with infrared tracking
and touch-screen interaction; the video beamers are not visible from the outside.
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(a) (b)

Figure 8.18. Force-feedback interaction with an augmented hologram.

8.6.2 General Functioning

Stereoscopics or autostereoscopics are integrated into holograms as de-
scribed in Chapter 7. In addition, haptic interaction devices allow us
to feel computer-generated three-dimensional content by simulating force
feedback . Depending on the position of the 6-DOF stylus-like device, force
vectors and magnitudes are calculated dynamically based on pre-defined
material parameters of the corresponding holographic or graphical content.

This enables the user to virtually touch and feel the hologram and the
integrated virtual models (Figure 8.18). For both content types, a three–
dimensional geometrical model is required to determine surface intersec-
tions with the stylus which lead to the proper force computations. While
the holographic content is static, the graphical content can be deformed by
the device in real time. In the examples shown in Figure 8.18, using the
force feedback device allows the touching and feeling of bones and muscles
with different material parameters. While bones feel stiff, muscles and air
sinus feel soft. In addition, the soft tissue can be pushed in under increasing
pressure, and it expands back when released.

The ability to control the reconstruction of a hologram’s object wave
allows the seamless integration into common desktop-window environments.
If the holographic emulsion that is mounted in front of a screen is not
illuminated, it remains transparent. In this case, the entire screen content
is visible and an interaction with software applications on the desktop is
possible. The holographic content (visible or not) is always located at
a fixed spatial position within the screen/desktop reference frame. An
application that renders the graphical content does not necessarily need
to be displayed in full screen mode (as in the previous examples), but
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(a) (b)

Figure 8.19. A holographic window in different states.

can run in a windows mode covering an arbitrary area on the desktop
behind the emulsion. If position and dimensions of the graphics window
are known, the projector-based illumination can be synchronized to bind
the reference wave to the portion of the emulsion that is located directly on
top of the underlying window. Thereby, all the rendering techniques that
are described in Chapter 7 (partial reconstruction and intensity variations)
are constrained to the window’s boundaries. The remaining portion of
the desktop is not influenced by the illumination, or by the graphical or
holographic content.

In addition, the graphical content can be rendered in such a way that
it remains registered with the holographic content even if the graphical
window is moved or resized. This simple, but effective, technique allows
a seamless integration of holograms into common desktop environments.
We can temporarily minimize the “holographic window” or align it over
the main focus while working in other applications. Figure 8.19 shows a
holographic window in different states on a desktop together with other
applications. It displays an optical (monochrome) white-light reflection
hologram of a dinosaur skull with integrated graphical three-dimensional
soft tissues. A stereoscopic screen was used in this case, because autostereo-
scopic displays (such as lenticular screens or barrier displays) do not yet
allow an undisturbed view of non-interlaced two-dimensional content.

8.6.3 HoloGraphics for Science, Industry, and Education

A combination of interactive computer graphics and high-quality optical
holograms represents an alternative that can be realized today with off-the-
shelf consumer hardware. Several commercial online services already offer
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uncomplicated and inexpensive ways to create color holograms from a set
of images or video clips. With this technology, users can create holograms
with almost any content, even outdoor scenes.

Archaeologists, for example, already use optical holograms to archive
and investigate ancient artifacts. Scientists can use hologram copies to per-
form their research without having access to the original artifacts or settling
for inaccurate replicas. They can combine these holograms with interactive
computer graphics to integrate real-time simulation data or perform exper-
iments that require direct user interaction, such as packing reconstructed
soft tissue into a fossilized dinosaur skull hologram. In addition, special-
ized interaction devices can simulate haptic feedback of holographic and
graphical content while scientists are performing these interactive tasks.
An entire collection of artifacts will fit into a single album of holographic
recordings, while a light-box-like display such as that used for viewing X-
rays can be used for visualization and interaction. This approach has the
potential for wide application in other industries. In the automotive indus-
try, for example, complex computer models of cars and components often
lack realism or interactivity. Instead of attempting to achieve high visual
quality and interactive frame rates for the entire model, designers could
decompose the model into sets of interactive and static elements. The sys-

(a) (b) (c)

(c) (d) (e)

Figure 8.20. (a)–(c) Digital multiplex hologram of real head-light observed from
different perspectives; (d) registration of image plane; (e)–(f) augmentation with
interactive CAD models.
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tem could record physical counterparts of static elements in a hologram
with maximum realism and release computational resources to render the
interactive elements with a higher quality and increased frame rate. Mul-
tiplexing the holographic content also lets users observe and interact with
the entire model from multiple perspectives (Figure 8.20).

Augmenting optical holograms in museums with animated multimedia
content lets exhibitors communicate information about the artifact with
more excitement and effectiveness than text labels offer. Such displays can
also respond to user interaction. Because wall-mounted variations require
little space, museums can display a larger number of artifacts. Clearly,
holograms or other replicas cannot substitute for original artifacts because
viewing those originals is the main reason patrons visit a museum. If,
however, a unique artifact is unavailable or too fragile to be displayed, a
hologram offers an enticing alternative by showing the artifact as a high-
quality, three-dimensional image that, combined with computer graphics,
lets users experience it interactively.

8.7 Augmented Paintings
Working high above the floor of the Sistine Chapel in the Vatican of Rome,
Michelangelo Buonarroti painted, between 1509 and 1512, some of the finest
pictorial images of all time. On the ceiling of the papal chapel, he created
a masterpiece fresco that includes nine scenes from the Book of Genesis.
Among them is the famous Creation of Adam scene, showing God touching
Adam’s hand. In 1510, an initial study led Michelangelo to draw the Adam
figure as a sanguine on a piece of paper. Today, this early drawing is dis-
played by the British Museum in London. Around 1518, Jacopo Pontormo
painted yet another scene from the Book of Genesis, called Joseph and Ja-
cob in Egypt. It decorated the bedchamber of Pier Francesco Borgherini
for many years and is now being displayed by the London National Gallery.
This oil painting made headlines after art historians discovered incredible
underdrawings underneath the top paint layer. The underdrawings show
that the artist had decided to flip the background design after starting the
work, and he simply overpainted his initial approach. Such underdrawings
have been found in many Renaissance and Baroque paintings. In 1634,
for example, Rembrandt van Rijn painted a self-portrait that was later
retouched by one of his students to feature a Russian nobleman. The orig-
inal portrait was hidden under layers of paint for more than three hundred
years, until it was uncovered recently by art restorers. It was sold for nearly
seven million British pounds.
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Figure 8.21. Illustration of an Augmented Paintings installation in a museum.
(Image reprinted from [19] c© IEEE.)

Pictorial artwork, such as these examples, can tell interesting stories.
The capabilities of museums to communicate this and other information,
however, are clearly limited. Text legends and audio guides can mediate
facts, but offer little potential for presenting visual content, such as em-
bedded illustrations, pictures, animations, and interactive elements.

Edutainment is becoming an important factor for museums. By apply-
ing new media technologies, such as computer graphics, virtual reality, and
augmented reality, exhibit-oriented information might be communicated
more effectively, but certainly in a more exciting way (Figure 8.21).

Chapter 7 has described methods of how to augment flat textured sur-
faces, such as paintings, with any kind of projected computer graphics [19],
and outlines a possible display configuration as well as imaginable presen-
tation and interaction techniques for such an approach.

8.7.1 Physical Arrangement

Besides ceiling mounted projectors, as outlined in Figure 8.21, a lectern-like
setup (Figure 8.22) is also possible. In this case, a dual-output PC, two
projectors, stereo speakers, and a touchpad are integrated into the same
frame.

The projectors are directed towards the painting on the opposite wall,
which is covered by the transparent film-material described in Chapter 7.
A down-scaled replica of the painting is placed underneath the touchpad,
which allows synchronized pointing or drag-and-drop interactions.
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Figure 8.22. Lectern-like display configuration with integrated video-beamers;
PC, and touchpad. (Right image reprinted from [19] c© IEEE.)

Note, that the frame has to be attached (e.g., bolted) to the ground
to prevent small movements of the projectors while interacting with the
touchpad, which would cause misregistrations and visual artifacts of the
calibrated graphical overlays on the physical painting.

8.7.2 General Functioning

The basic color correction process that is described in Chapter 7 allows
visualization of all sorts of information and effects. This opens the potential
for applying a wide range of established and new presentation tools and
techniques. They can be categorized into six main classes:

1. Inlay objects—e.g., textual information, images, videos, arrow anno-
tations;

2. Lens effects—e.g., magnification, X-ray, toolglasses and magic lenses;

3. Focus effects—e.g., blurring, decolorization, hiding, highlighting;

4. Three-dimensional effects—e.g., walk or flythrough, object observa-
tion;
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5. Modification effects—e.g., drawing style modification, reillumination,
color restoration;

6. Audio effects (e.g., verbal narrations, music, or sound that is syn-
chronized to the visual effects).

Figure 8.23 illustrates a variety of examples. Embedded information
windows (Figure 8.23(a)), such as the semi-transparent text panel or the
opaque image/video panel are dynamic—in contrast to simple physical text
labels—and can be directly linked to corresponding portions of the artwork
(e.g., via arrow annotations, etc.). The magnifying glass in Figure 8.23(b)
is interactively controlled by the touchpad integrated into the lectern and
allows zooming in on interesting areas to identify brush stroke and hatching

(a) (b)

(c) (d)

Figure 8.23. Examples of presentation techniques: (a) inlay text and image;
(b) magnification; (c) focus through highlighting and decolorization; (d) three-
dimensional flythrough through the Sistine chapel. Note, that in images (a)–(c)
the Adam drawing itself is not projected. (Displayed artwork courtesy of the
Vatican Museum, Rome and the British Museum, London; images reprinted from
[19] c© IEEE; see Plate XI.)
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styles of the artist. Usually, museum visitors are restricted from getting
close enough to recognize such details. To draw the observer’s attention to
a certain image portion, it can be brought into the foreground while the
remaining part is eclipsed. In Figure 8.23(c), the focus area is highlighted
while the rest is decolorized. This is achieved technically by projecting
the inverse colors of the background image. In this case, the colors of
the pigments on the canvas are physically cancelled out and appear in
grayscale. Figure 8.23(d) shows a three-dimensional flythrough through
the Sistine chapel, building a spatial correlation to surrounding paintings
and the environment. This allows a virtual relocation of the observer to
remote places.

Stereoscopic rendering (and optional head-tracking technology) allows
an immersive experience. Although the transparent film preserves the po-

(a) (b)

(c) (d)

Figure 8.24. Pontormo’s Joseph and Jacob in Egypt: (a) copy of original paint-
ing illuminated under environment light; (b) modification of painting style from
oil on wood to watercolor on paper via a 2D artistic filter; (c) reillumination and
lens flare; (d) registered visualization of underdrawings (infrared recordings are
black and white) and explanation. (Displayed artwork courtesy of the National
Gallery, London; images reprinted from [19] c© IEEE; see Plate XVI.)
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larization of light, the underlying canvas does not. Consequently, only
active or anaglyphic stereo solutions can be used. A mechanical (half
opaque/half transparent) shutter wheel rotating with 120 Hz in front of
two video beamers can also be used. A light sensor measures the position
of the wheel and triggers the infrared synchronization signal of the shutter
glasses. In combination with conventional LCD projectors, this is a simple
and cost efficient alternative to active stereo, compared to CRT projectors.

Figure 8.24 illustrates further presentation examples, such as modifica-
tions of the painting style via two-dimensional artistic filters, visualization
of the underdrawings, and scene modification through reillumination.

For non-interactive presentations, it is possible to pregenerate the en-
tire content. In this case, well-established content creation and authoring
tools (e.g., digital imaging, three-dimensional modelling, video editing, and
audio mixing packages) can be used. They already provide techniques such
as animations, image filtering, roll-over effects, etc., as well as professional
graphical user interfaces. For interactive presentations, however, the gen-
erated content has to be managed by the presentation software linked to
an interactive framework.

If no user interaction is required, an embedded AVI player can be used
to map video frames into input images on the fly. This represents a direct
interface to the display-specific player framework that comprises rendering
and color correction, and allows users to benefit from the capabilities of
established content creation and authoring packages, such as Photoshop,
3D Studio Max, Maya, or Premiere.

8.7.3 Using Pictorial Artwork as Information Displays

Using pictorial artwork as information displays opens another door to em-
bedded multimedia content in museums and art galleries. The method de-
scribed previously is simple, seamless, cost and space efficient, robust, and
compatible. These are all important factors for museum operators, content
creators, and museum visitors. The presented techniques allow users to
think of a wide variety of presentation and interaction tools that have not
yet been explored. Dynamic view management and label placement are
only two examples. As for other areas, the development of efficient interac-
tion techniques and devices for such displays presents an interesting chal-
lenge. Digital storytelling techniques and content creation/management
tools will be the link between specialized presentation techniques and dis-
play technology and standardized software platforms that can be operated
by media artists and designers.
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8.8 Smart Projectors

The invention of television radically shaped the 20th century. Today, it is
the number one entertainment medium for most of us. New and innovative
display technologies are changing their image, now faster than ever before.
While the biggest step for cathode ray tube technology was the transistor
from black-and-white to color, liquid crystal and plasma displays are cur-
rently transforming TVs into large flat panel screens. Clearly there is an
emerging trend towards large screen displays. Falling prices are leading to
a booming market for home entertainment technology. However, there are
still physical limitations related to all of these technologies that result in
constraints for maximum screen size, display size, refresh rate, or power
consumption.

Video projectors are another display type that is just on the cusp of
conquering the entertainment market; they have experienced an enormous
metamorphosis during the last decade. Their cost/performance develop-
ment is comparable to the development of personal computers. Video pro-
jectors have one vital advantage over other display technologies; they can
generate images that are much larger than the devices themselves without
being constrained by most of the limitations mentioned previously. But
this unique ability comes at a price. We have to give up living space to
set up artificial projection canvases that must be as large as the images
to be displayed. Home theaters, for instance, can allocate entire rooms.
In many situations, temporary or stationary canvases also harm the ambi-
ence of environments like our living rooms or historic sites equipped with
projector-based multimedia presentations.

Smart Projectors, however, do not require artificial canvases. Instead,
they allow a correct projection onto arbitrary existing surfaces, such as
wallpapered walls or window curtains [20].

8.8.1 Physical Arrangement and General Functioning

Smart Projectors are video projectors that are enhanced with sensors to
gain information about the environment. Although cameras are the most
common sensor types used for smart projector implementations, other sen-
sors, like tilt sensors have been used. Completely calibrated and mounted
as a single camera-projector unit or realized with separated components,
some smart projectors allow a dynamic elimination of shadows cast by
the user, an automatic keystone correction on planar screens, or a man-
ually aligned shape-adaptive projection on second-order quadric display
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(a) (b)

Figure 8.25. The Smart Projector concept: (a) scanning the projection surface;
(b) displaying a geometry and color corrected image. (Images reprinted from [20]
c© IEEE.)

surfaces, like cylinders, domes, ellipsoids, or paraboloids. For projection
planes, multiple projector units can be automatically registered based on
their homographic relationships that are determined with the aid of cam-
eras. In this case, camera feedback is also used for intensity blending and
color matching of multiple projector contributions. Calibrated stereo cam-
eras together with projectors allow us to directly scan the three-dimensional
geometry of an arbitrary display surface. This enables an undistorted pro-
jection for a known head-tracked observer position.

All of these approaches require the calibration of camera(s) and pro-
jector(s) at one point to determine their intrinsic (focal length, principle
point, skew angle, aspect ratio, field of view) and extrinsic(position and
orientation) parameters. Although some systems are capable of display-
ing geometrically predistorted images for a known observer position onto
non-planar surfaces scanned or modelled beforehand, these surfaces are
still fairly simple, like adjacent even walls. Surfaces with fine geometric
details, such as natural stone walls or window curtains would represent an
overkill for real-time predistortion realized by processing a high-resolution
three-dimensional model.

Per-pixel color correction becomes feasible in real time with the new
capabilities of recent graphics chips. This has been described for planar
and geometrically non-trivial but textured, surfaces in Chapter 7.

Also described in Chapter 7, this smart projector concept combines
camera feedback with structured light projection to gain information about
the screen surface and the environment. The modular camera component
can be detached from the projection unit of the smart projector for cali-
bration. It has to be temporarily placed approximately at the sweet-spot
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of the observers, pointing at the screen surface (Figure 8.25(a)). The pro-
jection unit can be placed at an arbitrary location. Its light frustum must
also cover the screen surface area. The system will then automatically
determine all parameters that are required for real-time geometric predis-
tortion and color correction. After the system has been calibrated, the
camera module can be removed. From now on, the projector unit corrects
incoming video signals geometrically and photometrically. If the corrected
images are projected onto the non-trivial screen surface, they appear as
being displayed onto a plain white canvas from the camera’s target per-
spectives at or near the observer’s sweet-spot. However, this projection
canvas is completely virtual and does not exist in reality (Figure 8.25(b)).
The details on calibration and image correction are explained in Chapter 7.

A compact device, such as the one sketched in Figure 8.25 has not yet
been built. Instead, off-the-shelf components, like a consumer LCD video
beamer, a CCD camcorder, and a personal computer comprising a TV
card and a pixel-shading-capable graphics board are used for realizing first
proof-of-concept prototypes.

8.8.2 Embedded Entertainment with Smart Projectors

Video projectors will play a major role for future home entertainment and
edutainment applications, ranging from movies and television, to computer
games, and multimedia presentations. Smart video projectors have the po-
tential to sense the environment and adapt to it. This promotes a seamless
embedding of display technology into our everyday life.

The example described previously can function without an artificial
canvas (Figure 8.26) and consequently leaves a bit more freedom to us in
the decision on how to arrange our living space. Recent improvements in
computer graphics hardware have made this possible. Modern graphics
chips support a per-pixel displacement which makes the computation in-
tensive processing of three-dimensional geometry for image predistortion
unnecessary. In addition, a color correction is supported on a pixel-precise
basis. Display surfaces do not have to be plain and white, and video images
do not have to be rectangular (as illustrated in Figure 8.27, for instance).
Instead, many existing surfaces can be temporarily converted to a display
screen by projecting color and geometry corrected images onto them. Most
important for consumer applications is, that the calibration of such a device
is fast, fully automatic, and robust, and that the correction of video signals
can be achieved in real time. Neither geometry information nor projector
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(a)

(b)

(c)

Figure 8.26. (a) Projection onto a curtain; (b) uncorrected colors; (c) corrected
colors. Both projections are geometry corrected (Movie footage: Finding Nemo,
c© 2003 Pixar Animation Studios; images reprinted from [20] c© IEEE.)

.

or camera parameters need to be known. Instead, the entire calibration
and correction is done on a per-pixel level.

Future hardware improvements will pave the way for further develop-
ments with smart projectors. Graphics chips, for instance, will be more
powerful than ever before. Next-generation projectors will continue to en-
hance quality factors, like brightness, resolution, dynamic range, and black

(a) (b) (c)

Figure 8.27. (a) Stenciled projection onto a natural stone wall inside the vaults of
a castle; (b) color-uncorrected; (c) color-corrected. Both projections are geometry
corrected (Displayed content: “The Recovery of Gloriosa”, c© 2004 Bennert-
Monumedia GmbH; images reprinted from [20] c© IEEE.)

.
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level. Prices will decrease with an increasing market. The development of
digital cameras and camcorders will behave in a similar way. Thanks to an
ongoing miniaturization, all of these components could soon be integrated
into compact devices that are as inconspicuous as light bulbs.

8.8.3 Enabling View-Dependent Stereoscopic Projection
in Real Environments

As mentioned in Chapter 7, view-dependent stereoscopic projection can
be enabled on ordinary surfaces (geometrically complex, colored, and tex-
tured) within everyday environments. However, several problems have to
be solved to ensure a consistent disparity-related depth perception. As
illustrated in Figure 8.28, we can summarize that a consistent and view-
dependent stereoscopic projection onto complex surfaces is enabled by four
main components: geometric warping, radiometric compensation, multi-
focal projection, and multi-projector contributions. Implementing these
components as hardware-accelerated dynamic pixel shaders achieves inter-
active frame rates. Radiometric compensation is essential for a consistent
disparity-related depth perception of stereoscopic images projected onto
colored and textured surfaces. Multi-projector techniques (see Chapter
5) enable intensity and color blending, or shadow removal for such con-

Figure 8.28. Main components for enabling stereoscopic projection on everyday
surfaces.
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Figure 8.29. Visualizing registered structures of (top) an adjacent room; (center)
stairways and lower building level for architectural applications in a realistic en-
vironment; (bottom) envisioned application example in an architectural domain.
(Prototype realized by the Bauhaus-University Weimar, 2005; see Plate XV.)

figurations. Pixel-precise image-based or projective texture-based warp-
ing technique (e.g., such as explained in Chapter 5) provide the required
precision for radiometrically compensated projections of stereo pairs onto
geometrically and radiometrically complex surfaces. They provide view-
dependent rendering at interactive frame rates and support the correction
of non-linear projector distortions. Partially unfocussed projections af-
fect disparity-related depth perception and can make the correct fusion of
stereo pairs difficult. Since conventional projectors provide only a single
focal plane, it is physically impossible to generate sharp images on surfaces
with extreme depth variations. Multi-focal projection methods that of-
fer an efficient image composition from multiple projection units represent
novel software solutions to this problem. As outlined in the architectural
examples shown in Figure 8.29, such techniques do not offer only new possi-
bilities for augmented reality and virtual reality. They also allow a merger
of both technologies and give some applications the possibility to benefit
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from the conceptual overlap of AR and VR. An ad-hoc system configu-
ration that is not constrained to laboratory conditions will increase the
practicability of such a tool.

8.9 Summary and Discussion

In this chapter, we have presented numerous examples of spatial AR dis-
plays and their applications in different domains, such as museums, home
entertainment, science, and industry. Some of them are optical see-through
configurations that utilize mirror beam or transparent screen combiners
and, in combination with projector-based illumination, achieve a high de-
gree of consistency between real and virtual environments. Others use
projectors to augment physical objects directly without additional optical
elements.

From an application point of view, there is one major difference be-
tween optical see-through augmentations and projector-based augmenta-
tions. An optical see-through display allows the visualization of virtual
objects as if they are floating in thin air (e.g., next to a physical object).
A projector-based augmentation is restricted to a projection onto the real
object’s surfaces even when stereoscopic rendering is used. This prevents us
from displaying virtual objects next to real ones if no underlying projection
surface is given. However, projector-based augmentation and illumination
are well suited for modifying the real object’s surface appearance, such
as shading, color, texture, or visibility properties. Thus, spatial optical
see-through and projector-based techniques go hand in hand. They com-
plement each other and lead to efficient, consistent, and realistic spatial
AR presentations.

The robustness, attractiveness, and efficiency of technology are essential
for a successful application of spatial AR in public places, such as muse-
ums. Some of the display configurations that have been described in this
chapter tell the first success stories and provide a promising perspective for
upcoming installations.
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For non-mobile tasks, novel approaches have taken augmented reality be-
yond traditional eye-worn or hand-held displays, thus, enabling new appli-
cation areas. These spatial approaches exploit components such as video
projectors, optical elements, holograms, radio frequency tags, and tracking
technologies. Due to the decrease in cost of these devices and graphics
resources, there has been a considerable interest in using such augmented
reality systems in universities, labs, museums, and in the art community.
New technology will not only open new possibilities for SAR, but also for
other display concepts, such as hand-held and head-attached displays.

9.1 Displays

9.1.1 Projectors

Projectors of the near future will be compact, portable, and with the built-
in awareness which will enable them to automatically create satisfactory
displays on many of the surfaces in our everyday environment. Alongside
the advantages, there are limitations, but we anticipate projectors being
complementary to other modes of display for everyday personal use in the
future. We expect that there will be new application areas for which they
are especially suited. LEDs are replacing lamps. Reflective, instead of
transmissive displays, (DLPs, LCOS) are becoming popular. Both lead
to improved efficiency requiring less power and less cooling. DLP and
LCOS projectors can display images at extremely high frame rates, cur-
rently 180 Hz and 540 Hz respectively, but they lack video bandwidth.
Efforts to increase video bandwidth are already in the making and are very
promising. For example, Symbol Technologies [184] has demonstrated a
small laser projector (two tiny steering mirrors for vertical and horizon-
tal deflection) and has even built a hand-held three-dimensional scanner

321
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based on such a projector. Siemens has built a mini-beamer attachment
for mobile-phones [171]. Cam3D has built a Wedge display where a pro-
jector can be converted into a flat panel display by projecting images at
the bottom of a wedge shaped glass [189]. A future mobile projector may
function as a as flat panel when there is no appropriate surface to illu-
minate or when ambient light is problematic. Super bright, sharp infinite
focus laser projectors are also becoming widespread [75]. They may allow
shape-adaptive projection without focus and ambient lighting problems.
In addition suitable input devices are also being developed; e.g., Canesta
[28] has built a projected laser pattern on which one can type. The finger
movement is detected by IR sensing. Finally novel lamp designs, espe-
cially those based on LEDs or lasers are creating smaller, lighter, and more
efficient long-life solutions.

9.1.2 Autosteroscopic Displays

Parallax displays are display screens (e.g., LCD displays) that are overlaid
with an array of light directing elements. Depending on the observer’s lo-
cation, the emitted light that is presented by the display is directed in a
way that it appears to originate from different parts of the display while
changing the viewpoint. If the light is directed to both eyes individually,
the observer’s visual system interprets the different light information to
be emitted by the same spatial point. Examples of parallax displays are
parallax barrier displays (Figure 2.18(a)) that use a controllable array of
light-blocking elements (e.g., a light-blocking film or liquid crystal barriers
[136]) in front of a CRT screen. Depending on the observer’s viewpoint,
these light-blocking elements are used to direct the displayed stereo images
to the corresponding eyes. Other examples are lenticular sheet displays
(Figure 2.18(b)) that use an array of optical elements (e.g., small cylindri-
cal or spherical lenses) to direct the light for a limited number of defined
viewing zones.

Parallax displays can be designed and mass produced in a wide range of
sizes and can be used to display photorealistic images. Many different types
are commercially available and used in applications ranging from desktop
screens to cell phone displays. We believe that the application of parallax
displays will be the next logical and feasible step for SAR solutions towards
autostereoscopy.

In the future, a stronger combination of computer graphics and holog-
raphy (as explained in Chapter 4) can also be expected. Any 3D rendered
image can, in principle, be transformed into a holographic interference pat-
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tern basically by using Fourier transformations. These, however, presup-
pose large computational, network, and storage capacities. For instance,
a prerendered or recorded movie-length holographic video could require
a petabyte (1 million gigabytes) of storage. Holographic storage itself,
which uses lasers to record data in the three dimensions of a clear crys-
talline medium may be a future solution to the problem that non-static
holograms require a massive amount of data. While computer-generated
static images can already be transformed into large digital holograms using
holographic printers [80], interactive or real-time electronic holography [96]
with an acceptable quality (size, resolution, and color) would still require
the invention of more advanced light modulators, faster computers with a
higher bandwidth, and better compression techniques. However, the combi-
nation of high quality optical holograms and interactive computer graphics
is already feasible with off-the-shelf hardware today [17].

9.1.3 Flexible Displays

Organic light emitting diodes [68], for instance, may replace the crystalline
LEDs that are currently being used to build the miniature displays for
HMDs. OLEDs promise to produce cheap and very high-resolution full-
color matrix displays that can give head-attached displays a technologi-
cal advance. In contrast to normal LEDs, OLEDs are made from plastic
compounds rather than from semi-conducting elements, such as silicon or
gallium, etc. Like LEDs, OLEDs glow when voltage is applied. Two main
classes exist today: small molecule OLEDs and polymer OLEDs. While
small molecule OLEDs are built up by depositing molecules of the com-
pound onto the display itself under very low pressure, polymer OLEDs
have the active molecules suspended in a liquid-like pigment in paint. It
can be printed onto displays using ink jets, screen printing, or any of the
various contact techniques used for ordinary inks. Small molecule OLED
displays are limited in size, but they may be suitable for head-mounted
displays. Polymer OLEDs can be used to build large scale displays, such
as 500 inch displays or larger. Resolution approaching 300 dpi is also pos-
sible, approaching the quality of ink on paper. They may become more
interesting for spatial AR approaches.

OLEDs have some general advantages:

• Because OLED displays are fluorescent and don’t require backlights,
they will need far less power than LCD screens (currently LCDs re-
quire three times more power than OLEDs);
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• OLED layers can be made much thinner than LCD layers (about a
thousand times thinner than a human hair);

• In contrast to LCDs, OLEDs don’t use polarized light filters. The
displayed images on OLEDs can be viewed from a much wider angle;

• OLEDs have a much wider working temperature range than LCDs;

• OLEDs can be printed onto large-scale and flexible display surfaces
of any shape and (almost) any material.

However, the OLED compounds degrade over time (especially when
they come in contact with oxygen or water) limiting the maximum lifetime
of a display. Different colors degrade at different rates making the color
balance change. These problems may be solved in the future.

Light emitting polymers [26] provide the opportunity for the fabrication
of large, flexible, full-color, fast emissive displays with a high-resolution, a
wide viewing angle, and a high durability. In LEP technology, a thin film
of light-emitting polymer is applied onto a glass or plastic substrate coated
with a transparent electrode. A metal electrode is evaporated on top of
the polymer. The polymer emits light when the electric field between the
two electrodes is activated. The response time of LEPs is ultra-fast (sub-
microsecond) and is unaffected by temperature. Consequently, they may
support high enough frame rates for active stereoscopic rendering. Light
emission occurs at low voltage, and (unlike LCD or plasma displays) it can
be fabricated on a single sheet of glass. Also, because it can be made of
flexible plastic substrates, it is not only extremely difficult to break, but
can also be molded into different shapes and contours.

The advantages of LEPs can be summarized as follows:

• Since a low voltage is required, LEPs need little power;

• The response time of LEPs is very high, potentially allowing active
stereoscopic rendering;

• LEPs can be fabricated on transparent glass or plastic surfaces of any
shape;

• LEPs provide a high contrast (currently between 3–5 times higher
than LCDs).

Transparent LEPs may present other future alternatives for spatial AR
configurations.
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Electronic papers (or E-Ink) [206] also has potential as an AR display
technology of the future. Here an electric charge moves magnetic colored
capsules within the “paper” either toward or away from the surface in order
to form an image. The capsules retain their positions until another charge
is applied. The ink simply resides on the display while an image is not
changing; therefore, it consumes no power. Philips and other companies in
the field are working on color as well as bendable applications. The main
advantage of electronic paper is that it does not require any power, as long
as the displayed image does not change. Large color screen configurations
exist that have been built from smaller electronic paper tiles.

Several approaches exist that allow a projection of two-dimensional im-
ages onto a screen composed of fog [135] or modified air [74]. Such fog/air
displays suffer from distortion caused by turbulence but allow through-the-
screen interactions since they lack a physical screen boundary.

Solid-state displays [39] generate visible photons (i.e., light) within a
transparent host material by exciting optically active ions with special en-
ergy sources. Ions at a known three-dimensional position within the host
materials can be excited by crossing energy beams, such as infrared lasers,
ultraviolet sources of radiation, or electron beams.

Examples of suitable host materials are various gases, crystals, and
electro-active polymers. The host material must provide several properties:

• In its initial state, it must be transparent;

• It must emit visible light in its excited state;

• Its inner structure must be homogeneous;

• It must have a refraction index similar to air to avoid distortion.

If it were possible to use air as the host material, then this approach
would represent the “Holy Grail,” not only for spatial augmented reality
displays, but for three-dimensional display technology in general. Unfor-
tunately this is not yet feasible. In addition, conceptual problems, such as
the ghost voxel problem (when energy beams that are used to create voxels
intersect with other beams and create unwanted voxels) have to be solved.

In the short run, especially high-resolution bright and flexible projec-
tion devices, high-performance and cost efficient rendering hardware, re-
liable, precise and wireless tracking technology, and advanced interaction
techniques and devices will pave the way for forthcoming alternative AR
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configurations. In the long run, new display concepts, such as autostere-
oscopy and holography will replace goggle-bound stereoscopic displays (at
least for non-mobile applications). However, the underlying technology
must be robust and flexible, and the technology that directly interfaces to
users should adapt to humans, rather than forcing users to adapt to the
technology. Therefore, human-centered and seamless technologies, devices,
and techniques will play a major role for augmented reality of the future.
That this is feasible can be demonstrated based on the example of one early
SAR display, the Virtual Showcase [9]. Since its invention in 2000, several
prototypes have been exhibited to an approximate total number of more
than 25,000–30,000 visitors/users ( a user-study and picture gallery are
available through http://www.spatialar.com/). Some events were techni-
cally supervised short-term exhibitions (1–7 days) at conferences and trade
shows; others have been non-supervised long-term exhibitions (3–4 months)
in museums. These uses have shown that SAR technology can be robust,
attractive, and efficient enough to be applied successfully outside research
laboratories.

9.2 Supporting Elements

New hardware for tagging, registering, or linking physical objects to the
digital world are emerging. AR has a clear connection with ubiquitous
computing and the wearable computer domain. Let us look at the new
sensors and input devices.

9.2.1 Electronic Tags

Small electronic components, or tags, that can respond to radio frequency,
ultrasound, or light are being used to simplify the task of locating and
identifying objects. Electronic tags have several advantages compared to
optical tags.

Adding distinctive visual markers for tracking is not always practical.
Optical tags require sufficient area and are more prone to wear and tear.
The number of distinguishable identifiers in optical tags remains small,
while electronic tags allow a very long binary sequence to be used. Elec-
tronic tags are also not affected by ambient illumination, and in many
cases do not require line of sight to the tags. Authoring also becomes
easy with electronic tags because data can be stored locally. On the other
hand, electronic tags are expensive and battery-operated tags require fre-
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quent maintenance. The added complexity increases the cost, and radio
frequency or ultrasound tags are difficult to precisely locate.

Multiple research groups are looking at adding intelligence to objects
and, in some cases, building human interactions around them. Smart-Its
provides interconnected smart devices that can be attached to everyday
items [64]. SenseTable tracks and augments the area around sensing tablets
on a tabletop using a projector [134]. Intelligent furniture has also been
explored [125].

Some systems use active RF tags that respond to laser pointers. The
FindIT flashlight uses a one-way interaction and an indicator light on the
tag to signal that the desired object has been found [98]. Other systems
use a two-way interaction, where the tag responds back to the PDA us-
ing a power-hungry protocol like 802.11 or X10 ([132], respectively [161]).
CoolTown [188] uses beacons that actively transmit devices references al-
though without the ability to point and without visual feedback.

Radio frequency identification tags (RFID) allow querying of
the identification code stores on the tag using a radio frequency reader.
Powered radio-frequency tags use a battery that is about the size of a
watch-battery, have a lifetime of a few years, and have a cost of a few dol-
lars. In contrast, passive RFID tags are unpowered, can be as small as a
grain of rice, and cost only about ten cents. Prices of both are dropping,
but the price differential will remain. The size and cost properties are
such that RFID is showing signs of being adopted as a mass-deployment
technology.

Current commercial applications include embedding of RFID tags in
packaging for inventory control, non-contact access control, and ear tags
for livestock. Despite the interest in RFID, the available functionality is
very limited; an RF-reader broadcasts a request, and in-range tags collect
energy from the RF pulse and reply. Since only in-range tags respond, this
can be used for coarse location sensing.

A collection of sensing and interaction techniques for mobile devices
is described in Hinckley [62]. Augmentation of physical world objects has
been primarily achieved via eye-worn or head-mounted displays [5] or hand-
held screens. Screen-based augmentation using PDA, camera, and RFID
tags is described in [198] and[160].

9.2.2 Location Sensing

Location sensing systems such as the Olivetti Active Badge [195] and Xerox
PARCTAB [197] recover location and have been used for passive tracking,
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Figure 9.1. RFIG: communication between the photosensing tag (left) and hand-
held projector system (right). (Images reprinted from [159] c© ACM.)

but not for an interactive system. In the Cricket project [187], the system
recovers the pose of a hand-held device using installed RF and ultrasound
beacons, and uses the computed location and orientation for projected
augmentation.

Two important problems in augmented reality, object identification and
determining the pose of the displayed image with respect to the physical
object, can be solved by using photosensing RFID tags (Figure 9.1). This
is being explored as a radio frequency identification and geometry (RFIG)
discovery method [159]. Figure 9.2 shows a current application in a ware-
house scenario where two employees can locate products that are about
to expire using the RF channel to send the query and an optical channel

Figure 9.2. Warehouse scenario with RFIG tags. A user directs a hand-held
projector at tagged inventory, with communication mediated by two channels—
RF and photo-sensing on the tags. The user sees a projection of the retrieved
tag information collocated with the physical objects and performs a desktop-
like interaction with the projection. A second user performs similar operations,
without conflict in the interaction because the projector beams do not overlap.
(Image reprinted from [159] c© ACM.)
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(a) (b) (c)

Figure 9.3. Warehouse scenario implementation: (a) manager locates items
about to expire (marked in white circles); (b) annotates some of those items
(marked in larger white circles); (c) employee retrieves and views the same an-
notations from a different projector view. (Images reprinted from [159] c© ACM;
see Plate XIV.)

to locate the corresponding wireless tags. The hand-held projector finally
displays the appropriate information overlaid on those objects (Figure 9.3).

A distinguishing factor between RFIG and related systems is in the
parallel nature of the interaction. Laser-pointer systems [98, 132] require
a user to identify a target object and direct the pointer at it to initiate
interaction. However, accurate pointing is difficult when the tags become
visually imperceptible, and multiple tags can only be dealt with serially.
In contrast, a RFIG system uses a casually-directed projector to interact
with all tagged objects within the projector beam and can select all objects
or a subset for further interaction. The computed location can be used to
support sophisticated geometric operations.

9.3 Summary and Discussion

In this chapter, we have presented numerous examples of emerging tech-
nologies and how they are likely to impact spatial augmented reality sys-
tems. We discussed innovative optics for displays, new materials such as
light emitting polymers, promising developments in sensor networks in-
cluding those using photosensors and the excitement surrounding radio
frequency identification tags.

Trends in miniaturization are changing the way projector-based aug-
mented reality systems will be built. The embedding of computation power
and data in everyday environments is now becoming feasible as cost and
power problems diminish. Tag-based environments will provide real-time
feedback to AR systems and simplify problems in authoring, recognition,
and location sensing. However, these hardware components involve many
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challenges, and it is difficult to predict which technologies will be prevalent.
Nevertheless, emerging prototypes that we have described demonstrate in-
novative ways to interact with such ambient intelligence.
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A
Calibration of a Projector

(or a Camera)

A.1 Source Code for Calibration of a Projector (or a
Camera)

Input: set of corresponding 3D points points.{X,Y,Z} and 2D pixels
pixels.{u,v}
Output of Step 3: Perspective 3 by 4 projection matrix, ProjMV
Output of Step 4: OpenGL 4 × 4 matrices, ProjMat, ModelViewMat

void calculateMatrices()

{

// Step 1: Fill Matrix that covers the constraining equations

Matrix lhs(2 * nPointsFound, 12); // lhs=LeftHandSide

for (int i = 0; i < nPointsFound; i++) {

// odd rows

lhs(2 * i + 1, 1) = points[i].X;

lhs(2 * i + 1, 2) = points[i].Y;

lhs(2 * i + 1, 3) = points[i].Z;

lhs(2 * i + 1, 4) = 1;

lhs(2 * i + 1, 5) = 0;

lhs(2 * i + 1, 6) = 0;

lhs(2 * i + 1, 7) = 0;

lhs(2 * i + 1, 8) = 0;

lhs(2 * i + 1, 9) = -pixels[i].u * points[i].X;

lhs(2 * i + 1, 10) = -pixels[i].u * points[i].Y;

lhs(2 * i + 1, 11) = -pixels[i].u * points[i].Z;

lhs(2 * i + 1, 12) = -pixels[i].u;

// even rows

lhs(2 * i + 2, 1) = 0;

lhs(2 * i + 2, 2) = 0;
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332 A. Calibration of a Projector (or a Camera)

lhs(2 * i + 2, 3) = 0;

lhs(2 * i + 2, 4) = 0;

lhs(2 * i + 2, 5) = points[i].X;

lhs(2 * i + 2, 6) = points[i].Y;

lhs(2 * i + 2, 7) = points[i].Z;

lhs(2 * i + 2, 8) = 1;

lhs(2 * i + 2, 9) = -pixels[i].v * points[i].X;

lhs(2 * i + 2, 10) = -pixels[i].v * points[i].Y;

lhs(2 * i + 2, 11) = -pixels[i].v * points[i].Z;

lhs(2 * i + 2, 12) = -pixels[i].v;

}

// Step 2: Find u-vector corresponding to smallest singular

// value (S)(=Solution)

DiagonalMatrix D(12);

Matrix U(12, 12);

// lhs.t() denotes matrix transpose

SVD(lhs.t() * lhs, D, U);

// Column containing smallest sing. value

int smallestCol = 1;

// find smallest

for (int j = 1; j < 13; j++)

if ((D(smallestCol) * D(smallestCol)) > (D(j) * D(j)))

smallestCol = j;

ColumnVector S = U.Column(smallestCol);

// Step 3: write 12x1-Vector S as 3x4 Matrix (row-wise)

Matrix ProjMV(3, 4);

for (int k = 0; k < 12; k++)

ProjMV}((k / 4) + 1,(k % 4) + 1) = S(k + 1);

// Step 4: decompose ProjMV in Proj- and ModelView-matrices}

double scale =

sqrt(ProjMV.SubMatrix(3, 3, 1, 3).SumSquare());

ProjMV /= scale;

//ProjMV /= ProjMV(3, 4);

if (ProjMV(3, 4) > 0) ProjMV * = -1;

ColumnVector Q1 = (ProjMV.SubMatrix(1, 1, 1, 3)).t();

ColumnVector Q2 = (ProjMV.SubMatrix(2, 2, 1, 3)).t();

ColumnVector Q3 = (ProjMV.SubMatrix(3, 3, 1, 3)).t();
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double q14 = ProjMV(1, 4);

double q24 = ProjMV(2, 4);

double q34 = ProjMV(3, 4);

double tz = q34;

double tzeps = 1;

if (tz > 0) tzeps = -1;

tz = tzeps * q34;

RowVector r3 = tzeps * Q3.t();

double u0 = (Q1.t() * Q3).AsScalar();

double v0 = (Q2.t() * Q3).AsScalar();

double a = crossNorm(Q1, Q3);

double b = crossNorm(Q2, Q3);

RowVector r1 = tzeps * (Q1.t() - (u0 * Q3.t())) / a;

RowVector r2 = tzeps * (Q2.t() - (v0 * Q3.t())) / b;

double tx = tzeps * (q14 - u0 * tz) / a;

double ty = tzeps * (q24 - v0 * tz) / b;

// create Rotation Matrix and Translation Vector

Matrix RotMatrix(3,3);

RotMatrix = r1 & r2 & r3;

ColumnVector t(3);

t << tx << ty << tz;

// Step 5: Expand found matrices to 4 x 4 matrices

// Projection

Matrix IntMat(4, 4);

IntMat(1, 1) = -a;

IntMat(1, 2) = 0;

IntMat(1, 3) = -u0;

IntMat(1, 4) = 0;

IntMat(2, 1) = 0;

IntMat(2, 2) = -b;

IntMat(2, 3) = -v0;

IntMat(2, 4) = 0;

IntMat(3, 1) = 0;

IntMat(3, 2) = 0;

IntMat(3, 3) = -(gfFarPlane + gfNearPlane) /

(gfFarPlane - gfNearPlane);

IntMat(3, 4) = -2 * gfFarPlane * gfNearPlane /

(gfFarPlane - gfNearPlane);

IntMat(4, 1) = 0;

IntMat(4, 2) = 0;

IntMat(4, 3) = -1;

IntMat(4, 4) = 0;
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// Rotation & Translation

Matrix ExtMat(4, 4);

RowVector nulleins(4);

nulleins << 0.0 << 0.0 << 0.0 << 1.0;

ExtMat = ((r1 & r2 & r3) | t) & nulleins;

// Step 6: Set matrices as Current MV/Proj-matrices}

for (int l = 0; l < 16; l++) {

MVMat[l] = ExtMat((l % 4) + 1, (l / 4) + 1);

ProjMat[l] = IntMat((l % 4) + 1, (l / 4) + 1);

}

// ProjMat has to be multiplied by VP^-1

mat16dMult( invViewport, ProjMat, ProjMat );

// Step 7: Save matrices to file ("IntMat0.dat"/"ExtMat0.dat")

ofstream lfInt, lfExt;

lfInt.open("IntMat0.dat", ios::out);

lfExt.open("ExtMat0.dat", ios::out);

for (i = 0; i < 16; i++) {

lfInt << IntMat(i % 4 + 1, i / 4 + 1)

<< ((i % 4 - 3)?" ":"\n");

lfExt << ExtMat(i % 4 + 1, i / 4 + 1)

<< ((i % 4 - 3)?" ":"\n");

}

}

A.2 Quadric Image Transfer

Vertex Shader code in Cg to implement Quadric Image Transfer for pro-
jecting on quadric curved surfaces.

vertout main(appin IN,

uniform float4x4 modelViewProj,

uniform float4 constColor,

uniform float3x3 A,

uniform float3x3 E,

uniform float3 e)

{

vertout OUT;

float4 m1 = float4(IN.position.x,

IN.position.y,

IN.position.z,
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1.0f);

float4 m, mi;

float3 m2, mp;

float scale;

m = mul(modelViewProj, m1);

m2.x = m.x/m.w;

m2.y = m.y/m.w;

m2.z = 1;

scale = mul(m2, mul(E,m2));

mp = mul(A,m2) + sqrt(scale) * e;

mi.x = m.w * (mp.x) / (mp.z);

mi.y = m.w * (mp.y) / (mp.z);

mi.zw = m.zw;

OUT.position = mi;

// Use the original per-vertex color specified

OUT.color0 = IN.color0;

return OUT;

}
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B
OpenGL’s Transformation

Pipeline Partially
Re-Implemented

B.1 General Definitions
typedef double MATRIX_4X4 [16]; // 4x4 homogeneous matrix in

// column-first order

MultMatrix(m); // multiplies matrix m onto

// current matrix stack

nv (a,b,c); // normalize vector [a,b,c]

xvv(a,b,c,d,e,f,g,h,i) // cross product:

// [g,h,i]=[a,b,c]x[d,e,f]

B.2 Projection Functions

void Frustum(double l, double r, double b, double t, double n,

double f)

//parameters OpenGL convention

{

MATRIX_4X4 m;

m[0]=(2*n)/(r-l); m[4]=0.0; m[8]=(r+l)/(r-l); m[12]=0.0;

m[1]=0.0; m[5]=(2*n)/(t-b); m[9]=(t+b)/(t-b); m[13]=0.0;

m[2]=0.0; m[6]=0.0; m[10]=-(f+n)/(f-n);

m[14]=-(2*f*n)/(f-n);

m[3]=0.0; m[7]=0.0; m[11]=-1.0; m[15]=0.0;

MultMatrix(m);

}
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void Perspective(double fovy, double aspect, double zNear,

double zFar)

//parameters in OpenGL convention

{

MATRIX_4X4 m;

double f;

f=1.0/tan(rad(fovy)/2.0);

m[0]=f/aspect; m[4]=0.0; m[8]=0.0; m[12]=0.0;

m[1]=0.0; m[5]=f; m[9]=0.0; m[13]=0.0;

m[2]=0.0; m[6]=0.0; m[10]=(zFar+zNear)/(zNear-zFar);

m[14]=(2*zFar*zNear)/(zNear-zFar);

m[3]=0.0; m[7]=0.0; m[11]=-1.0; m[15]=0.0;

MultMatrix(m);

}

B.3 Transformation Functions
void Scale(double x, double y, double z)

//parameters in OpenGL convention

{

MATRIX_4X4 m;

m[0]=x; m[4]=0.0; m[8]=0.0; m[12]=0.0;

m[1]=0.0; m[5]=y; m[9]=0.0; m[13]=0.0;

m[2]=0.0; m[6]=0.0; m[10]=z; m[14]=0.0;

m[3]=0.0; m[7]=0.0; m[11]=0.0; m[15]=1.0;

MultMatrix(m);

}

void Translate(double x, double y, double z)

//parameters in OpenGL convention

{

MATRIX_4X4 m;

m[0]=1.0; m[4]=0.0; m[8]=0.0; m[12]=x;

m[1]=0.0; m[5]=1.0; m[9]=0.0; m[13]=y;

m[2]=0.0; m[6]=0.0; m[10]=1.0; m[14]=z;

m[3]=0.0; m[7]=0.0; m[11]=0.0; m[15]=1.0;

MultMatrix(m);

}
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void Rotate(double a, double i, double j, double k)

//parameters in OpenGL convention

{

MATRIX_4X4 m;

nv(&(i),&(j),&(k));

double cosa=cos(rad(a)), sina=sin(rad(a)), cosa1=1.0-cosa,

n11=i*i*cosa1, n22=j*j*cosa1, n33=k*k*cosa1,

n1=i*sina, n2=j*sina, n3=k*sina,

n12=i*j*cosa1, n13=i*k*cosa1, n23=j*k*cosa1;

m[0]=cosa+n11; m[4]=n12-n3; m[8]=n13+n2; m[12]=0;

m[1]=n12+n3; m[5]=cosa+n22; m[9]=n23-n1; m[13]=0;

m[2]=n13-n2; m[6]=n23+n1; m[10]=cosa+n33; m[14]=0;

m[3]=0.0; m[7]=0.0; m[11]=0.0; m[15]=1.0;

MultMatrix(m);

}

\end{verbtim}

\end{small}

\section{Camera Control Function}

\begin{small}

\begin{verbatim}

void LookAt (double eyex, double eyey, double eyez,

double centerx, double centery, double centerz,

double upx, double upy, double upz)

//parameters in OpenGL convention

{

MATRIX_4X4 m;

double F[3],UP[3],s[3],u[3];

F[0]=centerx-eyex; F[1]=centery-eyey; F[2]=centerz-eyez;

nv (&(F[0]),&(F[1]),&(F[2]));

UP[0]=upx; UP[1]=upy; UP[2]=upz;

nv (&(UP[0]),&(UP[1]),&(UP[2]));

xvv (F[0] , F[1] , F[2], UP[0], UP[1], UP[2],

&(s[0]),&(s[1]),&(s[2]));

nv (&(s[0]),&(s[1]),&(s[2]));
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xvv (s[0] , s[1] , s[2], F[0] , F[1] , F[2],

&(u[0]),&(u[1]),&(u[2]));

nv (&(u[0]),&(u[1]),&(u[2]));

m[0]=s[0]; m[4]=s[1]; m[8]=s[2]; m[12]=0.0;

m[1]=u[0]; m[5]=u[1]; m[9]=u[2]; m[13]=0.0;

m[2]=-F[0]; m[6]=-F[1]; m[10]=-F[2]; m[14]=0.0;

m[3]=0.0; m[7]=0.0; m[11]=0.0; m[15]=1.0;

MultMatrix(m);

Translate(-eyex,-eyey,-eyez);

}

B.4 Additional Functions
void Project2Plane(double a, double b, double c, double d,

double x, double y, double z)

//[a,b,c,d] : plane parameters (normal, distance to origin)

//[x,y,z] : projection center

//defines a matrix that projects every point from [x,y,z]

// onto an arbitrary plane [a,b,c,d]

{

double dot;

dot = a*x+b*y+c*z+d ;

MATRIX_4X4 m;

m[0]=dot-x*a; m[4]=0.f-x*b; m[8]=0.f-x*c; m[12]=0.f-x*d;

m[1]=0.f-y*a; m[5]=dot-y*b; m[9]=0.f-y*c; m[13]=0.f-y*d;

m[2]=0.f-z*a; m[6]=0.f-z*b; m[10]=dot-z*c; m[14]=0.f-z*d;

m[3]=0.f-a; m[7]=0.f-b; m[11]=0.f-c; m[15]=dot-d;

MultMatrix(m);

}

void Reflect(double a, double b, double c, double d)

//[a,b,c,d] : plane parameters (normal, distance to origin)

//defines a matrix that reflects every point over an arbitrary

//plane [a,b,c,d]

{

MATRIX_4X4 m;

//set up reflection matrix

m[0]=1-2*a*a; m[4]=-2*a*b; m[8]=-2*a*c; m[12]=-2*a*d;

m[1]=-2*a*b; m[5]=1-2*b*b; m[9]=-2*b*c; m[13]=-2*b*d;

m[2]=-2*a*c; m[6]=-2*b*c; m[10]=1-2*c*c; m[14]=-2*c*d;
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m[3]=0; m[7]=0; m[11]=0; m[15]=1;

MultMatrix(m);

}
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[9] O. Bimber, B. Fröhlich, D. Schmalstieg, and L. M. Encarnação. The Virtual
Showcase. IEEE Computer Graphics & Applications 21:6 (2001), 48–55.

[10] O. Bimber, L. M. Encarnação, and P. Branco. “The Extended Virtual Ta-
ble: An Optical Extension for Table-Like Projection Systems.” Presence:
Teleoperators and Virtual Environments 10:6 (2001), 613–631.

[11] O. Bimber “Interactive Rendering for Projection-Based Augmented Reality
Displays.” Ph.D. Diss., University of Technology Darmstadt, 2002. Available
from World Wide Web (http://elib.tu-darmstadt.de/diss/000270/)
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aberration, 20
absolute optical system, 19
accelerated search techniques, 202
accelerometers, 5
accommodation, 32
accumulation buffers, 53
acquisition of depth information, 277
active

shuttering, 38
structured light technique, 127

adaptively refine, 193
adjustment values

color, 263
intensity, 263

alpha
blending, 129
mask, 129

ambient intelligent landscapes, 298
ambient term, 50
amplitude, 14, 244
anaglyphs, 37
angle

of incidence, 18
of reflection, 18
of refraction, 18

antialiasing, 188
apex, 177
arbitrarily shaped surfaces, 267
arbitrary reflectance properties, 240
arbitrary, geometrically non-trivial, tex-

tured surfaces, 214
area of rejuvenation, 189
artistic filters, 313
attenuation factor, 49

Augmented Paintings, 12
augmented reality, 1

screen-based, 84
authoring, 6
automatic keystone correction, 277

back buffer, 52
back-projection, 38
background image, 263
balanced load, 275
barycentric coordinates, 51
base mesh, 193
Being There project, 11
bi-linear

interpolation, 191
texture filtering, 176

binocular field of vision, 33
block-based simplification, 193
bodies of revolution, 203
boundary angles, 204
bounding sphere, 177, 198

calibration, 131
cathode ray tubes, 4
CAVE, 7
cell phones, 5, 79
centered on-axis, 158
ChromaDepth, 37
color

bleeding, 231
pigments, 255

color-blended, 188
colorimeters, 267
concave mirrors, 24
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condition of Herschel, 26
cones, 31
consistent occlusion, 213
content

generation, 301
management, 301

continuous level-of detail transitions, 196
convergence, 32
convergent lenses, 29
convex mirrors, 22
coordinate system

camera, 46
Cartesian, 150
clip, 46
eye, 46
normalized device, 46
screen, 163
window, 46
world, 46

cornea, 31
correct occlusion effects, 220
critical angle, 18
cross-fading techniques, 276
crossfeathering, 227
cube mapping, 54, 243
curved optics, 175
curvilinear image warping, 151
cyberspace, 1

de-gamma mapping, 263
degree of curvature, 191
Delauny triangulation, 262
depth buffer, 52
desktop

configurations, 38
monitors, 38

desktop-window environments, 305
detector, 26
diffuse term, 50
digital

holography, 247
storytelling, 300

diplopia, 32
direct illumination effects, 240
discrete grid blocks, 193
displacement error, 192, 194

displacement map, 268
pseudo pixel, 270

display
air, 210
area, 268
autostereoscopic, 35
BOOM-like, 36
embedded screen, 39
fog, 210
goggle-bound, 35
hand-held, 79
head-attached, 36
head-mounted, 4

optical see-through, 74
projective, 36, 76
video see-through, 74

holographic, 39
information, 255
large screen, 314
near-field, 159
parallax, 39
parallax barrier, 42, 247
portal, 96
projection, 38
pseudo 3D, 41
re-imaging, 39
real image, 40
retinal, 36
solid-state, 325
spatial, 7, 36

configurations, 5
optical see-through, 149

stereoscopic, 31
surround screen, 39

projection-based, 7
technology, 5
tiled screen, 274
transmissive, 277
ultimate, 2
varifocal mirror, 41
volumetric, 39

multi-planar, 41
divergence, 32
divergent lenses, 30
double buffering, 52
drag-and-drop interactions, 309



�

�

�

�

�

�

�

�

Index 365

dynamic
correction functions, 231
elimination of shadows, 277

edge collapse operations, 193
edge-free view, 174
electroholography, 44, 247
electromagnetic waves, 14
electronic paper, 325
electrons, 14
embedded

information windows, 311
multimedia content, 313

emission term, 50
energy state, 14
energy-flow, 235
environment light, 262
Everywhere Displays projector, 213
Extended Virtual Table, 11
extremal Fermat path, 202

film
half-silvered, 152
light directing, 152

filter times, 192
fine-grained retriangulation, 193
first rendering pass, 175
fish tank VR, 38
fixed focal length problem, 75
flat shading, 51
focal

distance, 22
length, 22
point, 22

focus area, 312
force feedback, 305
form-factor, 235
fovea, 32
foveal field of vision, 33
frame buffer, 52
frame locking, 172
front buffer, 52
front surface mirrors, 158
front-projection, 38
full color anaglyph, 37

function pipeline, 44
fixed, 45

gamma correction, 263, 273
GenLocking, 172
geometric optics, 66
ghost voxel problem, 325
global illumination, 5

solution, 235
global or discrete LODs, 194
global positioning system, 5
Gouraud shading, 51, 240
gyroscopes, 5

hand-held, 71
hardware acceleration, 5
high black level, 274
higher light intensities, 274
hologram, 43

color white-light, 245
computer-generated, 44, 247
copies, 307
multiplex, 246
optical, 43
rainbow, 245
reflection, 245
white-light, 245
white-light reflection, 245

holographic projection screens, 150
HoloStation, 11
homogeneous, 17

media, 17
homographic relationships, 277

I/O bulbs, 213
iLamps, 11, 213
illumination, 213
image, 19

composition technology, 169
geometry, 178
planes, 71
space, 153
space error, 198, 199

immersive, 7
implicit hierarchical LOD structure, 193
in-out refraction, 25, 159
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in-refractions, 28
indexed triangle mesh, 178
inter-reflection, 5
interaction, 301

devices, 6
techniques, 6

interference
fringe, 44
pattern, 16

interocular distance, 32
interval techniques, 202
iris, 31
irradiance map, 238
irregular surface, 98
isotropic, 17

keystone deformations, 261

L-vertices, 195
Lambert’s law, 271
Lambertian surfaces, 271
latency, 270
laws of refraction, 17
lectern-like setup, 309
lens, 31

variable-focus liquid, 83
lenticular sheet display, 43, 247
light

coherent, 15
monochromatic, 15
polarized, 16
reflected, 16
refracted, 16
scattered, 16
visible, 15

light emitting polymers, 69
light generators, 69
lighting

direct, 231
indirect, 231
synthetic, 230

limited resolution, 273
linear texture interpolation, 201
liquid crystal display, 36
local contrast effects, 265
long-range tracking, 297

low dynamic range, 274
Luminous Room, 213

magnifying glass, 311
matrix

intrinsic, 97
model-view, 45
perspective texture, 165
projection, 45
projection transformation, 46
reflection, 154
scene transformation, 46
view transformation, 46

matrix stack, 56
micro-mobile, 284
mirror beam combiner, 152

half-silvered, 149
hand-held, 79

mirrors, 20
misregistration, 5
mixed convexity, 191
mobile AR applications, 5
monocular field of vision, 32
multi-focal projection techniques, 278
multi-plane beam combiner, 167
multi-texturing, 234
multidimensional optimization, 202
multiple viewers, 170
mutual occlusion, 221

negative parallax, 34
neutrons, 14
non-Lambertian specular reflections, 267
non-linear predistortion, 191
novel lamp designs, 278
nucleus, 14
numerical minimization, 203

object collision detection, 297
object registration process, 153
object wave, 44, 245
objects, 19
oblique

projection, 112
screen display, 39

observers’ sweet-spot, 268
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occlusion, 5

shadows, 223

off-axis projection, 48

on-axis

situation, 48

viewing frustum, 177

opaque, 39

OpenGL, 45

optical

combination, 71

combiner, 69, 149

path, 71

see-through, 67

system

centered, 25

on-axis, 25

wavefronts, 244

optical axis, 25

organic light emitting diodes, 69

oriented convex hulls, 199

orthogonal projection, 112

osculation ellipsoid, 202

out-refraction, 26

overmodulated, 276

P-buffer, 53

painting style, 313

parabolic concave mirror, 189

parallax, 34

parameters

extrinsic, 315

intrinsic, 315

vertex, 51

parametric functions, 180

paraxial

analysis, 158

rays, 160

Parks effect, 81

passive

shuttering, 37

stereoscopic projection, 151

PC clusters, 172

Pepper’s ghost configurations, 40

per-pixel illumination, 214

per-vertex
level, 175
viewpoint, 175

personal digital assistant, 5, 79
perspective

division, 46
N-point problem, 223

phantoms, 242
phase, 14, 244
Phong shading, 51, 240
photometric emulsion, 244
photons, 14
photoreceptors, 31
pictorial artwork, 255
pixel-precise illumination, 299
planar lens, 25
plane of incidence, 17
planetary model, 14
polarization glasses, 37
polarized, 16
polygon order, 155
positive parallax, 34
presentation forms, 300
presentation tools and techniques, 310
principle of the optical path length, 17
programmable pipelines, 6
progressive meshes, 193
projective textures, 54
projector

light, 221
mobile, 278

projector-based illumination, 213, 221
protons, 14
Pulfrich effect, 37

quad buffers, 52
quadtree, 193

data structure, 195
quantum leap, 14

radiance map, 231
radio frequency identification and geom-

etry, 278
radiometric compensation, 255
radiosity, 5

method, 235
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ray-triangle intersection, 199
reach-in systems, 38
read-back, 53, 177
real image, 20

pseudo, 157
real object, 20
rear-projection, 38
rectangular quad, 202
reference wave, 43, 244
refinement criteria, 194
reflectance, 226

information, 230
map, 233

reflected
eye coordinates, 155
screen coordinates, 164
world coordinates, 155

refracted world coordinates, 162
registration, 2, 4
reillumination, 313
render-to-texture, 53
rendering

level-of-detail, 193
multi-pass, 54
real-time, 5

photo-realistic, 5
stereo, 97
stereoscopic, 71
two-pass, 165

rendering pass, 54
rendering pipeline, 44

fixed function, 6
multi-channel, 172
programmable, 64

response function, 232
retina, 31
retinal disparity, 32
retro-reflective surfaces, 36
rods, 31

scattering
Rayleigh, 16
secondary, 234
sub-surface, 267

screen space error, 198, 200
secondary screen, 152

selectively refining, 194

self-correcting, 284

self-occlusion, 227

self-shadows, 267

semi-immersive, 7

Shader Lamps, 213, 279

shaders, 64

pixel, 65

vertex, 65

shading model, 49

shadow map, 54, 58, 241

shadow mask, 223

shadow-casting, 5

shape-adaptive projection, 277

shuttering, 36

sine-condition of Abbe, 26

Smart Projectors, 12, 276

Snell’s law of refraction, 159

SoftGenLocking, 172

software frameworks, 7

solid-state devices, 41

spatial augmented reality, 1, 8

spatial resolution, 175

spatially aligned, 71

specular term, 50

spherical

lens, 28

mirrors, 189

spyglass, 152

stencil

buffer, 52

level, 53

test, 53

stereo separation, 34

stereo-pair, 33

stereogram, 44

stereopsis, 32

stereoscopic

viewer, 3

vision, 31

stigmatic

mapping, 159

pair, 19

stigmatism, 19

stimulated emission, 15
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structured light, 268

projection, 267

sub-pipelines, 167

sub-pixel precision, 270

swapped, 52

synchronized pointing, 309

system lag, 5

T-vertices, 195

table-like display devices, 292

Tablet PC, 79

target perspective, 268

temporal coherence, 193

tessellated grid, 178

texels, 54

texture mapping

perspective, 224

projective, 55

texture memory, 53

texture transfer, 192

time-multiplexed line strip scanning, 268

total internal reflection, 19

tracking, 4

electromagnetic, 4

infrared, 4

inside-out, 4

marker-based, 4

markerless, 4

mechanical, 4

optical, 4

outside-in, 4

transformation

curvilinear optical, 175

curvilinear refraction, 161

model, 175

model-view, 45

object-image, 204

reflection, 154

rigid-body, 154

scene, 45

screen, 163

view, 45

viewport, 46

transformation pipeline, 45

transmission, 245

transparent, 39
film screens, 150
projection screen, 150
screens, 149
semi-conductors, 150

tri-linear
interpolation, 191
texture filtering, 176

triangulated irregular networks, 193
truncated tri-pyramid shaped cells, 202
two-dimensional look-up table, 158
two-dimensional tessellated grid, 175

ultra-portable, 284
umbral hard-shadows, 226
underdrawings, 313
uniform illumination, 227

variational calculus, 202
vergence, 32
vertex split operations, 193
video mixing, 71
video see-through, 67
virtual

environment, 2
images, 20
objects, 33
points, 20
projection canvas, 268

virtual reality, 1
Virtual Showcase, 11
visual artifacts, 310
visual conflicts, 294

wall-like display screen, 39
wall-like projection systems, 292
warping, 271
wave optics, 66
wavelength, 244
white-balancing, 231
window on the world, 84
window violation, 86
windows mode, 306
workbench-like display screen, 39

X-vertices, 195

z-buffer, 52
zero parallax, 34
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Plate I. EM spectrum and spectrum of visible light. (See Figure 2.2.)

Plate II. ShaderLamps with Taj Mahal: The wooden white model is illuminated;
the scanned geometry of the Taj Mahal is augmented to add texture and material
properties; The geometry is then registered to the real Taj Mahal and displayed
from the projector’s viewpoint. (Images reprinted from [155] c© Springer-Verlag;
see Figure 3.16.)
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Plate III. The surface appearance of a neutral colored object is changed by ‘paint-
ing’ it with projected light. (Images reprinted from [155] c© Springer-Verlag; see
Figure 7.1.)

(a) (b)

(c) (d)

Plate IV. (a) Photograph of original object under room illumination; (b) screen
shot of captured reflectance relit with virtual point light source and Phong shad-
ing; (c) screen shot of simulated radiosity solution with captured reflectance, vir-
tual surface light source (shown in Figure 7.11), and two virtual objects (shown
in Figure 7.11); (d) photograph of original object illuminated with the computed
irradiance. (Images reprinted from [15] c© IEEE; see Figure 7.12.)
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Plate V. Results of a color correction process with a single projector on a real
drawing: (a) real drawing (64 × 48 cm) under environment light; (b) output
image emitted onto drawing; (c) partially augmented drawing; (d) output image
on a white piece of paper. (Displayed artwork courtesy of the British Museum,
London; images reprinted from [19] c© IEEE; see Figure 7.19.)

(a) (b)

Plate VI. Results of color correction process with two projectors: (a) the limited
intensity capabilities of a single projector result in visible artifacts; (b) the contri-
bution of a second projector reduces these effects. (Displayed artwork courtesy of
the Vatican Museum, Rome and the British Museum, London; images reprinted
from [19] c© IEEE; see Figure 7.24.)
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(a) (b)

Plate VII. (a) A green paper illuminated with white light; (b) the white diffuse
surface on the right is illuminated with green light. In this special case, the
secondary scattering off the white surface below is similar for both parts. (Images
reprinted from [155] c© Springer-Verlag; see Figure 7.3.)

(a) (b)

(c) (d)

Plate VIII. Rembrandt’s self-portrait: (a) copy of original painting as it looks
today (illuminated under environment light); (b)–(d) various cleaning stages to
remove the overpainted layers form 1935(d), 1950(c) and 1980(b) are projected
onto (a). Only black and white photographs of these stages are available. The
high black-level of the video projectors prevents the creation of a totally black
color on the canvas. Extreme regions, such as overlaid hair and hat cannot
appear completely black for this reason. (Displayed artwork courtesy of the Mu-
seum het Rembrandthuis, Amsterdam; images reprinted from [19] c© IEEE; see
Figure 7.25.)
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Plate IX. Geometrically corrected stereo-pairs of 3D scene projected onto a nat-
ural stone wall: (top) without radiometric compensation; (middle) with radiomet-
ric compensation; (bottom) radiometrically corrected stereoscopic walk-through
projected onto a papered wall. (Prototype realized by the Bauhaus-University
Weimar; see Figure 7.28.)

Plate X. Spatially augmenting large environments: (Top left) virtual model; (Top
right) physical display environment constructed using styrofoam blocks; (Bottom
row) augmented display—note the view dependent nature of the display, the
perspectively correct view through the hole in the wall and the windows. (Images
courtesy of Kok-Lim Low [93]; see Figure 8.6.)
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(a) (b)

(c) (d)

Plate XI. Examples of presentation techniques: (a) inlay text and image; (b)
magnification; (c) focus through highlighting and decolorization; (d) three-
dimensional flythrough through the Sistine chapel. Note, that in images (a)–
(c) the Adam drawing itself is not projected. (Displayed artwork courtesy of the
Vatican Museum, Rome and the British Museum, London; images reprinted from
[19] c© IEEE; see Figure 8.23.)

(a) (b)

(c) (d)

Plate XII. (a) Projection onto a wallpapered pitched roof area; (b) projection
with uncorrected colors; (c) color correction projected onto white piece of paper;
(d) color corrected image on wallpaper. All projections are geometry corrected.
(Images reprinted from [20] c© IEEE; see Figure 7.27.)
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(a) (b)

(c) (d)

(e) (f)

Plate XIII. (a) Projection onto a scruffy corner; (b) normal uncorrected pro-
jection; (c)–(d) line-strip scanning of surface; (e) geometry-corrected projection
on virtual canvas; (f) final geometry and color-corrected image (Movie footage:
The Jackal, c© 1997 Universal Pictures; images reprinted from [20] c© IEEE; see
Figure 7.26.)

(a) (b) (c)

Plate XIV. Warehouse scenario implementation: (a) manager locates items about
to expire (marked in white circles); (b) annotates some of those items (marked in
larger white circles); (c) employee retrieves and views the same annotations from
a different projector view. (Images reprinted from [159] c© ACM; see Figure 9.3.)
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Plate XV. Visualizing registered structures of (top) an adjacent room; (bottom)
stairways and lower building level for architectural applications in a realistic
environment. (Prototype realized by the Bauhaus-University Weimar, 2005; see
Figure 8.29.)

(a) (b)

(c) (d)

Plate XVI. Pontormo’s Joseph and Jacob in Egypt: (a) copy of original painting
illuminated under environment light; (b) modification of painting style from oil
on wood to watercolor on paper via a 2D artistic filter; (c) reillumination and
lens flare; (d) registered visualization of underdrawings (infrared recordings are
black and white) and explanation. (Displayed artwork courtesy of the National
Gallery, London; images reprinted from [19] c© IEEE; see Figure 8.24.)
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