
Hardware Support for Non-photorealistic Rendering

Ramesh Raskar

MERL, Mitsubishi Electric Research Laboratories

Abstract

Special features such as ridges, valleys and silhouettes, of a
polygonal scene are usually displayed by explicitly identifying
and then rendering ‘edges’ for the corresponding geometry. The
candidate edges are identified using the connectivity information,
which requires preprocessing of the data. We present a non-
obvious but surprisingly simple to implement technique to render
such features without connectivity information or preprocessing.
At the hardware level, based only on the vertices of a given flat
polygon, we introduce new polygons, with appropriate color,
shape and orientation, so that they eventually appear as special
features.

1 INTRODUCTION

Sharp features convey a great deal of information with very few
strokes. Technical illustrations, engineering CAD diagrams as
well as non-photo-realistic rendering techniques exploit these
features to enhance the appearance of the underlying graphics
models. The most commonly used features are silhouettes, creases
and intersections. For polygonal meshes, thesilhouette edges
consists of visible segments of all edges that connect back-facing
polygons to front-facing polygons. A crease edge is aridge if the
dihedral angle between adjacent polygons is less than a threshold.
A crease edge is avalley if the angle is greater than a threshold
(usually a different, and larger one). Anintersectionedge is the
segment common to the interior of two intersecting polygons.

Many techniques have been explored, most of them in 3D
software applications. For polygonal scenes, silhouettes can be
rendered at interactive rates by techniques described in
[Rossignac92] [Markosian97] [Raskar99] [Gooch99] and
[Hertzmann99]. Similarly, identifying sharp crease edges is
relatively simple when the adjacency information for polygons is
available. The traditional approach is to traverse through the scene
polygon graph and for each edge find the relationship between
adjacent polygons to determine whether it is a silhouette or a
sharp crease edge. If it is, one can render the edge with the rest of
the geometric primitives using a visibility algorithm. However,
explicitly identifying such edges is a cumbersome process, and

usually not supported by rendering APIs or hardware. The
rendering hardware is typically more suited to working on a small
amount of data at a time. For example, most pipelinesaccept just
a sequence of triangles (or triangle soups) and all the information
necessary for rendering is contained in the individual triangles.
Therefore, in the absence of special data structures, such edge
operations require random traversals of the scene graph to find
adjacent polygons. Maintaining (or creating) a large adjacency
matrix also increases the memory requirements. Hence, such
operations are left to the 3D software application. In addition, for
dynamic scenes or triangle soups, identifying ridges and valleys is
a cumbersome task. The extra effort required on the part of the
programmer is probably the primary reason why we do not see
such important features being used by many during visualization.

1.1 Procedural Geometry Generation

We focus on an approach that renders special features at uniform
width directly into the framebuffer using aprimitive shaderstage
in the graphics pipeline. This allows for the processing of a single
polygon at a time, as in traditional rendering, and still display
features that would otherwise require connectivity information.
We achieve this by introducing additional geometric primitives in
the scene with no or only small changes in rest of the rendering
pipeline, and without using additional rendering operations such
as lighting or texture mapping. This type of geometric processing
follows the trend of current generation of hardware supporting
programmable vertex and fragment operations
[DirectX][Nvidia01][Proudfoot01]. The additional polygons are
to be generated on-chip, without any software assistance.
Specifically, the polygon generation block is inserted between the
vertex-and-primitive-assembly stage and the vertex-shading stage
of the graphics pipeline (Figure 2). No data other than the vertex
positions and normal of the polygon and current viewing

raskar@merl.com
MERL, 201 Broadway, Cambridge MA, 02139 USA
Ph# (01)-617-621-7533

Figure 1: (i) Silhouettes, (ii) ridges, (iii) valleys and (iv) their
combination for a polygonal 3D model rendered by processing

one polygon at a time.

(i) (ii)

(iii) (iv)

parameters is used. The high level pseudo-code for the primitive
shading block is shown below.

For each polygon
If back-facing

Modify polygon geometry to display silhouettes
Else /* if front-facing */

Attach new polygons to display ridges or valleys

1.2 Motivation

Consider the psuedo-code shown in Figure 3 (using as an example
the OpenGL API). Can we design hardware to support such API
functionality? Can we render special features in a scene specified
by a sequence of individually defined polygons? Rendering
methods that can pipeline and process a single primitive at a time
appear to win over even efficient methods that require
simultaneous operations on multiple polygons. A common
example is the ubiquitous z-buffer for visibility computation.
Methods that require pre-sorting of polygons with respect to the
camera, although elegant, are less popular. Rendering APIs or
hardware also cannot support operations that require conditional
search in datasets of unknown size. Our method thus wins over
the traditional edge rendering approach by allowing for the
rendering of a single polygon at a time. A secondary, but well
known, problem with explicit edge rendering is that the typical
polygon scan conversion pipelines are less efficient when 2D or
3D ‘line’ segments are displayed. The lines are filled at uniform
width in screen space, and hence need to be treated separate from
the polygon setup and fill.

glEnable (GL_SIL_RIDGE_VALLEY);
glBegin (GL_TRIANGLES):

glVertex (…);
glVertex (…);
…
…

glEnd ();
glDisable (GL_SIL_RIDGE_VALLEY);

Figure 3 : A desirable simple API calling sequence

The silhouette edges are view-dependent and hence, clearly, do
need to be computed per frame. However, one may wonder why
ridges and valleys, which are view independent (and hence fixed
under rigid transformation), should be identified per frame. There
are several reasons. For dynamic scenes with non-rigid
deformations, the relationship between neighboring polygons can
change. The vertex shaders also allow procedural deformation of
vertices that can add interesting features. For example, a waving
flag or chest deformation for a breathing character can be
achieved using vertex-level programming, without complete
feedback to the software application [Nvidia01]. 3D applications
as well as vertex shaders allow key-frame animation interpolation
and (vertex) morphing, which affect the dihedral angles at run-
time. In some rare cases, the mesh topology itself can change over
time, affecting the connectivity information. This includes
intentional separation or merging of meshes, LODs, and
subdivision surfaces. When the models are authored so that they
are specified using higher order surfaces, it is often difficult to
algebraically indicate high curvature regions, which become
ridges and valleys after (possibly dynamic) tessellation.

Our goal is to directly display special features using only local
calculations. Just as there are no (global) constraints about what
type of polygonal objects can be scan converted, our method does
not depend on the object being closed or open, concave or convex,
having cusps or on the genus of the object.

Contribution
Our main contribution is a set of techniques to render special
features, by using the available information contained in a single
polygon and without connectivity information, allowing pipelined
hardware implementation.

2 THE RENDERING PROCESS

The rendering method assumes that the scene consists of oriented
convex polygons. This allows us to distinguish between front and
back-facing polygons for silhouette calculations, and ensure
correct notion of dihedral angle between adjacent polygons. The
procedures for the four types of special features are completely
independent. Note that, we perform the same four procedures on
all the polygons in the scene, without knowing a-priori which type
of special feature would be visible at that polygon. Depending on
the viewing conditions and the relationship between adjacent
polygons, the appropriate special feature, if enabled, emerges after
rasterization.

For silhouettes and ridges, the additional polygons are
procedurally introduced during the primitive shader stage. The
pixel shader stage is not modified.

Vertex and Primitive
Assembly

Primitive Shader

Vertex Shader

Polygon Setup

Pixel Shader

Tesselate higher
order surfaces

Generate polys,
Change normal

Deform, Transform,
Lighting

Convert to
fragments

Bump, Texture,
Depth-test

Figure 2: The new primitive shader in the programmable
graphics pipeline. The pixel shader is also modified.

For valleys and intersections, in addition to the new geometry, a
second depth buffer and a new type of depth test is required.
Thus, both stages, the primitive shader and the pixel shader, are
modified. In the appendix, we describe a less efficient method
using currently available rendering resources.

2.1 Silhouettes

The basic idea in our approach is to enlarge each back-facing
polygon so that the projection of the additional part appears
around the projection of the adjacent front-facing polygon, if any
(see Figure 4, shown in flatland). If there is no adjacent front-
facing polygon, the enlarged part of the back-facing polygon
remains hidden behind existing front-facing polygons. The normal
of the back-facing polygon is flipped to ensure that it is not culled
during back-face culling. To achieve a given width in the image
space, the degree of enlargement for each back-facing polygon is
controlled, depending on its orientation and distance with respect
to the camera. This method is influenced by [Rossignac92] and
[Raskar99], but there are two differences. They use two passes of
rendering and consider enlargement using only orthographic (or
weak perspective) projection.

For each polygon
If front-facing

Color polygon white
Else /* if back-facing */

Enlarge according to view and color black
Flip normal

Consider the situation shown in Figure 5 for computing the
required enlargement (figure in flatland). When we also consider
the angle between the view vectorV i.e. direction from viewpoint
to the vertex, and camera axis vectorC, i.e. the vector
perpendicular to the image plane, the enlargement is proportional
to z(V.C)/(V.N), wherez is depth of the vertex with respect to the
camera. Both dot products can be easily calculated per polygon
vertex. Note that, the angle(V.N) is also commonly used during

the lighting calculations for highlights produced by specular
reflectance for a local viewpoint. The dot product(V.C) is in fact
constant for a given location in image space and radially
symmetric around the principal point. Thus it can be pre-
calculated.

The required enlargement is also dependent on the orientation of
the edge of the polygon. IfE is the edge vector, so thatcos(α) =
V⋅E, then the required enlargement isz sin(α) (V⋅C)/(V⋅N) in the
directionE × N. The shift in edges converts ann-sided face, with
verticesPi, i=0,1..n-1, edgesEij, j=(i+1)%n, into 2n-sided planar
polygon. The2n vertices are given by

[][]N)C)/(VVsin(zNijE
k

P ⋅⋅×+)
sil

w α

where, k=i,j and α = cos-1(V⋅Ei,j)

The uniform-width silhouette edges can be rendered at different
pixel widths using a parameter,wsil, to control the enlargement of
back-facing polygons. If desired, interesting patterns of silhouette
edges can be rendered by texture mapping the enlarged part.

2.2 Ridges

For rendering silhouettes, we modify each back-facing polygon.
For ridges and valleys, we modify instead each front-facing
polygon. This idea, while simple, surprisingly has never been
mentioned or explored in the graphics or geometry literature. Say,
we want to display in black, the visible part of each edge for
which the dihedral angle between adjacent polygons is less than
or equal to a user selectable global thresholdθ, superimposed on
the original model if desired. (Strictly speaking, dihedral angle is
the angle between the normals of two oriented polygons. For the
sake of simplicity of description, as seen in Figure 6(i), we will
use the term dihedral angle to mean angle between the ‘front’
faces of the corresponding planes i.e. (1800 – angle between
normals)). Typical range of the thresholdθ is (0,1800), but this
technique can support the complete range of angles (0,3600). The
threshold value used for rendering in Figure 1(ii) is 1200.

We add black colored quadrilaterals (orquadsfor short) to each
edge of each front-facing polygon. The quads are oriented at angle
θ with respect to the polygon as seen in Figure 6(ii) and 6(iii) in
flatland. The visibility of the original and the new polygons is
performed using the traditional depth buffer. As shown in Figure
6(iv), at a sharp ridge, the appropriate ‘edge’ is highlighted. When
the dihedral angle is greater thanθ, the added quadrilaterals are
hidden by the neighboring front-facing polygons. Figure 7(i) and
(ii) show new quadrilaterals that remain hidden after visibility
computation in 6(iii).

Front

Back
Extension

Camera

Figure 4: Silhouettes. Back-facing polygons in red before (left) and
after enlargement (right).

(i) (ii) (iii) (iv)

θ

θ

θ θDihedral
angle

Figure 6: Ridges. (i) Front-facing polygons, (ii) and (iii) black quads
at threshold angle θÿ are added to each edge of each front-facing

polygon, (iv) at a sharp ridge, the black quads remain visible.

N

CV
N

CV

Figure 5: The effective projection (green) in the image plane of the
polygon enlargement (black). The thickness of the rendered feature

is controlled by changing the width of the enlargement.

For each polygon
If front-facing

Color polygon white
For each edge of the polygon

Attach new black quad at angle θ

The width of the new quadrilateral, measured perpendicular to the
edge, is determined using the same enlargement technique (Figure
5) used in the previous subsection for displaying silhouettes. The
quadrilateral for each edgeEij, i=0,1..n, j=(i+1) mod n, for n-sided
polygon is defined by the two verticesPi andPj forming the edge
Eij and the two new vertices

[])ijRC)/(VV(sin(z
k

P ⋅⋅+)
ij

Q
ridge

w α

wherek=i,j, α = cos-1(V⋅Eij), and
normal for the new quad is,Rij = -N cos(θ) + (ÿEij× N)sin(θ)
and vector perpendicular toEij, Qij = -N sin(θ) - (ÿEij× N)cos(θ)

The thickness of the rendered ‘edge’ can be controlled with the
parameterwridge. The display of sharp ridges is, thus, possible in a
single pass without connectivity information, simply by
processing one polygon at a time. It is also possible to render
silhouette and sharp edges together in the same rendering pass as
described in the pseudo-code below. Note, again, that for
silhouettes and ridges only the primitive shader stage is modified.

For each polygon
If front-facing

Color polygon white
For each edge of the polygon

Attach new black quad at angle θ
 If back-facing

Enlarge and color black

2.3 Valleys

Our method for rendering valleys is very similar to that of
rendering ridges, because both are types of sharp edges defined by
dihedral angle threshold. Given a user-selectable global threshold
φ for dihedral angle, we would like to display, say in black,
visible part of each edge for which the dihedral angle is greater
than φ , superimposed on the original model if desired. Typical
range of the thresholdφ is (180,3600). For example, in Figure 1,
the threshold is 2400. Similar to Figure 6, we add black
quadrilaterals at angleφ to each edge of each front-facing polygon
as shown in Figure 8. When the dihedral angle is greater thanφ
(Figure 8(i) and (ii)), new quadrilaterals appear behind the nearest
front-facing polygons. On the other hand, when the valley is not
sharp (Figure 8(iii) and (iv)), the new quadrilaterals appear in

front of the neighboring polygons. This is the exactly reverse of
the situation for ridges, and hence leads to a more complex
algorithm. How can we ‘show’ quads that remain occluded and
‘hide’ quads that appear in front of nearest front-facing polygons?

Our solution involves using two depth buffers for visibility. The
idea of using multiple depth and framebuffers during scan
conversion has been explored by [Rossignac95] and usually
involves many passes of rendering and mixing line and polygon
rendering. Here we present a new technique to trap the
appropriate added quadrilaterals, as shown in Figure 9. The two
depth buffers,z1 andz2, are identical except that depth values in
z2 are slightly larger than corresponding values inz1. The front
envelope of cyan colored region shows values inz1 and the far
envelope shows values inz2. In addition to the traditional greater-
than-test and less-than-test, we also need a new Boolean depth
test, called between-test. It returns true when the incoming
fragment has depth value between the existing values inz1 and
z2. The simplified pseudo-code is shown below. The new
quadrilaterals are to be added in the primitive shader stage in
Figure 2 but the update of first and second depth buffers and
depth tests are to be performed as part of the pixel shader stage.

For each front-facing polygon
Render the polygon

If (less-than-test(z1)) Update color,z1 and z2 buffer
For each edge of the polygon

Render new black quad at angle φ
If (between-test(z1,z2)) Update color buffer

Thus, a new quad never updates the depth buffer. It is displayed
(i.e. color buffer is updated) only if it lies between the depth
interval trap (shown in cyan in Figure 9(ii)) created by two copies
of the same neighboring front-facing polygon. The polygons in
the scene can be processed in any order.

Consider the example in Figure 10 in flatland. In (i), first the
primitive shading stage adds quadsa anda’ to polygonA at angle
φ. During pixel shading stage, polygonA updates the color buffer
(shown on the image plane), and both depth buffers. The quadsa

(i) (ii)

z1 z2

Figure 9: Using depth interval buffer to trap the added
quadrilaterals

(i) (ii) (iii) (iv)

φ
φ

Figure 8: Valleys. (i) Front-facing polygons (ii) black quads at angle
φ are added to each edge of each face. When the valley is sharp,

the quads remain hidden. (iii) and (iv) When the valley is not
sharp, the quads become visible.

(i) (ii) (iii)

θ
θ

θ
θ

Figure 7: Ridge without sharp angle. (i) and (ii) Black quads are
added, (iii) the quads remain invisible after rasterization

and a’ do not affect the depth buffer. Botha and a’ are checked
with between-test to see if they are between previously stored
values inz1 and z2. In this case, they are not and hence they do
not affect the color buffer. In (ii), the polygonB add new quads,b
and b’. During pixel shading,B updates the color,z1 and z2
buffer. The between-test fails for quadb but returns true for quad
b’. Hence black colored quadb’ updates the color buffer,
emerging as a special feature. The depth buffer values remain
unaffected (in this case, correspond to polygonA). Hence, if some
polygon later occludesA, the color (as well as depth buffer
values) will be appropriately overwritten. Finally in (iii), the
polygonC adds news quadsc andc’. However, the between-test
fails for both quads and no new special features emerge.

2.4 Intersections

Although intersections are not encountered in quality graphics
models, imprecise conversions or processing can result in
intersection of polygons. The technique to detect intersection
between two visible front-facing polygons for a given viewpoint
is very similar to the procedure for rendering sharp valleys.

Each fragment during scan conversion of front-facing polygon is
checked to see if it is in the in betweenz1 and z2 depth range
(Figure 11). For a model with intersections or coplanar polygons,
such fragments will be trapped and rendered if they belong to the
visible front-facing polygons.

3 ISSUES

The techniques work wonderfully well for different relationships
among viewpoint, polygons and their neighbors in the mesh.
However, in some cases minor artifacts are observed. For ridges

and valleys, if the dihedral angle between any two adjacent visible
front-facing polygons is very close to the threshold angle, the so-
called ‘z-fighting’ due to near-coplanarity of the polygons and the
new quads is noticeable.

When the special features are rendered very wide (usually more
than 20 pixels), cracks or small gaps can develop (Figure 12.
Zoom in with PDF viewer to see them more clearly.) The cracks
are rarely visible when the features are not rendered very wide.

The four types of geometric features are independent except when
a ridge edge is also a silhouette edge. When the threshold ridge
angle θ < 1800 , which is usually the case, the new quads
corresponding to the silhouette features will occlude the quads
corresponding to ridge feature. When thresholdθ ≥ 1800, the
rendered feature depends on the dihedral angle between the
adjacent front and back-facing polygon. If silhouettes and ridges
are rendered in the same color, say black, the artifacts can be
avoided.

4 PERFORMANCE

As shown in Figure 2, the new quadrilaterals are added in the
pipeline before vertex shading. For silhouette and ridge rendering,
the output format of the primitive shader is same for the original
and the new polygons. Hence, the impact on the design of the rest
of the pipeline is minimal. Rendering valley and intersection,
however, involves tagging new quadrilaterals so that they are
processed differently when they reach the pixel shading stage.
The pixel shading stage requires an additional depth buffer and
comparison functionality.

For each edge of a front-facing n-sided polygon, we add two
quads, one each for a ridge and a valley, i.e.4n new vertices. For
each back-facing polygon, the enlargement leads ton new
vertices. To evaluate the impact of additional geometry, we need
to look at the bandwidth, transform (part of vertex shader stage)
and fill rate (part of pixel shader stage) performance [Seidel00].
The fill rate is not a significant issue because the screen area in
pixels is only marginally higher when the new quads are also
rendered. Nevertheless, the number of vertex transformations
increases by a factor of 2 to 5. The overall rendering performance
in many applications is, however, limited by the bandwidth
needed to feed vertices to the graphics processor rather than the
graphics processor cycles available for the geometry
[Vlachos01][Nvidia01][Olano98]. Since the new vertices are to be
generated on the chip, the bandwidth requirements do not change.
This idea is also exploited, for example, in tessellating higher-
order primitives in GeForce3 [Nvidia01] or curved PN triangles in
ATI chips [Vlachos01]. Generation of new vertices, however,
affects the performances of vertex buffers and caches.

When a 3D software application identifies special features, only a

For each front-facing polygon
Render the polygon

If (less-than-test(z1)) Update color,z1 and z2 buffer
ElseIf (between-test(z1,z2)) Update color(=black) buffer

Input Step (i) (ii) (iii)

z1 z2

Displayed
part

Figure 11: Two intersecting polygon interiors (left) are displayed by
finding parts trapped between the two depth buffers

Figure 12: Cracks when rendering wide ridges, cracks disappear
for thinner rendering, underlying wire frame model.

(ii)(i)

A1 A2

(iii)

a

a'

B1

B2

b'

b

C1
C2

c

c'

Image
Plane

Figure 10: Steps in rendering valleys.

subset of the scene edges need to be rendered, but the application
must maintain an edge-based data structure for adjacency
computation, and thus also requires significant memory. In certain
cases, it is practically impossible to detect the special features
using software application e.g. during on-chip geometry
modification for key frame animation interpolation, morphing and
deformation using programmable vertex shading stage.

5 CONCLUSION

Although at first it appears rather unusual and then in retrospect
rather simplistic, the idea of introducing new geometric primitives
leads to a robust and practical set of techniques for rendering
special features. To a naïve student, it may seem impossible to
display edge-based features without processing edge primitives or
rendering lines.

The main features of our rendering method are summarized
below.

• Single polygon at a time processing

• No preprocessing or connectivity information allowing the
display of dynamic scenes with non-rigid deformations and
key-frame animation interpolations

• No explicit identification of special edges

• A single traversal of the scene graph (or polygon soup)

• Adding geometry procedurally using only local information

• Adding purely geometric features without lighting or texture
mapping operations, allowing the original and the new
primitives to be treated very similarly

• Minimal or no change to authoring tools

Many extensions of the basic functionality of the primitive shader
are possible. The new quads can be rendered with appropriate
lighting and texturing for additional shape cues or for non-
photorealistic rendering. Partially transparent front-facing
polygons will display hidden creases in shades of gray. The
silhouette can be made to appear smooth by rendering all back-
facing polygons with curved PN triangles [Vlachos01]. Currently,
vertex and pixel shading programmability is available in graphics
pipeline, but we can soon expect to see on-chip programmable
shaders that manipulate one complete primitive and sometimes a
collection of primitives. The primitive shader stage will allow
advanced geometry modification, constrained dynamic
tessellation (curved PN triangles with more boundary conditions)
and smooth transition between LODs. The superior polygonal
approximation of the underlying surfaces will lead to higher
quality rendering of special features using our technique. Finally,
when hardware support is lacking, our method can be
implemented as a part of a software library to simplify the
programming task of rendering special features.

ACKNOWLEDGEMENTS

We would like to thank Michael F Cohen for initial discussions on
this project. We thank Fredric Vernier, Rebecca Xiong and Ajith
Mascarenhas for their useful comments.

6 REFERENCES

[DirectX] Microsoft Direct X 8.0, 2001.

[Gooch99] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter
Shirley and Richard Riesenfeld. Interactive Technical
Illustration. Symp on Interactive 3D Graphics, 1999

[Hertzmann99] A. Hertzmann. Introduction to 3D Non-
Photorealistic Rendering: Silhouettes and Outlines. SIGGRAPH
Course Notes. 1999.

[Proudfoot01] Kekoa Proudfoot, William R. Mark, Svetoslav
Tzvetkov, and Pat Hanrahan A Real-Time Procedural Shading
System for Programmable Graphics Hardware. SIGGRAPH
2001.

[Markosian97] Lee Markosian, Michael A. Kowalski, Samuel J.
Trychin, Lubomir D. Bourdev, Daniel Goldstein, and John F.
Hughes. Real-Time Nonphotorealistic Rendering, Computer
Graphics (Proceedings of SIGGRAPH '97), August, 1997.

[Nvidia01] Nvidia Corp. User Programmable Vertex Engine.
2001.

[Olano98] Olano, Marc and Anselmo Lastra. A Shading
Language on Graphics Hardware: The PixelFlow Shading
System, Computer Graphics (Proceedings of SIGGRAPH '98),
July, 1998.

[Raskar99] Ramesh Raskar, Michael Cohen. Image Precision
Silhouette Edges. Interactive 3D Graphics Symposium, 1999.

[Rossignac92] Jarek Rossignac, Maarten van Emmerik. Hidden
Contours on a Framebuffer. Proceedings of the 7th Workshop on
Computer Graphics Hardware, Eurographics Sept. 1992.

[Rossignac95] Jarek Rossignac. Depth Interval Buffer.
http://www.gvu.gatech.edu/~jarek/papers/

[Seidel00] Hans-Peter Seidel and Wolfgang Heidrich, Hardware
Shading: State-of-the-Art and Future Challenges. Graphics
Hardware Workshop. Sept, 2000.

[Vlachos01] A. Vlachos, J Peters, Chas Boyd, Jason Mitchell,
Curved PN Triangles. Interactive 3D Graphics Symposium,
2001.

7 APPENDIX

When a dual depth buffer is lacking, the valleys and intersections
can be rendered using one depth and one stencil buffer at the cost
of multiple (upto 3) passes of rendering. The processing does not
require adjacency information or preprocessing.

The details and corresponding code is available on the project
websitehttp://www.cs.unc.edu/~raskar/NPR/.

