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Abstract

This paper proposes a new framework for video editing in gradient domain. The spatio-temporal gradient fields of target
videos are modified and/or mixed to generate a new gradient field which is usually not integrable. We compare two methods to
solve this ‘‘mixed gradient problem’’, i.e., the variational method and loopy belief propagation. We propose a 3D video inte-
gration algorithm, which uses the variational method to find the potential function whose gradient field is closest to the mixed
gradient field in the sense of least squares. The video is reconstructed by solving a 3D Poisson equation. The main contribu-
tions of our framework lie in three aspects: first, we derive a straightforward extension of current 2D gradient technique to 3D
space, thus resulting in a novel video editing framework, which is very different from all current video editing software; sec-
ondly, we propose using a fast and accurate 3D discrete Poisson solver which uses diagonal multigrids to solve the 3D Poisson
equation, which is up to twice as fast as a simple conventional multigrid algorithm; finally, we introduce a set of new appli-
cations, such as face replacement and painting, high dynamic range video compression and graphcut based video composit-
ing. A set of gradient operators is also provided to the user for editing purposes. We evaluate our algorithm using a variety of
examples for image/video or video/video pairs. The resulting video can be seamlessly reconstructed.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Video editing; Image processing; Poisson equation; Graphcut; Gradient domain
1. Introduction

With increasing access to and sophisticated use
of digital video camcorders, there is evergrowing
interest in video editing tools allowing consumers
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to manipulate the captured video. While commer-
cially available digital video editing tools such as
Adobe Premier [1] and Final Cut [2] by Apple do
allow so-called non-linear editing, the pipeline of
cutting, pasting, and trimming sequences of frames
is reminiscent of traditional physical film cutting.
On the other hand, photo editing tools such as
Photoshop [3] allow more complex operations on
individual images but they cannot be seamlessly
applied to videos.
.
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Fig. 1. Steps in our approach: (1) obtain the region of interest (ROI) through user interaction; (2) calculate the 3D gradient field of the
input sequences; (3) modify the 3D gradient field based on the gradient fields of input sequences; (4) integrate the modified gradient field to
obtain a composite video sequence.

Fig. 2. Object Insertion. First row from left, a selected region of interest, i.e., a mask, original video sequence, new background. Second
row from left, reconstructed video; the person is duplicated in the new background.
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Our goal is to develop tools that go beyond frame-
constrained manipulation such as resizing, color
correction, and simple transitions, and provide
object-level operations within frames. Some of our
targeted video editing tasks include transferring a
motion picture to a new still picture, importing a
moving object into a new background, and composit-
ing two video sequences.

The challenges behind this kind of complex video
editing tasks lie in two constraints:
1) Spacial consistency: imported objects should blend
with the background seamlessly. Hence pixel replace-
ment, which creates noticeable seams, is problematic.

2) Temporal coherency: successive frames should dis-
play smooth transitions. Hence frame-by-frame edit-
ing, which results in visual flicker, is inappropriate.

Our work is aimed at providing an easy-to-use
video editing tool that maximally satisfies the spa-
tial and temporal constraints mentioned above
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and requires minimum user interaction. This tool is
based on a new approach for video editing in the
spatio-temporal gradient domain. A number of dif-
ferent operators are provided for gradient manipu-
lation. As shown in our experimental results, our
approach is able to seamlessly perform tasks such
as face replacement, moving object insertion, and
video compositing. By manipulating the gradient
domain representations, a user can edit video
sequences in many interesting ways.

Fig. 1 shows an overview of our approach. All
the user needs to do is to give a region of interest
(ROI) in step 1 and then select a gradient operator
(which will be defined in Section 3.1) in step 3. An
example of importing a moving person from one
lawn to another is shown in Fig. 2. After user giving
a ROI that contains the moving person and an oper-
ator of ‘SUBSTITUTE’, the system automatically gener-
ates a new video with the moving person in the new
background.

2. Related work

2.1. Image and video editing

2.1.1. Image editing

Our work is directly related to existing work on
image editing. The Photoshop software has been
widely used by consumers. To the best of our
knowledge, most of the techniques used in the soft-
ware have not been published. Since the seminal
work by Porter and Duff [4], there has been an
increasing interest in exploring new techniques for
image editing due to the wide use of digital cameras.
Pyramid based image editing proposed by Adelson
et al. [5] decomposes an image into low and high fre-
quency bands, and different frequency bands are
combined with different alpha masks for image
compositing. Lower frequencies are mixed over a
wide region around the boundary, and fine details
are mixed in a narrow region around the boundary.
This approach works in pixel domain and the result-
ing image exhibits a gradual transition along the
boundary. Barrett and Cheney [6] propose an
object-based image editing method in which the
foreground objects are modified interactively at
the object level. Tan and Ahuja [7] propose selecting
objects with freehand sketches through alpha chan-
nel estimation for editing natural images. Recent
methods for image editing proposed by Pèrez et al.
[8] and by Elder and Goldberg [9] work in gradient
(contour) space. Images are reconstructed by inte-
grating the modified gradients by solving a Poisson
equation.

2.1.2. Image/video matting
Our work is also related to research in image/vid-

eo matting or compositing [10]. The goal of video
matting is to insert new elements seamlessly into a
scene. Traditional methods like blue-screen matting
used for film production require strictly controlled
studio environments, and therefore are not suitable
for home video editing. A recent method suggested
by Chuang et al. [10] overcomes this constraint by
segmenting a hand-drawn keyframe into trimaps,
and then performing interpolation using forward
and backward optical flow. They mainly focus on
the exact extraction of an alpha matt from a video
sequence, which is difficult but necessary. Finally,
some image inpainting algorithms use techniques
similar to ours by solving PDEs which are more
complex than Poisson equations [11].

2.1.3. Video texture editing

Some work on dynamic texture synthesis and
editing is also related to our work. Doretto and
Soatto [12] propose modifying the intensity, scale,
and speed of a single dynamic texture. Graphcut
textures [13] combine two dynamic textures by find-
ing the minimum cut between them and then form-
ing a direct composite in image domain. This
approach has problems when the two video
sequences have differences in camera gain or scene
illumination, geometrical misalignments or motion
inconsistency.

2.1.4. High dynamic range video compression

A conventional digital camera typically pro-
vides a dynamic range of two orders of magnitude
through the CCD’s analog-to-digital converter (the
ratio in intensity between the brightest pixel and
the darkest pixel is usually referred to as the
dynamic range of a digital image). However,
many real-world scenes have a larger brightness
variation than can be linearly recorded by the
image sensors. Thus, some areas of the images
captured by digital cameras are undersaturated
or oversaturated.

Tonemapping (also called tone reproduction) is
an efficient way to faithfully reconstruct high
dynamic range radiance on a low dynamic range
display. To capture a high dynamic range image,
several images with different exposures are usually
taken to cover the whole range of a real scene
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using conventional cameras. Those images are
combined into a single high dynamic range image
(radiance map). High dynamic range radiance
maps are recovered from these images [14] and
tonemapping methods are then applied to the
radiance maps to reduce the dynamic range.
Many tonemapping algorithms for compressing
and displaying HDR images have been proposed
[15–18]. Reinhard et al. [18] have achieved local
luminance adaptation by using the photographic
technique of dodging-and-burning. Tumblin et al.
[17] propose the Low Curvature Image Simplifier
(LCIS) by applying anisotropic diffusion to prevent
halo artifacts. Fattal et al. [16] propose a method
to attenuate high intensity gradients while magni-
fying low intensity gradients, in which the lumi-
nance is recovered from the compressed
gradients by solving a Poisson equation. In spite
of these efforts on HDR image display, there is lim-
ited progress on robust algorithms for tonemap-
ping HDR video. Kang et al. [19] describe an
approach which varies the exposure of alternate
frames. It requires a burdensome registration of
features in successive frames to compensate for
motion. Given the feature correspondence prob-
lem, rapid movements and significant occlusions
cannot be dealt with easily. In addition, the two
different exposures may not capture the full radi-
ance map of a scene. More exposures will make
the feature registration problem more difficult.

2.2. Gradient-based techniques

Gradient domain techniques have been widely
used in computer vision and computer graphics.
The motivation to use gradients is based on the ret-
inex theory of Land and McCann [20] which states
that the human visual system is not very sensitive
to absolute luminances reaching the retina, but rath-
er to illumination differences. A number of applica-
tions based on this technique have been developed,
such as shadow removal by Finlayson et al. [21];
multispectral image fusion by Socolinsky and Wolff
[22]; image and video fusion for context enhance-
ment by Raskar et al. [23]; image inpainting by Bal-
lester et al. [24]; and High Dynamic Range image
compression by Fattal et al. [16].

2.3. Contributions of our work

In spite of the fast progress in object-level
image editing, there has been surprisingly little
work done in video editing. One exception is the
work presented by Bennett and McMillan [25]
where video sequences are treated as a spatio-tem-
poral volume that can be sheered and warped
under user control. Their work is still in the origi-
nal image domain, and as a result importing a
new object will result in a ‘‘cut-out’’ effect. Our
work extends the gradient based techniques to
three dimensional space by considering both spa-
tial and temporal gradients, which leads to more
versatile video editing capabilities. Within our
framework, we treat a video as a 3D cube but
is in forms of gradient instead of intensity. The
main contributions of our work include:
1) Extension of 2D gradient technique to 3D:
though the extension from 2D gradient technique
to 3D simply requires the addition of time as
another dimension, it leads to a wide range of
video editing applications.

2) 3D poisson solver using diagonally oriented
grids: we propose using a 3D poisson solver
on diagonally oriented grids to solve the 3D
poisson equation. The scheme is found to be
up to twice as fast as comparable conventional
multigrid algorithms. This is important when
dealing with videos.

This paper is an extended version of our previous
conference paper [26]. We present a comprehensive
description of our novel video editing framework
with systematic analysis of the algorithm and
results. In addition, we introduce a set of new appli-
cations within this framework, such as face replace-
ment and painting, high dynamic range video
compression using split-aperture camera, and video
compositing based on automatic mask generation
using 3D graph-cuts.

3. Gradient domain video editing

Current gradient domain methods [16,8,21–23]
can be considered as performing 2D integration
after modifying the 2D gradient field. The integra-
tion involves a scale and shift ambiguity in lumi-
nance plus an image dependent exponent when
assigning colors. Hence, a straightforward frame
by frame application to video will result in a lack
of temporal coherency in luminance and flicker in
color. We instead treat the video as a 3D cube
and solve this problem via 3D integration of a
modified 3D gradient field.
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Consider an extreme example to contrast the
two approaches. We deliberately set the gradi-
ents in a video which are smaller than some
threshold to zero. The video obtained via 2D
or 3D integration will have a (cartoon like) flat-
tened-texture effect. The frame by frame 2D inte-
gration approach results in noticeable flicker,
while the video reconstructed by 3D integration
shows near-constant and large flat colored
regions.

3.1. Gradient operators

To facilitate editing operations in the spatio-tem-
poral gradient space, we provide a set of gradient
operators,

O¼ fmax;min;linear;thres;zero; . . . ;substituteg
ð1Þ

which are used to compare gradients from different
channels, c, or dimensions, ijk (spatial dimension,
temporal dimension or both) when editing videos.
Assume G1 and G2 are gradients of two source imag-
es/videos, G is the target gradient and M is a given
mask, we define a set of gradient operators as
follows:
1) MAX/MINc, ijk(G1,G2,M)

G ¼ max=minc; ijkðG1; G2Þ �M ð2Þ

This operator is used to extract large or small
spatial/temporal gradients within a mask of two
input video sequences. For example,
MAXc, k(G1,G2,M) can be used to compare the
gradients in the temporal dimension.

2) ZERO(G1,M)

G ¼ G1 � ð1�MÞ ð3Þ
The ZERO operator sets the gradient in the
mask region at zero, which can be used for
inpainting of small scratches in the film or
removing shadows.

3) LINEAR(G1, G2, M)

G ¼ ðl � G1 þ m � G2Þ �M ð4Þ
where l and m are weights, and usually l + m = 1.
The LINEAR operator finds the linear combination
of two gradients G1 and G2.

4) SUBSTITUTE(G1,G2,M)

G ¼ G1 �M þ G2 � ð1�MÞ ð5Þ
The SUBSTITUTE operator simply substitutes G1

with G2 in the mask region. It is often used
to insert a foreground moving object into a
new background.

5) THRES(G1,M)

G ¼ ðG1 > dÞ �M ð6Þ
where d is a threshold. The THRES operator is
used to extract the gradients which are larger
than some user-given threshold d.

6) COMPRESS(G1,M)

G0 ¼ a= G01
�� ��� �b � G01 �M ð7Þ

where, G 0 and G01 are defined in the log-domain in
spatial domain; a = 0.1–0.2 times the average gra-
dient norm of G01; b is a constant with a value be-
tween 0 and 1. It is similar to the gradient
attenuation function as in [16]. The COMPRESS oper-
ator is used to attenuate large gradients and mag-
nify low gradients. Thus, it can be used for high
dynamic range video compression. Note that if
we attenuate the 3D log-gradients in a straightfor-
ward way, some artifacts may result since the tem-
poral gradients will be attenuated and the motion
will be smoothed. This is made obvious by imagin-
ing that a ball is moving in a scene. If we compress
the temporal gradient of the sequence, the recon-
struction of the scene will be blurred. Therefore,
we choose to attenuate only spatial gradients.
3.2. 3D video integration

Our task is to generate a new video, I, whose gra-
dient field is closest to the modified gradient, G. One
natural way to achieve this is to solve the equation

rI ¼ G ð8Þ

However, since the original gradient field has been
modified using one of the operators discussed
above, the gradient field is not necessarily integra-
ble. Parts of the modified gradient may violate

r� G ¼ 0 ð9Þ
(i.e., violate the requirement that the curl of gradi-
ent be 0). Recently, two approaches have been pro-
posed to solve the mixed gradient problem:
1) The variational method: Kimmel et al. [27] pro-
pose minimizing a penalty function of image gra-
dient and intensity using a variational
framework. A projected normalized steepest des-
cent algorithm was proposed to solve this prob-
lem. Pèrez et al. [8] and Fattal et al. [16] use a
similar framework by considering only the image
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gradient in the penalty function. They solve this
problem by finding a potential function I, whose
gradients are closest to G in the sense of least
squares by searching the space of all 2D potential
functions. They use this technique for image edit-
ing [8] and high dynamic range image compres-
sion [16], respectively.

2) Loopy belief propagation: the essence of this
method is to enforce the curl constraint in Eq.
(9) via loopy belief propagation [28] across a
graphical model. A maximum a posteriori esti-
mate of a potential function can be found via
message passing within the graphical model. This
method has been used in image phase unwrap-
ping [29] and enforcing the surface integrability
for shape from shading [30].

We test these two methods using a simple image
editing example. Fig. 3 illustrates the comparison.
We can see that the variational method results in
better results than loopy belief propagation, which
has a ‘‘washed-out’’ effect throughout the whole
image. This is mainly because loopy belief propaga-
tion propagates the gradients which violate the curl
constraint to the whole image, but the variational
method limits the propagation within the mask
boundary. Therefore, we choose to extend current
variational methods for video editing by considering
both spatial and temporal gradients in 3D space.
Assuming the mask is represented by X, we mini-
mize the following integral in 3D space (hence the
reference to 3D video integration in the sequel):

f ðIÞ ¼
Z Z Z

X
F ðrI ; GÞdx dy dt ð10Þ

where,
Fig. 3. From left to right, input image 1 (mask is not shown); input imag
result using loopy belief propagation.
F ðrI ;GÞ ¼krI �Gk2

¼ oI
ox
�Gx

� �2

þ oI
oy
�Gy

� �2

þ oI
ot
�Gt

� �2

According to the Variational Principle, a function F

that minimizes the integral must satisfy the Euler–
Lagrange equation:

oF
oI
� d

dx
oF
oIx
� d

dy
oF
oIy
� d

dt
oF
oI t
¼ 0

for all I 2 X. We can then derive a 3D Poisson
Equation:

r2I ¼ r � G ð11Þ

where $2 is the Laplacian operator,

r2I ¼ o2I
ox2
þ o2I

oy2
þ o2I

ot2

and $ÆG is the divergence of the vector field G,
defined as

r � G ¼ oGx

ox
þ oGy

oy
þ oGt

ot
3.3. 3D Discrete poisson solver

In order to solve the 3D Poisson equation (Eq.
(11)), we use the Neumann boundary conditions
rI �~n ¼ 0, where ~n is the normal vector on the
boundary of mask X. For 3D video integration,
due to high data volume and increased computa-
tional complexity, we need to resort to a fast algo-
rithm. For this purpose, we use a diagonal
multigrid algorithm originally proposed by Roberts
[31] to solve the 3D Poisson equation. Unlike con-
e 2; compositing result using the variational method; compositing
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ventional multigrid algorithms, this algorithm uses
diagonally oriented grids to make the solution of
3D Poisson equation converge fast. In this case,
the intensity gradients are approximated by forward
difference:

rI ¼
Iðxþ 1; y; tÞ � Iðx; y; tÞ
Iðx; y þ 1; tÞ � Iðx; m; y; tÞ
Iðx; y; t þ 1Þ � Iðx; y; tÞ

2
64

3
75
,

h

where h is the grid distance. We represent Laplacian
as:

r2I ¼ ½�6 � Iðx; y; tÞ þ Iðx� 1; y; tÞ
þ Iðxþ 1; y; tÞ þ Iðx; y þ 1; tÞ
þ Iðx; y � 1; tÞ þ Iðx; y; t þ 1Þ
þ Iðx; y; t � 1Þ�=h2

The divergence of gradient is approximated as:

r � G ¼ ½Gxðx; y; tÞ � Gxðx� 1; y; tÞ
þ Gyðx; y; tÞ � Gyðx; y � 1; tÞ
þ Gtðx; y; tÞ � Gtðx; y; t � 1Þ�=h2

This results in a large system of linear equations. We
use the fast and accurate 3D multigrid algorithm in
[31] to iteratively find the optimal solution to mini-
mize Eq. (10). Due to the use of diagonally oriented
grids, this algorithm does not need any interpola-
tion when prolongating from a coarse grid onto a
finer grid. Actually, a ‘red-black’ Jacobi iteration
of the residual between the intensity Laplacian
and divergence of gradient field avoids interpola-
tion. Most importantly, the speed of convergence
is much faster than the usual multigrid scheme.
4. Video editing tasks

In this section, we present experimental results
using several operators in gradient domain to illus-
Fig. 4. Left, the image of ‘‘the famous fat boy’’; right, face replacement
famousfatboy).
trate various applications of our video editing
framework.

4.1. Digital face replacement and painting

Digital face replacement and painting involves
replacing the face of a person in a target image using
the face of another person in a source video. The
shape, expression and motion of the face in the
resulting video will be the same as in the source vid-
eo, but the color and appearance of the face will be
the same as the target face so as to fit in the environ-
ment of the target image. Face replacement is differ-
ent from reanimating faces in image and video as in
[32], where the shape and appearance are not chan-
ged, but they use 3D models. Our work is inspired
by a recent popular web prank—‘‘the famous fat
boy’’, where a boy’s face appears on different pic-
tures by photo editing amateurs. Fig. 4 gives an
example from this page.

An automated system for face replacement and
painting has many potential applications, such as
Hollywood special effects and personalized movies.
Currently, face replacement and painting is usually
done manually by graphic artists using photo edit-
ing software, such as Photoshop. This is a tedious
process even for a single image. It is almost impos-
sible for a video sequence. Using our approach, face
replacement becomes as easy as a few mouse clicks.
Without using face tracking, we assume the person
stays still, and the user is asked to mask the ROI

for replacement in the first frame of the source video
and input the offsets and scale for the mask to put in
the target image. In this case, the ‘SUBSTITUTE’ oper-
ator is used.

Fig. 5 shows some examples of face replacement
and painting. The face in the source video can be
rotated or flipped horizontally in the image plane
in order to replace faces in different images. We
can perceive the shape of the original face, though
using photo editing tool (images from http://www.nei.ch/gallery/

http://www.nei.ch/gallery/famousfatboy
http://www.nei.ch/gallery/famousfatboy
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its color has been changed. This is because the
high gradients in the mouth, eye and nose areas
are retained and the low gradient regions sur-
rounding them is more affected by those of new
background.

As far as we know, we are the first to define the
problem of digital face replacement and painting.
This is an important issue for artists or cartoonists
Fig. 5. First row: (left) a shifted and scaled mask example, (right) three
the princess’ face; third row, replacement of the face of the status of lib
face of President Thomas Jefferson; fifth row, replacement of the face
since they might want to borrow some ideas from
different sources when building a new character.

4.2. Video compositing using gradient operators

In this section, we give several examples of com-
positing of two videos. To extract motion objects,
the layered representation of video sequences [33]
frames from original video sequence; second row, replacement of
erty (original images are rotated); fourth row, replacement of the
of Shrek (original images are flipped horizontally).
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can be used according to the affine motion parame-
ters based on the optical flow. We tested our algo-
rithm using the optical flow and temporal
gradients for comparison, and there was not much
difference visually, though we believe a good optical
flow computation could improve our results.

Fig. 6 illustrates an example of compositing a fish
sequence and a clock sequence. The purpose is to
insert the clock into the fish sequence, and at the
same time, to make the clock face and the pendulum
look transparent. These two regions of interest are
selected from user interaction. The MAX operator is
used based on the magnitude of both spatial and
temporal gradients. The resulting sequence shows
the effect of transparency in the regions of clock face
and pendulum.

Fig. 7 shows an example combining two video
sequences using the ‘THRES’ operator. The purpose
is to move the fountain in the fountain sequence
to the ocean sequence. We consider the temporal
gradient of the fountain sequence. The correspond-
ing gradients in the ocean sequence are replaced by
those of the fountain sequence, where the temporal
gradients of the fountain sequence are larger than
Fig. 6. First row, fish sequence; second row, clock sequence; third row, r
effect of transparency (multiple masks are used but not shown.)
some user given threshold. This is a challenging
example due to the non-rigid motion of the foun-
tain. We believe that none of the previous video
editing tools can perform this task. The region of
interest in this example is the whole image.

4.3. Graphcut based video compositing

To obtain the regions of interest for video com-
positing, we can also use a 3D graph cut algorithm
to find the minimum cut between two sequences,
and then use gradients of one video sequence on
one side of the cut while using gradients of the other
video sequence on the other side. 3D graph cut has
been used for spatial or temporal video extensions
by Kwatra et al. [13]. As stated in Section 2, compos-
iting videos directly from the graph cut results will
cause artifacts due to factors such as illumination
and appearance. By combining gradient fields on
the two sides of the cut, we can apply our 3D integra-
tion algorithm to reduce the artifacts significantly.

In this paper, we extend the 2D graph cut algo-
rithm presented by Xu et al. [34] to the spatio-tem-
poral space. The implementation is more efficient
econstructed sequence using maximum temporal gradients has the



Fig. 7. Ocean–fountain example (color). First row, waving ocean sequence; second row, fountain sequence, third row, reconstructed video
using our 3D video integration algorithm based on the temporal gradient.
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than usual graph cut algorithm. We provided a vari-
ety of operators for this operation, such as horizon-
tal cut, vertical cut, and arbitrary cut.

Fig. 8 gives an example of image compositing by
finding a 2D minimum cut. We use a simple cost
function for the overlap region (the whole image
here), B:

c ¼
X
i�B

jG1ðiÞ � G2ðiÞj2 ð12Þ
Fig. 8. From left: input image 1, input image 2, result of gradient com
using horizontal cut.
where G1 and G2 are spatial gradients of overlap re-
gions of two input images, respectively.

Fig. 9 gives results obtained using 3D horizontal
and vertical minimum graph cuts. We use a cost
function consisting of both spatial and temporal
gradients:

c ¼
X
i�B

a � jG1ðiÞ � G2ðiÞj2 þ b � jG1tðiÞ � G2tðiÞj2

ð13Þ
positing using horizontal cut, and result of intensity compositing
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where G1t and G2t are temporal gradients of two in-
put sequences, respectively, and a and b are weights
of spatial and temporal gradients. For this example
we use a = b = 1. We can see that the gradient com-
positing has much better results than direct intensity
compositing along the cut in both examples.

Algorithm 1. General algorithm for HDR video
display

Data: LDR video I1, I2, . . ., In

Result: HDR video I

Recover the radiance map;
Attenuate large gradients and magnify small ones
using COMPRESS operator;
Reconstruct new video I by solving a Poisson
equation.
4.4. HDR video compression

Our video HDR compression problem is stated
as follows: Given n synchronized LDR videos,
I1, I2, . . ., In, with different exposures, find an
HDR video, I, which is suitable for typical dis-
plays. First, the radiance map from the input vid-
eos can be computed using a method such as in
[14] for corresponding images in the videos (we will
not discuss the details of recovering the radiance
Fig. 9. First row: left, input video sequence 1; middle, result of grad
compositing using horizontal cut. Second row: left, input video sequenc
right, result of intensity compositing using horizontal cut.
map here). Then our task is to generate a new vid-
eo, I, whose gradient field is closest to the gradient
of the HDR radiance map video, G. The general
algorithm for HDR video display is described in
Algorithm 1.

We used the high dynamic video camera called
split aperture camera [35] developed to capture the
HDR video. The camera uses a corner of a cube as
a threefaced pyramid and three CCD sensors. Three
thin-film neutral density filters with transmittances
of 1, 0.5, and 0.25 are put in front of the sensors,
respectively. We used Matrox multichannel board
capable of synchronizing and capturing three chan-
nels simultaneously. The three sensors and the pyr-
amid were carefully calibrated to ensure that all the
sensors were normal to the optical axes. The setup
of our HDR video capture devices is shown in
Fig. 10.

We tested our 3D video integration algorithm for
video HDR compression on a variety of scenarios. To
maintain Neumann boundary conditions, during
preprocessing, we padded the video cube with 5 pix-
els in each direction. The first and last 5 frames, and
first and last 5 row/column pixels of each frame
input to the algorithm are all black. The attenuation
parameter b in Eq. (5) is set to 0.15 in all
experiments.

Fig. 10 shows an example of three videos cap-
tured using our camera. Due to the shadow of the
ient compositing using vertical cut; and right, result of gradient
e 2; middle, result of intensity compositing using vertical cut; and
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trees and strong sunlight, none of the individual sen-
sors can capture the whole range of this dynamic
scene. For example, the trees and the back of the
walking person are too dark in (a) and (b), but
too bright in (c). The light bar in (a) is almost totally
dark, and the ground is overexposed in (b) and (c).
However, the video obtained using our 3D video
integration algorithm can capture almost everything
clearly in the scene. The detailed motion of the tree
leaves is also visible.

As far as the authors know, our approach is the
first proposed method for displaying HDR video
that does not require inter-frame registration of fea-
tures with the help of a specially designed camera.

5. Discussion

5.1. Computational complexity analysis

The space requirement for 3D discrete Poisson
solver is of O(n), where n is number of voxels. 3D
Poisson solver with second order accuracy will take
O(n) time. (For all examples in Section 5, we used
256 · 256 · 256 video sequences, i.e., n = 2563).
There are around 100 iterations for the convergence
with 35.7n flops per iteration. Though this is a little
higher than the simple usual multigrid scheme, the
Fig. 10. Experimental results on high dynamic range video. Left row,
brightness of the three videos are in ratios 1:2:4. Right row (up), the
obtained using our 3D video integration algorithm. The size of video i
proposed scheme is up to twice as fast as compara-
bly simple conventional multigrid algorithms [31].

The computational complexity is of O(n(mn + n

logU)) for general graphcut algorithm, where n is
the number of nodes, m is the number of edges and
U is the largest edge cost. Since we used a simple
topology of the graph as in [34], the algorithm is much
faster in practice. Practical study shows that our 3D
graphcut algorithm has the complexity of O(n1.2).

Our current implementations consists of a 3D
graph cut algorithm in C++, and a 3D Poisson solv-
er in Matlab on a Pentium IV 2.4G with 2G RAM.
For 256 · 256 · 256 video sequences, 3D graphcut
takes about 1 min, and 3D video integration takes
about 10 min. Because many loops are involved in
solving the 3D Poisson equation, our C++ imple-
mentation speeds up the running time to around 25 s.

5.2. Limitations of our current framework

Though, we have obtained promising results on a
set of applications with our proposed novel video
editing framework, there are still some limitations:
1) We do not consider the light effects during com-
positing. For example, in the President example
in Fig. 5, the shadow is not appropriately gener-
The three video sequences obtained by split aperture camera; the
camera used to capture HDR video; right row (down), the video
s 256 · 256 · 35.
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ated in face replacement and painting. This is a
similar problem as in almost all the image editing
tools, and it can not be dealt with without incor-
porating 3D information of the scene.

2) We assume heads do not move in face replacement
and painting. This assumption could be relaxed
with rough video registration, or face tracking,
or by volume warping and scaling as in [25].

3) Reconstructing video using 3D gradient integra-
tion places high demand on memory and compu-
tational time. The proposed framework is still
expensive for a reasonably large video. The
reconstruction involves volumetric data struc-
tures and solving a large 3D Poisson equation.
However, this can be improved by graphics pro-
cessor (GPU) implementation of multigrid algo-
rithm [36] extended to 3D.
6. Conclusion and future work

We have presented a new framework for video
editing which treats video as a 3D cube of pixels. By
manipulating videos in the spatio-temporal gradient
domain, our approach provides an object-level edit-
ing facility not available in traditional systems. The
tool requires minimum user interaction, creates
seamless compositing, preserves temporal consisten-
cy and avoids artifacts common in frame-by-frame
video processing. Finally, we have presented a set of
new applications, such as face replacement and paint-
ing, high dynamic range video compression and
graphcut based video compositing. Currently we
are investigating new methods to preserve temporal
consistency, such as two-frame constrained video
editing, such that we can process larger resolution
videos without loading the whole video into memory.
We are also working on extracting reflectance proper-
ties and lighting conditions from multiple images,
which are in turn used for face relighting [37]. This
is important to generate consistent shadows in face
replacement. In the future, we plan to investigate
more work from theoretical and application points
of view in the following aspects:
1) The integrability of mixed gradient fields is still
an open problem, and we are interested in study-
ing this problem from theoretical and application
aspects.

2) We plan to explore other applications of our gra-
dient domain techniques in video editing, such as
video inpainting, video shadow removal, 3D face
editing and animation, etc.
We believe that our gradient-based approach can
provide as versatile editing functions to videos as
photoeditors provide for images.

(The demo video is available: http://vision.ai.
uiuc.edu/~wanghc/research/editing.html)

Appendix A. Supplementary data

Supplementary data associated with this article
can be found, in the online version, at
doi:10.1016/j.gmod.2006.06.002.
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solvers on the GPU: conjugate gradients and multigrid,
SIGGRAPH (2003) 917–924.

[37] T. Yu, H. Wang, N. Ahuja, W.-C. Chen, Sparse lumigraph
relighting by illumination and reflectance estimation from
multi-view images, Eurograpics Symposium on Rendering
(EGSR), 2006.


	Videoshop: A new framework for spatio-temporal video editing in gradient domain
	Introduction
	Related work
	Image and video editing
	Image editing
	Image/video matting
	Video texture editing
	High dynamic range video compression

	Gradient-based techniques
	Contributions of our work

	Gradient domain video editing
	Gradient operators
	3D video integration
	3D Discrete poisson solver

	Video editing tasks
	Digital face replacement and painting
	Video compositing using gradient operators
	Graphcut based video compositing
	HDR video compression

	Discussion
	Computational complexity analysis
	Limitations of our current framework

	Conclusion and future work
	Supplementary data
	References


