
Emonic Environment – Implementation Report

Paul Nemirovsky, Richard Watson, David Dickinson

Media Laboratory

Massachusetts Institute of Technology

E15-347, 20 Ames St., Cambridge, MA, 02139

U.S.A.

{pauln, watsonr, davidrd} @ media.mit.edu http://www.media.mit.edu/~pauln/research/emonic

Abstract:

This paper presents a progress report on the implementation of the Emonic Environment (EE) – a Java-based
system for improvisational creation, modification, performance, and exchange of audiovisual media. The
protagonist users of the EE are non-artists whose creative drive has been impeded by the prevalent interactive
interfaces that are largely passive (click-response) and discourage experimentation. We take non-idiomatic
improvisation as our inspiration, and seek to present the performers with an environment where the tools for
media exploration are “alive”. In doing so, we hope to encourage the creativity of people otherwise afraid to
experiment. This paper describes the functionality of the EE, focusing on the user interface, multi-user network
capabilities, audio (performance & synchronization) and genetic algorithms used to explore a media landscape.

Key-Words: improvisation, evolution, media, neural networks, multi-user, audio & video processing.

1 Introduction

What is it that goes on in an improviser’s mind,
allowing him to weave together memories and
vague ideas, audience mood, collaborating artists’
input, all while coming up with new and unique
expressions? How does he think about his goal;
does he even have one? The development of the
Emonic Environment (EE) is not an attempt to
answer the core questions of creativity; rather, its
aim is to capitalize on the experience of practicing
improvisers by bringing the spontaneity and
richness of improvisation into anyone’s hands.

2 Layer Architecture

The EE architecture is inspired by the behaviour of
an animal nervous system, realized in a framework
of layers: Input, Structural and Perceptual. The
objective of such a layered design is to allow for

complex, dynamic, and multidimensional mappings
between sensing, perception, cognition and action.

EE is a system whose objective is to be alive,
aware of the outside world and itself, always
exploring new possibilities in tandem with its users.
As such, it requires sensory interfaces to the
outside world. This is the function of the Input
layer: to receive external input and route it to the
rest of the system. Using the nervous system
analogy, this layer is the skin, the eyes and the ears
of our organism. In the core of the system, a neural
network ‘brain’ resides as the Structural layer.
Underlying system behaviour and patterns of
activity emerge from properties and connectivity of
the elements that populate this layer. Finally, back
on the surface of the system, media events are
scheduled and processed by a population of
operators known as emons, bonded together in a
web of connections to form the Perceptual layer.
In our ‘nervous system’ analogy, this layer
corresponds to the motor system of an animal.

Input layer: The collection of sensory interfaces to
the EE. Using tangible, visual, auditory, and web-
aware information samplers, it integrates stimuli in
the surrounding physical and electronic worlds into
the ongoing improvisation. Examples of interfaces
include a computer mouse, video camera, custom-
made gesture controller, web agent, and more.

Structural layer: This layer is a recurrent neural
network (RNN), populated by nodes and weighted
connections (or associations) between the nodes.
The RNN architecture enables both intricate and
largely unpredictable exploration of the media
landscape while at the same time adhering to
constraints that generate coherent patterns of
behaviour. Each element within the RNN (as well
as the RNN as a whole) possesses a number of
properties, controlled either explicitly by the
performer or by a system-administered process.
These element/property-set pairs are as follows: (1)
Association: Path, Weight, Time Delay (inner-node
stimulus travel time); (2) Node: Activity, Decay
Rate (of activity), Propagation Threshold (above
which the node propagates any incoming stimuli),
In/Out Stimulus Scalar; (3) Network as a whole:
Maximum Simultaneous Propagations, Low-
Activity Threshold (below which new spontaneous
activity will be introduced), Auto Management
Features (actions to be taken when operating
without any performer input).

Mediated layer: A messenger and translator
between layers. Its first job is mapping state-change
notifications from the Structural layer, in the form
of tokens, to a separate set of tokens which is
delivered to the Perceptual layer and interpreted
there. The Mediated layer itself is ignorant of what
any particular token means, though its role in
shaping an overall meaning remains extremely
significant. It is through evolution of the maps in
the Mediated layer that abstract structural patterns
begin to be interpreted and used in interesting
ways. As the data received in the Input layer is
disparate, we employ the Mediated layer in a
second task: to make this data useable in the other
two layers of the EE. For this, the Mediated layer
employs transforms – mapping algorithms that act
as links between the data format employed by a
given input device and that of a particular inner-
system element. For instance, one such transform
maps between the input of a custom-made gestural
controller (called the Emonator1), which provides

1 See http://web.media.mit.edu/~pauln/research/emonator

an array of 144 short values, and a double value. In
this case, the signal output of the transform is
routed to the Perceptual layer, where it is used by
audio-processing emons to modulate frequency and
amplitude.

Perceptual layer: This layer is the space within
which all of the media processing takes place. The
layer is populated by emons, data, and media
elements, with connections between the three. The
media are audio and video samples accessible to
the EE. The data elements are arrays of numbers
recorded from input received from the Mediated
layer, evolved, or manually specified. The data are
used by emons as sources for control information
such as timing, frequency, amplitude, etc. Emons
are best thought of as operators that use available
data, signals from other emons, and directives
provided by the Mediated layer, to modulate the
generation, modification and presentation of media
or to control other emons. Each emon has one
function and one or more mutable properties. For
instance, an amplitude emon takes associated data
and uses it to control the amplitude output of an
audio-sample-player emon2.

The range of emons encountered on the Perceptual
layer is diverse. The species include: audio and
video sample playing; audio waveform generating3;
audio processing (e.g. filtering); video processing;
event timing4; and lighting control5.

Elements and configurations of all of the different
layers as well as all media incorporated in a
performance are shareable. That is, the system is
built to communicate with other instances of the
same system, providing means for immediate
collaboration with other EE performers. This is
discussed further in the Multi-User section below.

The system is designed to run with variable degrees
of autonomy. The variability allows it to be
installed in a number of different environments. On
one end of the spectrum, a musician might employ
the system in a performance where he requires
complete and immediate influence in the Structural

2 Such chaining of functions is familiar to anyone who has
used Max/MSP-like audio processing environments [2].
3 JSyn is used for sound synthesis, playback and processing.
4 JMSL is used for system tempo and event timing.
5 The EE integrates control of a 4x5 grid of ColorKinetics
RGB LED arrays, capable of producing 17 million colors. It
affords us the ability to reflect network activity with lighting
displays, filling the room with visual mood.

and Perceptual layers. On the other, a visual artist
might set up a semi-permanent installation where
ongoing network activity in the Structural layer
continually and independently modulates room
lighting controlled on the Perceptual layer, taking
inputs only from ambient sensors.

Such a layered design provides improvisers a way
to access the system on many levels. It affords
performers the capability to dynamically refocus
their objectives while creating and manipulating
media in real time. The design also modularizes the
system, making it easier to understand from the
inside and easier to expand. Links between the
layers enable flow from outside world influences to
inner dynamic structures and ultimately to media
operators that bring the result back to the outside
world. Connectivity within the layers promotes the
emergence of richly interactive and largely
unpredictable behaviour.

The current version of the system does not fully
realize the architecture specified in this section.
The EE still has a long way to go before it fully
implements the defined functionalities of and
independence between the Structural and
Perceptual layers. Bridging this gap and bringing
the implementation closer in line with the outlined
layer model is therefore our immediate objective.

3 Graphical User Interface

Figure 1: Emonic Environment’s GUI

Our primary goal when constructing a visualization
for the EE was to emphasize connections between
elements rather than the elements themselves. The
reason is evident – improvisation is an experience

centered on connections and not on artifacts. Any
visualization that aims to help the user to think
improvisationally and be creative in his exploration
of the media landscape should accentuate the
intrinsically connected nature of improvisation.

Here we discuss only the visualization pane of a
multi-paned window environment6, as that is where
the majority of user-system interaction takes place.
Since the structural and perceptual elements of the
system are not yet separate, no separation exists in
the GUI. Instead the visualization focuses on
elements and connectivity in the Structural layer:
nodes and associations.

Nodes are represented by solid circles that change
colour depending on state. Inactive nodes are blue;
when active (above propagation threshold), they
turn red. When stimulated, nodes flash yellow;
when associated emons perform an operation (e.g.
play a sample), they flash green. Left-clicking a
node stimulates it by a predetermined amount;
right-clicking presents a menu of options, including
one to edit the node’s properties. The middle
mouse button serves to initiate an association or, if
one has been initiated already, to complete it. It is
possible to select multiple nodes, changing
properties and making associations en masse. An
extensive set of keyboard shortcuts can be used to
simplify and speed up commonly used operations
such as exciting or inhibiting nodes, changing
associated emons/media, sending a selected subset
of the network to another user, and more.

Associations take the form of bicoloured lines
between nodes, fading from blue at the origin to
white at the destination, indicating directionality.
Stimuli sent between nodes are represented as
small solid yellow circles travelling along the line
of association. Clicking on an association allows
the user to delete (left-click) as well as modify
(right-click) that association’s properties. Building
associations between two or more nodes is simple:
the user chooses a source node(s), and selects the
destination node(s) with the middle mouse button,
thus creating the link between the two. Building a
functioning media network from scratch thus
becomes a task that can be achieved in a matter of
seconds.

6 The other panes delineated with tabs are (1) element property
controls, (2) MIDI mappings, and (3) information output
console.

A network can be saved or restored at any point
throughout the operation of the program. This
save/restore functionality is similar to the ordinary
file save/load functions. Once a network has been
restored, it is activated. From that point on, this
network will develop differently from a similar
network restored at another time or on another
computer. This variability is an inherent result of
the evolutionary process driving the development.

Clearly such save/restore functionality is static and
limiting – the networks are seen as discrete entities,
with no connection between the current and the
saved states7. To avoid this, we employ saved
network states as evolutionary magnets. In this
technique, users evolve a network’s current state
toward or away from one or more magnets. To
visualize this, imagine the behaviour of a piece of
metal as a magnet is placed nearby: the metal starts
moving towards the magnet. This analogy is crude;
it reflects neither the multidimensional nature of
evolving multiple node properties nor the
possibility that the magnets change their strength
over time. However, it provides us an illustration of
the guiding principle of the EE: exploration of
system states should always be continuous.

Having created a network (or modified an existing
one), the user can send a subset of it to other users.
To do so, the user selects the network subset to be
sent, and opens the Send Network window. The
window displays EE clients currently available on
the network. By selecting one of these, the selected
network subset (i.e. nodes, associations, and media)
is sent through a server to the destination EE client.
There the received subset immediately becomes an
active part of that user’s current network (see
Multi-User section for details).

The EE is currently capable of producing intriguing
and dynamically changing audio sequences. For
instance, perusing a data repository containing both
string orchestra recordings and political orations of
Fidel Castro produces an unexpected combination
of comedy and drama. The first reactions to the EE
by non-professional users have been most
encouraging. Having spent extended amounts of
time with the system, they generally commented on
how it felt surprising and powerful to be able to
shape the music by modifying the network
structures rather than the audio itself.

7 Incidentally, this problem arises in any system that employs
discrete constructs such as files or hyperlinks.

4 Evolution

Evolutionary algorithms, employed throughout the
EE’s three core layers (Input, Structural, and
Perceptual), provide users with multiple
exploration paths through the media landscape. The
evolutionary process can be run as a single
instance, i.e. with the configurations of elements on
different layers merged into one large genetic code.
Alternatively, the evolutionary process may be run
as several distinct instances; doing so allows each
network layer to evolve on its own time scale,
facilitating the emergence of complex, dynamic,
and unpredictable mappings.

Evolution modifies the Input layer by controlling
just where and how data is mapped between an
input interface and another layer. When a specified
evolutionary process runs, it modifies the
transforms (described in the section on Layer
Architecture), as well as their destinations, shaping
the way the outside world affects the system.

Elements in the Structural layer are possibly the
prime target of the evolutionary process. The
evolution affects the connectivity of the network
and the properties of individual nodes, producing
new mappings unlikely to be discovered by the user
alone, and thus aiding his creative process.

In the Perceptual layer, the evolutionary process
modifies (1) data elements, changing the sources
on which the emons operate; (2) the connectivity
matrix of the emons (their interdependency); and
(3) token-action mapping of individual emons,
changing their response to various inputs.

Three operational evolutionary modes are currently
being developed for the Emonic Environment.
Each mode offers EE performers a different way to
interact with and change the system.

1. Browse (offline). In Browse mode, several
‘child’ networks run in the background. The
networks’ states are initially synchronized; that is,
elements correspondent between the networks are
in identical states. Each network’s output is
recorded over a set period of time. Each recording
is voted on by the performer, and decisions about
breeding, mutating, and killing of the source
networks are made based on these votes in a
tournament fashion. This mode is designed for a
performer who is interested in configuring a
network offline in a simple, hassle-free way.

2. Explore (online). For a user who would like to
perform with the EE, interacting with it in a
continuous fashion, Explore mode offers a real-
time option. Here, parameters of a single network
are mutated on a consistent periodic basis. Voting
is an ongoing process whereby votes are captured
and mapped to the appropriate configurations
(present at the time of voting) according to user’s
actions. Direction of mutation is continually
modified, based on the voting.

3. Navigate (online). Navigate mode offers a more
‘hands-off’ option for the performer. In this mode,
the performer assigns one or more saved network
configurations, called magnets (described in the
GUI section), to guide the evolutionary process.
The magnets either attract or repel the state of the
online network toward or away from that
configuration, thus producing interesting phase
trajectories in a performance. The mode is made
more interactive when the user dynamically
(de)emphasizes magnets.

5 Multi-User Architecture

While the EE provides an isolated user with many
improvisational options, the creative potential of
the system is significantly augmented when users
are able to interact with each other in a meaningful
context – that of a collective improvisation. For
instance, one user may excel at the creation of new
media, another at reconfiguring the arrangements
of others; together they can reach far beyond what
either could do alone. Despite continuing gains in
computing speed and sophistication, the richest
creative user environment is still the one enhanced
by interpersonal exchange. Towards that end, EE
users need to be provided with easy access to
others' creations, past and present, and given the
ability to collaborate seamlessly in real time.

Thus, the two main objectives in designing the
multi-user architecture were (1) to facilitate easy
and rapid exchange of networks between users, and
(2) to allow rapid formation of shared repositories
for newly created media, letting all performers
access all the available media.

Given the potential EE user’s level of technical
competence, a number of design issues arose: (1)
we needed to pick a model that would allow every
client to see all the other clients available for
collaboration at a given moment; (2) we could

expect very little from the user with regards to
technical knowledge (e.g. IP addresses, media
filenames, etc.) As a result, a simple peer-to-peer
system wouldn’t do; designating each EE client as
a peer with no further infrastructure would make it
difficult for a new EE client to find others, and
asking users to know and manually enter peer IP
addresses seemed unreasonable.

In light of these goals and constraints, we adopted a
model in which each EE peer is considered to be
the client of some particular server, with all client-
client communication and file transfer routed
through that server. In that scheme, EE clients are
regularly informed by the server of the availability
of all the other clients in contact with that server.

Furthermore, any user can choose to run their own
server (built into the EE) and become a potential
focal point for a new group of users. This server
deployment model will hopefully lead to
propagation and evolution of structural and media
EE components through spontaneously created
user-run centres of exchange.

Examination of a sample session involving transfer
of a network subset along with the associated
media files between two EE clients may be
illustrative. The originating user’s EE is referred to
here as Client 1, or C1, and the destination user EE
is termed Client 2, or C2. Both users are assumed to
be using server S.

The transfer commences with the user selecting a
group of nodes and indicating C2 as the recipient.
This EE client is now referred to as C1.

C1 C2S

do: sendSettings
to: C2IPaddr
file: settings.txt

24b 4a

3a

3b do: sendFiles
{SmissingFNs}

do: sendFiles
{C2missingFNs}

1

5

6

do: sendSettings
to: C2IPaddr
file: settings.txt

Figure 2: Transfer of a network from C1 to C2
1. C1 asks S to relay a selected portion of C1’s
network, saved in settings.txt, to C2.
2. S parses settings.txt for the media used and
stores in {SmissingFNs} the names of any media files S
is missing.

3a. S passes settings.txt on to C2.
3b. S requests the files {SmissingFNs} from C1.
4a.1. C2 parses settings.txt and stores the names of
missing media files in {C2missingFNs}.
4a.2. C2 loads the nodes and associations specified
in settings.txt into its current network, with
placeholders for missing media. A mapping is
maintained between the names of the missing
media files and the nodes that await them.
4b. C1 queues the files specified by {SmissingFNs} for
transfer to S and begins sending them.
5. C2 requests the files {C2missingFNs} from S.
6. S queues the files in {C2missingFNs} that it already
has for transfer to C2, and begins sending them.
7. When S finishes downloading the file C1mediaFile_i
from C1, this file is queued for transfer to C2 if it is
in {C2missingFNs}, the list of files C2 has requested.
8. When C2 finishes downloading a requested file
from S, it looks up the node to which that media
file is mapped, and updates the media for the node
to reflect the newly downloaded file.

C2C1 S

C1mediaFile_1
C1mediaFile_2
...
C1mediaFile_n

C1mediaFile_i ∈
 {C2missingFNs}

4b 6

7

8

SmediaFile_1
SmediaFile_2
...
SmediaFile_m

Figure 3: Transfer of needed media files to C2

Since the server keeps a copy of every media file
that passes through it, our network model allows
the server to readily accumulate a complete
collection of media produced by the users.
Furthermore, the load on the initiating client is
subsequently reduced – any media that is used in
the sub-network, and which the destination client
lacks, can be immediately sent to the destination
client given the server has a copy. In other words,
across all users and sessions, a particular media file
needs to be transferred to the server only once (the
uniqueness is currently determined solely based on
the filename).

To publish its existence and continued availability,
each client pings the server every few seconds. In
turn the server maintains a table of all clients that
have ever been active. Each client is marked with a
timestamp indicating the local server time when the
last ping was received, with the clients considered
alive by the server if their timestamp differs from
the current local time by less than a fixed timeout.

6 Future Work

We are continuing to develop the Emonic
Environment, adding various features and
preparing the system for public release. Our
immediate goals include adding functionality to the
Structural and Perceptual layers, fully integrating
video into the system, increasing user-friendliness
of the interface, and producing a Mac OS X version
of the software. Planned features also include web-
based agent for media gathering, built-in sample-
maker, and new audio-processing libraries.

7 Conclusions

This paper reported on the ongoing development of
the Emonic Environment, describing its key
functional components and underlying architecture.
We hope that the EE is a small step in the right (or
rather shall we say, intriguing) direction, bringing
us a bit closer to our objective: applying
improvisational principles to all walks of media
creation, browsing, and exchange. Supplanting
linearly structured and fixed-goal-oriented notions
of entertainment and learning with those inherent in
the EE may transform explorations of these
domains into inherently unique and communal
adventures, blurring the distinction between media
consumption and creation and ultimately bridging
the creativity of humans and machines.

References:

[1] Nemirovsky, P., Watson, R. (2003). Genetic
Improvisation Model, a framework for real-
time performance environments. In the
Proceedings of EvoWorkshops 2003.

[2] Max/MSP, http://www.cycling74.com

