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Abstract 
 
This paper proposes an algorithm to better solve the 

exploration-exploitation dilemma faced by model-less 
reinforcement learning agents. The main contribution is 
twofold: (1) The two facets of the exploration-exploitation 
dilemma are distinguished: in some cases, the agent faces 
a non-stationary environment, therefore it needs to 
choose the best moment to explore in order to adapt to the 
changes; in some other cases, the agent faces a relatively 
large state-action space, and it therefore needs to choose 
the most promising subset of states/actions to explore. In 
this two-facet framework, we compared the relative 
advantage and limitations of two previously proposed 
algorithms in difference situations. (2) We unified these 
two algorithms to produce the new algorithm which works 
fairly well in all testing situations. 
 
1. Introduction 
 

Reinforcement learning (RL) is a widely studied 
learning algorithm that has found wide applications [1]. A 
reinforcement learner faces the problem of choosing an 
optimal action under each state. By estimating the value 
for each <state, action> pair through a trial-and-error 
process, the learner can learn the optimal actions without 
keeping a model of the environment. In a series of recent 
studies, the reinforcement learning algorithm has been 
extended to the multi-agent settings [6, 11].  

The exploration-exploitation dilemma (See [1, 2, and 8] 
for reviews, E-E dilemma thereafter) is a famous 
challenge for reinforcement learners. As an agent starts to 
accumulate some knowledge about the environment, it 
seems plausible to exploit the current knowledge in order 
to improve the immediate payoffs. However, sticking to 
the currently best option may cause the agent to ignore 
some potentially better options that haven’t been explored 
yet.  

In this paper, we will distinguish the two facets of the 
E-E dilemma. In a series of earlier works [2, 4], the 
researchers investigated the E-E dilemma in 
reinforcement learning tasks concerning a large state-
action space, for example, the robot navigation task (the 
test case used in [2, 4, 5] and a number of other studies). 
In such a task, a robot is expected to find an ‘optimal’ 
path from the start point to the destination in a large maze. 
Because there are many states (usually represented by x-y 

coordinate in the two dimensional maze), and the robot 
has at least four action choices at each states, it would be 
costly to uniformly explore every state-action 
combination. Therefore, it would be plausible to choose a 
subset of state-action combinations to explore. This was 
called the efficient exploration in [2, 4]. In their work, the 
robot navigation is used as the benchmark to test the 
algorithms. A large but stationary maze (that doesn’t 
change during the entire learning episode) is used. 

As the reinforcement learning algorithm has been 
extended to the multi-agent settings [6, 11], the 
assumption of a stationary environment usually no longer 
holds. An agent will have to adapt to the changing 
behaviors of its peers, who are also learning just like the 
agent itself does. In this situation, a new form of E-E 
dilemma emerged: it’s plausible for an agent to constantly 
explore the environment in order to integrate the most 
recent changes into its knowledge of the world; however, 
such exploration should not be done excessively for 
consideration of the immediate payoffs. The two-person 
strategic game is one of the most often used benchmarks 
to simulate such a multi-agent, non-stationary 
environment (as is the case in [6, 8, and 9] and a number 
of other works). In such a task, a learning agent plays a 
repeated matrix game with another learning or non-
learning opponent. In [8, 9], the authors tested whether 
their proposed learning algorithms can work well when 
the opponent holds strategies that change with time. In 
such a non-stationary setting, it would be plausible that 
the learning agent can choose the right moment to explore: 
the agent can adapt to a changing opponent in a timelier 
fashion, while keeping exploration to a minimal when the 
opponent doesn’t change.  

These two facets of the E-E dilemma have quite 
similar forms of statement, and are not always 
distinguished in previous studies. A number of algorithms 
have been claimed to solve the E-E dilemma quite well. 
In this work, however, we will demonstrate that algorithm 
that works well with one facet of the E-E dilemma may 
fail to successfully attack the other facet. In another word, 
a RL with those algorithms that works well in a non-
stationary small scale problem may fail to efficiently 
explore the state-action space in a large scale problem, 
and vice versa. 

Our current work will focus the model-less 
reinforcement learning. A modeless reinforcement learner 
keeps no model of the environment and other agents, the 
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only observation it can make is the actual rewards 
received. In previous studies, there are a number of 
model-based reinforcement learning algorithms that have 
claimed to overcome the E-E dilemma [3, 4, 5, 7 and 10], 
such as the famous DYNA-Q algorithm and the 
Prioritized Sweeping algorithms. Some of them use 
several priorly-available world models (stereotypes [10]), 
and select from them by comparing the real observation 
with the stereotypes, in a Bayesian manner [7, 10]. In 
most cases, the availability of a world model (or model of 
other agents) requires at least some knowledge a priori, 
and can not always be satisfied. Therefore, we may want 
to balance the E-E dilemma with only the minimal 
information: the Q-values, observed rewards, and other 
model-independent information [1, 9].  

This paper is structured as follows: in the second 
section, we will introduce two previously proposed 
algorithms, and design two robot navigation testing 
scenarios which we will use later. The robot will be 
expected to navigate in non-stationary mazes that change 
with time. In the third section, we will present 
motivational results to access the performances of the 
previous algorithms with our proposed testing scenarios. 
In the fourth section, we will unify the two previous 
algorithms to produce the integrated framework in the 
following section, and give the test results. We will end 
this paper with outlook on future works. 

 
2. Background 
 
2.1. The E-E Dilemma: Large State-Action Space 
 

When the concept of the E-E dilemma was first 
coined, the two facets of E-E dilemma were not explicitly 
distinguished. In the famous review of Thrun [2], it was 
shown that the time cost of uniform exploration will rise 
exponentially with the scale of the problem (often 
represented by the number of states), and it’s therefore 
important to conduct efficient exploration: choosing a 
subset from the state-action space to explore. This 
formation of the E-E dilemma has also been adopted in 
some subsequent works, such as [4].  

A number of algorithms have been proposed to select 
the ‘efficient subset’. Famous examples include the 
interval estimation technique [11], the counter-based 
exploration technique and the recency-based exploration 
technique [2, 4]. These modeless algorithms are usually 
concerned with assigning an exploration bonus to a 
specific subset of state-actions, in order to make them 
more favorable for exploration.  

In the current study, we will consider one of these 
algorithms, namely the Recency-Based Exploration 
technique (RBE). This algorithm has been tested in [2, 4], 
where the agent is supposed to find an optimal path in a 
large, but stationary maze. The results have shown that 

agents with this exploration technique will be able to find 
the optimal path, rather than sticking to suboptimal 
solutions.  

RBE is based on the standard Q-learning algorithm. 
Each state-action pair is given an exploration bonus in 
addition to the Q value: 

'( , ) ( , ) * ( , )Q s a Q s a R s aα= +      
This Q’ will be later used in the Boltzman action 

selection schema: 
'

'

( , ) /

( , ') /
'

( , )
Q s a T

Q s a T
a

eP s a
e

=
∑  

The ( , )R s a  depicts how much steps ago the action was 
chosen. Thus, for an action which has not been chosen for 
a long time, its probability to be chosen will increase 
since R and Q’ is increased. Thus, actions with small Q 
values won’t be ‘starved’: each action will be picked once 
in a while. 

 
2.2. The E-E Dilemma: Non-Stationary 

Environment 
 

How to keep learning in a non-stationary environment 
has been a difficult problem. It has been first attacked in 
the earlier works of Sutton and Moore [1, 3], and becomes 
a hot topic with the development of multi-agent 
reinforcement learning. The term of E-E dilemma has 
been used again to describe this scenario. 

Some authors applied the algorithms introduced in the 
last section to this type of non-stationary environment. 
The RBE algorithm has been applied to dynamic 
environment by Dayan [5] and Zhu [8], and has been 
shown to have rather good performance.  

A number of ‘dedicated’ algorithms have also been 
proposed. Instead of using action specific exploration 
bonus, these algorithms are concerned with choosing the 
right moment to explore. In the current study, we will 
consider the DAE (Detect and Explore) algorithm [9]. 
This algorithm bases itself on a simple Q-learner with the 
Boltzman action selection schema. By observing the latest 
rewards, the DAE algorithm performs a hypothesis testing 
procedure to exam whether the current estimation of Q-
values will fall within a certain confidence interval of the 
memorized Q-values. If a change has been detected with 
some confidence, the learner will adaptively raise the 
exploration temperature. Therefore, the latest information 
can be integrated into its knowledge of the world.  

The DAE algorithm has been tested in a two-person 
gaming scenario. A learning agent with the DAE 
algorithm played the coordination game with a non-
stationary opponent [9]. Such a testing scenario has also 
been used in [8], where the RBE algorithm is tested. 

 
2.3. Non-Stationary Maze: Incorporating the Two 

Facets of the E-E Dilemma 
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In this section, we will introduce the testing scenarios 

we will use to test the abovementioned algorithms. We 
will consider a robot navigation task in a non-stationary 
maze: a scenario that has a large space-action space as 
well as temporal non-stationarity.   

The maze is represented by a two dimensional matrix, 
including passable grids and blocks. The agent is 
expected to find an optimal path from the start point (the 
mice) to a destination point (the red point). However, 
during the learning episode, the maze can be abruptly 
changed to another form. Therefore, the agent has to 
adapt to such changes. 

We will consider three 7-by-7 mazes, as shown in 
figure 1: 

 
a) the maze M1 

 
b) the maze M2 

 
c) the maze M3 

Figure 1. The mazes used to construct the 
testing scenarios 

 
Based on the three maze configurations in figure 1, 

two testing scenarios are established here. 
The first scenario (referred as S1) starts in the form of 

M1, after 80 learning epochs, the maze changes to M2. 
The second scenario (referred as S2) starts in the form of 
M1, after 80 learning epochs, the changes to M3. The two 
scenes are illustrated in figure 2. 
      A similar scenario has been proposed as the testing 
scenario in the insightful early work of Dayan [5]. His 
model based reinforcement learning algorithm DYNA-Q 
is tested. In the current research, we will use these 
benchmarks to test our modeless learning algorithms. 

     The two testing scenarios embrace the two facets of 
the E-E dilemma. In the first scenario, the structure of the 
maze undergoes a major change at the 80th epoch, and it 
will take some effort to gain the most up-to-date 
information. However, such changes are easy to detect: 
the blocks along the originally optimal path change. 
Therefore, the major challenge is: how to facilitate 
exploration to adapt to the major change of environment 
in a timelier manner? In the second scenario, only one 
block is removed at the 80th epoch, and there is relatively 
little to update. However, the change happens on an 
originally un-favored grid, and it would be hard to detect 
such change if the agent simply follows the optimal path. 
Therefore, the major challenge for S2 is: how to facilitate 
exploration to detect the changes of an infrequently 
visited state, when the state-action space is large? 
 

      . 
Figure 2. The two testing scenarios 

 
3. Motivational Results and Discussion 
 

In this section, we will discuss the performances of the 
abovementioned two algorithms in the two testing 
scenarios.  All the learning algorithms will be based on 
the standard Q-learning algorithm (The performance of 
simple Q learning algorithm is also provided as a 
reference point.) The Q values will be updated as: 

1

1 1

( , ) 0 * ( ),  for successful state transition
( , ) 2 * ( ),  if bump into the wall

 ( ) max ( , )  0.999

t t t

t t t

t ta

Q s a V s
Q s a V s
where V s Q s a

γ
γ

γ

+

+ +

= +
= − +

= =
 

When the agent reaches the destination point, a reward 
of 10 will be received. A Boltzman action selection 
mechanism will be used.  The Boltzman Temperature will 
be initialized to 9, and discounted by 0.9 at each time step 

For RBE algorithm, each step, the recency values of 
unvisited state-action pairs will be increased by 1; all the 
recency values will be discounted by 0.8 each epoch.  

The DAE algorithm has a sampling length of 3. The 
Boltzman temperature will be raised to 9 once a change 
has been detected. 

The lower bounds of Boltzman Temperature for the 
DAE algorithm and the RBE algorithm are both 0.05. 

The learning process goes for 200 epochs. In each 
epoch, the number of steps taken for the agent to reach the 
destination is recorded. If the agent fails to reach the 
destination in 5000 steps, the epoch terminates and the 
number 5000 is recorded. 

 
3.3. Simple Q-learner, RBE and DAE in S1 
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The results of two simple Q learners are shown in 

figure 3: 
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Simple Q (infT=1.5)

Simple Q (infT= 0.05)

 
Figure 3. The E-E dilemma in S1: simple Q-

learners 
 

These two simple Q learners differ in their lower 
bounds of the exploration temperature (inf (T)). As can be 
seen, the learner with inf (T) = 0.05 cannot adapt to the 
changes, due to its relative smaller degree of exploration. 
Therefore, it cannot reach the goal after the 80th epoch 
(steps taken remains at 5000). The learner with inf (T) = 
1.5 is able to learn the new maze, and it can find the new 
optimal path at the 120th epoch. However, due to its 
relatively high level of exploration, it cannot consistently 
choose the optimal path when the system doesn’t change: 
it takes more steps to reach the goal during the epochs 20-
80. 
      Next we will enhance the simple Q learner with the 
DAE and RBE mechanisms respectively, and access the 
performance of these algorithms. The results are shown in 
figure 4: 

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Epoch

S
te

ps
 T

ak
en

 

 

DAE

RBE

 
Figure 4. DAE and RBE in S1 

 
As can be seen, both the DAE and RBE algorithm 

enable the learner to find the new optimal path after the 
maze changes. Moreover, they enable the learner to 
choose the (almost) optimal path consistently when the 
maze doesn’t change (during epochs 20-80 and epochs 
150-200). In a sense, both algorithms can help the learner 

to solve the E-E dilemma in such a non-stationary 
scenario.  
      However, the learner with the DAE mechanism can 
adapt to the changes in a timelier manner. The new 
optimal path has been found between epochs 120-140. 
And the learner with the RBE algorithms can only do this 
by the 150th epoch.  

In this scenario, the structure of the maze undergoes a 
major change. The Q values for many states need to be 
reevaluated. Since the DAE algorithm can raise the 
exploration temperature, it enables the agent to traverse 
these modified states rather fast, and acquire the new Q 
values. Though the RBE algorithm steadily explores, it 
does the exploration with a smaller Boltzman temperature. 
Therefore, it will take the RBE learner longer to 
reevaluate all the modified Q values. 
       
3.3. Simple Q-learner, RBE and DAE in S2 
 

The performances of the abovementioned simple Q 
learners are shown in figure 5. To better describe the 
dynamics in this scenario, we introduce a new 
performance indicator: the estimation error of the Q 
values. The estimation error is defined by: 

*

optimal paths
Error V (s) -V(s)

∈
= ∑  

Where V* is the correct V values, and V is the 
estimated V values. As the learning process goes on, we 
expect this estimation error to decrease in value. And 
when the maze changes at the 80th epoch, we expect this 
value to undergo a sudden increase. 

In the second scenario, the agent is still able choose 
the original path after the 80th epoch, and its steps taken to 
reach the goal won’t go to 5000 after the 80th epoch, even 
if the new optimal path is not detected. Therefore, we 
need to introduce this estimation error as the performance 
indicator to help us better evaluates the performance of 
the learner. 
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a) Steps taken to reach the goal 
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b) Estimation error 

Figure 5. The E-E dilemma in S2: simple Q-
learners 

 
    The results give us the same message as in S1. The 
learner with inf (T) = 2 takes more steps to reach the goal 
throughout the learning epochs, due to its high level of 
exploration. And the learner with inf (T) = 0.05 seems to 
have dominantly better performance. However, a closer 
look at the estimation error implies that the learner with 
inf (T) = 0.05 actually cannot detect the change of the 
maze throughout the learning episode. Though the learner 
with the higher exploration temperature can detect this 
short cut, its high level of exploration prevents it from 
consistently choosing this optimal path. 
       Ideally, a learning algorithm should be able to detect 
the new optimal path -- a short cut. And it must be able to 
keep exploration to an acceptable level in order to utilize 
this short cut.  
      The performances of the DAE algorithm and the RBE 
algorithm are shown in figure 6. As shown in figure 6 b), 
the estimation error of the DAE algorithm remains high 
after the 80th epoch. The DAE algorithm has actually been 
reduced to a simple Q learner: the agent with the DAE 
algorithm cannot detect the new short cut, and it therefore 
cannot enhance its level of exploration. Meanwhile, the 
RBE algorithm is able to detect the new shortcut.  
        As shown in figure 6 a), during the first 80 epochs, 
the DAE agent takes slightly less steps to reach the goal 
than the RBE agent. This is because the DAE agent (with 
the same exploration temperature) explores less than the 
RBE agent when the environment doesn’t change. 
However, after the 80th epoch, the RBE agent is able to 
reach the destination in fewer steps than the DAE agent: 
because the RBE agent has learnt the new maze, it can 
take the newly emerged shortcut instead of taking the 
originally optimal (now sub-optimal) route. 
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a) Steps taken to reach the goal 
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b) Estimation error 

Figure 6. DAE and RBE in S2 
 

4. An Integrated Framework 
 
4.1. The Two Facets of the E-E Dilemma and the 

Comparative Advantages of the Algorithms 
 
In section three, we tested the performance of two 

previously proposed algorithms in two testing scenarios. 
The rationale is that each of the algorithms attacks one 
facet of the E-E dilemma.  

The DAE algorithm is able to speed up exploration if 
the changes have been detected, and is therefore able to 
learn the new information in a timelier manner (S1). By 
using the recency-based exploration bonus, the RBE 
algorithm ensures that each state-action pair in the state-
action space will be visited once in a while, and therefore 
ensuring the detection of changes in relatively less visited 
states even if the state-action space is large (S2). On the 
other hand, both algorithms have their relative 
disadvantages.  

In this section, we will provide an integrated algorithm, 
which unifies the two abovementioned algorithms in a 
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common framework. Our results will show that this 
integrated framework actually incorporate the 
comparative advantages of both the algorithms, and can 
work quite well in both the testing scenarios. 

 
4.2. Algorithm description: RB-DAE  

 
We will name our integrated framework the RB-DAE 

algorithm, which stands for Recency-Based Detect and 
Explore. Since both RBE algorithm and DAE algorithm 
have been based on the simple Q-learning algorithm with 
a Boltzman action selection schema, they can be put into 
a common framework without much modification. 

An agent with the RB-DAE algorithm keeps two key 
additional memories apart from the Q-values: the recency 
values and the cumulative errors.  The recency values 
work in the same way as in the original RBE exploration 
schema, as shown in section 2. The cumulative error for k 
observations for the state-action pair ( , )ts a  is defined as:  

1
!( ) * ( ) ( , )( , , ) ,

k

k k k
i

t t t tr a V s Q s aerror s a k s γ
=

++ −=∑  

This cumulative error can be used to perform a 
hypothesis testing procedure to exam whether the 
maximal likelihood estimation of Q-value derived from 
the latest k observations is within a confidence interval of 
the corresponding Q-value stored in memory.  The 
confidence interval can be derived by estimating the 
variance of the latest k observations.  If the estimated Q 
value is not within the calculated confidence interval, we 
believe a change has been detected, and the exploration 
temperature will be consequently raised. 

For more technical details about RBE and DAE, refer 
to [2] and [9] respectively. An algorithmic description is 
also given below in figure 7: 

 
 
 
 
 
Figure 7. The RB-DAE algorithm framework  

 
4.3. Results  

 
The RB-DAE algorithm is tested with the two 

proposed testing scenarios. In this section, we will 
compare the performance of an agent using the RB-DAE 
algorithm with agents using the RBE or DAE algorithms 
alone.  The results are shown in figure 8. 
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a) Testing RBE, RB-DAE and DAE in S1 

1: Initialize Q(s,a) to random values, 
     Receny values R(s,a)=0
     Cumulative Error X(s,a)=0 
2: Repeat for each episode:
3:      Set  to the start point, 
         initialize Boltzman temperature

ts
 

*

,
4:      Variance Var 0      
5:      Repeat for each step of the episode:
6:            calculate '( , ) ( , ) * ( , )
7:            Choose  using Boltzman policy derived from , 
               

t

T

Q s a Q s a R s a
a Q'

α

=

= +

R( , )= 0, for all other (s,a) , R(s,a) = R (s, a) + 1
               decrease Boltzman temperature 
8:            Observe the reward r,  Update Q value
                Update the cumulative error :
  

t ts a
T

!

* * 2

              Y= ( , ) * ( ) ( , ),  
                X( , )=X( , )+Y,

                Var ( , )=Var ( , )+Y
11:          if the current episode is the th episode,

               th

k t t k t k t t

t t t t

t t t t

r s a V s Q s a
s a s a

s a s a
nk

γ ++ −

*1en Var( , )= Var ( , )
n-1

                Update threshold value   n * ( )*Var( , ) 
2

12:          if the current exploration temperature T = inf (T), 

                if  |X( , )| > [  n * ( )*V
2

t t t t

t t

t t

s a s a

s a

s a

α

α

Φ

Φ 2ar( , )]  

                Reset learning rate and exploration temperature
13:           Perform state transition 
13:      End of a step
14:End of an episode

t ts a
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b) Testing RBE, RB-DAE and DAE in S2 

Figure 8. Experiments results 
 

  As can be seen, in the first testing scenario, the RB-
DAE algorithm is able to adapt to the new maze structure 
in a timelier manner: slower than the DAE alone, but 
much faster than the RBE algorithm alone. Meanwhile, in 
the second testing scenario, the agent using the RB-DAE 
algorithm is able to find the optimal shortcut, though the 
increased temperature at the 80th epoch invoked a few 
epochs of high exploration (the ‘steps taken’ value goes 
up).  
    Actually, the integrated framework is in the middle of 
its two precedent algorithms. In the extreme cases, it 
cannot outperform both of its precedents. However, it’s 
proved to be a more general algorithm that has fairly good 
performance – no matter which facet is responsible for the 
E-E dilemma in the current scenario.   
 
5. Conclusions 
  
    In this paper, we differentiated the two facets of the  
Exploration-Exploitation Dilemma for reinforcement 
learning agents. We investigate two previously proposed 
algorithms which had been claimed to solve the E-E 
dilemma. Our results showed their comparative 
advantages in different scenarios where different facets 
are responsible for the E-E dilemma. We proposed an 
integrated framework that is able to work fairly well in 
both the testing scenarios. 

Finally, we propose several future directions for our 
work: First, applying our algorithm to more complex 

scenarios. Plausible test cases include stochastic maze 
(rather than deterministic maze), or multi-agent settings. 
Real-world applications are usually characterized by these 
complex elements. Second, it will be plausible to compare 
our algorithm with the model-based approaches of 
reinforcement learning. Model-based algorithms [3, 4] 
have proved to work better when the E-E dilemma is a 
major challenge for the learner. We believe these future 
directions can shed more light on the theoretical 
significance of our proposed RB-DAE algorithm, and 
better polish it for engineering applications as well. 
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