Martin Saveski

PhD Student, MIT Media Lab

msaveski [AT] mit.edu

Item Cold-start Recommendations

Learning Local Collective Embeddings

Recommender systems suggest to users items that they might like (e.g., news articles, songs, movies) and, in doing so, they help users deal with information overload and enjoy a personalized experience. One of the main problems of these systems is the item cold-start, i.e., when a new item is introduced in the system and no past information is available, then no effective recommendations can be produced. The item cold-start is a very common problem in practice: modern online platforms have hundreds of new items published every day. To address this problem, we propose to learn Local Collective Embeddings: a matrix factorization that exploits items’ properties and past user preferences while enforcing the manifold structure exhibited by the collective embeddings. We present a learning algorithm based on multiplicative update rules that are efficient and easy to implement. The experimental results on two item cold-start use cases: news recommendation and email recipient recommendation, demonstrate the effectiveness of this approach and show that it significantly outperforms six state-of-the-art methods for item cold-start.

More details: paper, slides.

The intuition behind learning collective embeddings using matrix factorization
The intuition behind learning collective embeddings using matrix factorization