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THINKING LIKE A TREE
(AND OTHER FORMS OF ECOLOGICAL THINKING)

1. INTRODUCTION: THE WALKING TREE

In the rain forests of Costa Rica, there is an unusual type of tree known
as a “walking tree.” It is a strange looking tree. At the base of the tree
is a tangle of roots, rising about a meter above the ground. It looks as if
someone yanked the tree straight up out of the ground, leaving about a
meter of its roots exposed above ground level.

According to rain-forest guides, the walking tree actually changes its
location over time (although very slowly). How does the tree move? The
roots act as a type of evaluation system, searching for good soil for the
tree. If there is good soil on the north side of the tree, the roots on that side
dig in deeply and hold firmly. If the soil on the south side isn’t as good,
the roots on that side remain shallow and weak. As the roots on the north
side become stronger and deeper, the whole tree gradually shifts toward the
north, pulled by the strong roots in that direction. As the tree moves, new
roots grow around the new location, some of them extending even further
to the north. If the roots find even better soil there, the whole tree will, over
time, shift even more to the north. Or, if there is better soil to the east, the
tree will slowly shift to the east.

We might say that the walking tree follows a TREE strategy:

• Test Randomly (send out roots in all directions)
• Evaluate (determine which roots find the best soil)
• Elect (choose which direction to move, based on the information from

the roots)

The walking tree executes this strategy over and over; as it moves, it
continually sends out new roots to search the area around its new location.
Over time, it moves in the direction of better soil. Of course, the walking
tree does not actually “choose” or “decide” which way to move, as a person
would. But it is useful to think of the tree as executing a type of strategy or
algorithm.1
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2. ECOLOGICAL THINKING

The TREE strategy is representative of a broader class of strategies that
I call “ecological strategies.” These strategies are very common in the
biological world, used not only by walking trees but many other plants and
animals as well. Ecological strategies share two common characteristics:

• Responsive to local conditions. In ecological strategies, decisions
(e.g., which direction to grow roots) are based on local information,
not centrally-planned solutions.

• Adaptive to changing conditions. As conditions change (e.g., deteri-
oration of soil on one side of a tree), ecological strategies adjust
and produce new solutions tuned to the new conditions. There is no
pre-planned script; decisions and solutions change over time.

Ecological strategies might seem inefficient and indirect, but they tend
to be simple, flexible, and robust. Many ecological strategies employ
decentralized approaches, relying on small contributions by (and interac-
tions among) many simple entities (e.g., the roots of the tree), rather than
a single, sophisticated decision-making entity.

Although ecological strategies are most commonly associated with the
biological world, they can be useful in a wide variety of other situations –
for example, designing management and organizational structures, solving
mathematics problems, coordinating communications systems. In the
1940s and 1950s, the field of cybernetics aimed to apply ecological-style
strategies to many different types of systems – biological, social, scientific,
and technological (Wiener, 1948; von Foerster, Mead and Teuber, 1949).
The field attracted engineers, biologists, psychologists, anthropologists, all
aiming to forge connections among their disciplines. Cybernetics never
developed into a mainstream discipline. But cybernetic ideas have attracted
renewed interest during the past decade, as part of research efforts in the
fields of complex systems (e.g., Waldrop, 1992; Gell-Mann, 1994) and
artificial life (e.g., Langton, 1989; Levy, 1992). In particular, researchers
are using TREE-like evolutionary models to describe phenomena in a very
broad range of domains (Dennett, 1995).

As some scientists have pointed out (e.g., Pagels, 1988), these new
research initiatives can be viewed, in part, as a reaction against the meta-
phors of Newtonian physics that have dominated the world of science
for the past 300 years. Newton offered an image of the universe as
a machine, a clockwork mechanism ruled by linear cause and effect.
Today, some researchers are shifting metaphors, viewing their objects of
inquiry less as clockwork mechanisms and more as ecosystems. Ideas from
ecology, ethology, and evolution are spreading beyond their disciplinary
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boundaries, influencing research in fields from economics to engineering
to anthropology.2

Despite this growing interest within the scientific community, ecologi-
cal strategies have made few inroads into pre-college curricula. It is rare
enough for biology classes to explain or model biological phenomena
(such as ant foraging or bird flocking) in terms of ecological strategies; it is
far, far rarer for ecological ideas to be used as a basis for design or problem-
solving strategies in other (non-biology) classes. Even as educational
reform efforts have placed increased emphasis on “problem solving,”
there has been little emphasis on ecological-style problem solving. Some
“systems thinking” approaches (e.g., Senge, 1990) incorporate ecological
strategies, but few schools have embraced these approaches.

Part of the problem is that people seem to have a “centralized mindset”
(Resnick, 1994, 1996a), tending to gravitate towards explanations and
solutions with a single centralized cause or linear causal chain. When
people see a flock of birds, they assume the bird in front is the leader; when
people create a new organization, they assume that hierarchical control
structures are needed. People also seem to resist strategies and explana-
tions that require probabilistic reasoning (Wilensky, 1993). Adopting
ecological strategies requires not just a change in lesson plans, but a change
in the mindsets of students, teachers, and curriculum developers. New
approaches are needed to help people become “ecological thinkers.”

In this paper, I probe the nature of ecological thinking, with special
emphasis on the use of ecological strategies in design and problem solving
(not just as a framework for explaining phenomena in the natural world).
Through a set of specific examples, I suggest several different categories
of ecological strategies. The goal is to begin to develop a framework that
can help people understand the nature and uses of ecological thinking. The
paper does not aim to provide a rigorous analysis of the effectiveness and
limitations of ecological thinking. Rather, it is more of an essay: intended
to provoke thought and to draw attention to styles of thinking that have,
too often, been overlooked and undervalued.

The paper focuses on very simple examples of ecological thinking. In
the scientific community, there is growing interest in a class of ecological
strategies known as genetic algorithms (Holland, 1975; Mitchell, 1996).
Genetic algorithms start with a “population” of possible solutions to
a problem, then they combine the best-so-far solutions (using genetic
approaches like mutation and crossover) in an effort to “breed” even
better solutions. Genetic algorithms can be used to solve a wide range
of optimization problems. But they are not particularly well suited to my
goal of helping people understand ecological strategies (and becoming
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better ecological thinkers). Genetic algorithms are “black boxes”: even
when they come up with good solutions to a problem, it is very difficult
to analyze how and why they did so. My hope is to move beyond black
boxes, finding “transparent” examples that help people see the key ideas
underlying ecological thinking.

Many of the examples in this paper involve the use of computers
(and computer networks). That is no accident. Ecological strategies often
require repeated application of simple rules and/or massively-parallel
interactions among many entities. Computers (and computer networks) are
particularly well-suited to such tasks. Indeed, it is fair to say that ecological
strategies are “truly computational” (Resnick, 1997). Most uses of
computers in math/science education involve a re-implementation of tradi-
tional strategies that were previously implemented (albeit less efficiently)
with paper and pencil. For example, system dynamics programs like Stella
(Roberts et al., 1983; Doerr, 1996) are based on the same differential-
equation representations that have long been used by mathematicians and
scientists for studying the behaviors of systems. Ecological strategies are
different: they involve very different representations and approaches than
were traditionally used in the paper-and-pencil era. The point is not that
computer-based ecological strategies allow people to do things that they
couldn’t do before (though that it certainly true); the point is that such
strategies allow people to do things that they never even thought to do
before.

This link between computers and ecological thinking is ironic. The
popular perception of computers places them in opposition to the natural
world, but it is possible that computers could, in fact, lead to a much more
widespread application and appreciation of strategies from the natural
world.

3. GETTING TO THE ROOTS OF THE PROBLEM

Inspired by the story of the walking tree in the Costa Rican rain forest,
I decided to introduce the idea of ecological thinking at a workshop for
high-school teachers in Costa Rica. There were about 30 teachers at the
workshop, many of them with backgrounds in math and science. Only a
few of them had heard of the walking tree, and none of them knew how
it moved. After explaining the walking tree’s strategy, I suggested that we
could use a similar strategy to solve math problems. I explained that each
teacher could act like one of the roots of the tree, and collectively they
could solve a math problem. The idea was for each teacher to do something
quite simple (just as each root of the walking tree does something quite
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simple), but for the group (like the overall tree) to accomplish a meaningful
goal.

I proposed the following algebra problem:

2x2 − 7x + 29 = 3104

Typically, students learn to solve such problems by using the quadratic
formula:

x = −b ± √
b2 − 4ac

2a

for an equation in the standard form of: ax2 + bx + c = 0.
Students plug coefficient values into the formula and calculate the solu-

tions for x. In this case, a = 2, b = −7, and c = −3075 (that is, 29 −
3104).

The quadratic formula certainly yields the correct solutions for this
problem. But there is a different, more ecological approach for solving
this problem. To illustrate this alternative approach, I asked each of the
teachers to pick a random number between 0 and 100. Then, I told them to
calculate the left side of the equation, using their randomly-chosen number
as the value for x. For example, if a teacher chose the number 3, then the
calculation would be (2∗3∗3) − (7∗3) + 29, for a result of 26. Next, I
told them to compare their result with the right-hand side of the equation
(3104). Of course, there was very little chance of an exact match: after all,
they had chosen their values for x randomly. For the teacher who chose the
value of 3, there would be an “error” of 3078 (that is, 3104 − 26).

After the teachers had done their calculations, I asked whether any of
them had “errors” of less than 1000. Three of them raised their hands. One
had chosen the number 44 for an error of 489. Another had chosen the
number 35 for an error of 870. The third had chosen the number 40 for an
error of just 155.

I explained that these three teachers represented the “strong roots” of
our tree. They had found good soil, and they should dig in deeply, pulling
the tree in their direction. The other teachers had weak roots. They should
pull up their roots and pick new numbers close to the strong roots (but not
exactly the same). Since the strong roots ranged from 35 to 44, the teachers
should all pick numbers between 30 and 50, and repeat the activity.

This time, several teachers chose the number 41 and got an exact match
(that is, an error of 0). So the number 41 is a “very strong root” of the
equation 2x2 − 7x + 29 = 3104. In effect, the roots of the tree had become
the roots of the equation.
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Just like the walking tree, the teachers had used a TREE strategy: Test
Randomly (each teacher chooses random numbers as possible values for
x), Evaluate (each teacher plugs his/her number into the equation and
calculates the “error”), and Elect (the group selects the numbers that gener-
ated the smallest “errors”) – then repeat the whole process (using numbers
close to those Elected in the previous round).

For each teacher, the strategy was quite simple to execute. Each teacher
performed only simple arithmetic operations (multiplication, addition, and
subtraction). But the whole group, working together, was able to solve an
algebra problem.3

Of course, the TREE approach to this problem has some clear disadvan-
tages and limitations. Plugging numbers into the quadratic formula is a
more “efficient” strategy, producing a solution more quickly; it is hardly
convenient to gather together 30 colleagues every time you want to solve
an algebra problem. Also, the quadratic formula always gives an exact
solution; the TREE approach does not. If I had given the teachers a
problem with irrational roots, they never would have converged on an exact
solution using the TREE strategy; and if the problem had imaginary roots,
the TREE strategy would not work at all. Moreover, the TREE strategy
is not fully specified: depending on how the participants “test randomly”
(how do they choose their next number?), the strategy might not converge
on an answer.

These are significant limitations. On the other hand, there are several
reasons for introducing teachers (and students) to the TREE strategy:

• The TREE strategy can be applied to wide range of problems. What
if I had given the teachers a problem involving a fifth-degree (or other
higher-order) polynomial? The quadratic formula would no longer
work. Indeed, they could no longer look up a closed-form solution.
But the TREE strategy would still be useful. And, as I will discuss
later, the TREE strategy (and other ecological strategies) can be useful
in many other (non-algebra) situations. The TREE strategy is not just
a “math trick” but a general problem-solving strategy.

• The TREE strategy tends to be more robust than the strategies tradi-
tionally taught in schools. Even if one of the participants makes a
arithmetic mistake (or, in the case of an actual walking tree, if one of
the roots breaks or wanders off in the “wrong” direction), the overall
group would still reach the same result. Small errors generally don’t
cause big problems in the TREE strategy. The TREE strategy also
tends to be robust in another sense: people are likely to forget the
details of the quadratic formula, but they are likely to remember the
TREE strategy.
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• The TREE strategy is well-suited for computerization – so it is not
really necessary to gather together 30 friends to use the strategy.
The Costa Rican teachers, after enacting the TREE strategy them-
selves, created a computerized version of the strategy written in
StarLogo (Resnick, 1991, 1994), a massively-parallel version of the
Logo programming language (Papert, 1980; Harvey, 1985). They
created 100 StarLogo turtles,4 and programmed the turtles to follow
rules similar to those the teachers had followed in solving the algebra
problem. Each turtle started at a random x-position, and it used its
x-position as the x-value for the equation. As the turtles executed the
TREE strategy, they gradually converged to the same x-value, indicat-
ing a solution to the equation. One reason that the TREE strategy
has been underused and overlooked in classrooms is that it involves
application of the same rules over and over again – a tedious task
for humans. Widespread availability of computers makes the TREE
strategy much more accessible (both practically and conceptually).

• Regardless of whether the TREE strategy is “better” than other
strategies for finding roots of a polynomial, it provides learners an
additional way of understanding the idea of finding roots. Minsky
(1987) and others have observed that you don’t really understand
an idea until you understand it several different ways. Each way of
thinking about something strengthens and deepens each of the other
ways of thinking about it. Thus, the TREE strategy, in conjunction
with other strategies, provides a more robust understanding.

• Perhaps most important, experiences with the TREE strategy can
fundamentally change the ways that people look at the world.
As discussed earlier, students usually learn top-down, centralized
strategies for solving problems and designing artifacts. The TREE
strategy represents a more decentralized approach: lots of separate
parts, each with very simple behaviors, work together to produce
complex-seeming results.

It is common for mathematicians and scientists to represent problems as
topological terrains, consisting of hills and valleys. Locations with higher
elevation represent better solutions to the problem. To solve a problem,
you need to find the highest hills in the terrain. For a quadratic equation,
the “problem terrain” is quite simple, with two large hills representing the
two roots to the problem. When you use the quadratic formula, you jump
directly to the top of the hills. The TREE strategy is more incremental: it
is an example of what is known as a hill-climbing strategy. In the Costa
Rica workshop, each teacher began by choosing a random location in the
problem terrain, then looked for colleagues at higher elevations and moved
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closer to them. Collectively, the teachers searched the hillsides for higher
elevations, until they reached the summit.5

4. WHOSE HILL ARE WE CLIMBING?

The TREE approach in the teacher workshop used a “parallel” algorithm:
multiple people (or, in the case of the StarLogo implementation, multiple
turtles) worked in parallel to solve the problem. But parallelism is not
absolutely necessary in this case. It is possible for a single person (or a
single turtle) to use the TREE strategy to solve the algebra problem, using
the following rules:

• choose two random numbers
• figure out which one is the “stronger root” (that is, which one has the

smaller “error”)
• choose a new number close to the “stronger root”
• see how this new number compares to the stronger root
• and so on . . .

Using the “problem terrain” representation, you can think of an indi-
vidual climbing the hill on their own. Instead of looking for colleagues at
higher elevations, the individual takes tentative steps in various directions
to figure out which way is uphill, and gradually moves up the incline.
This single-person approach (sometimes known as “successive approxi-
mation”) does not have the same “feel” as the multi-person approach: the
Costa Rican teachers reported that they found the TREE strategy exciting
in part because in enabled them to work together as a group. The multi-
person approach has some other advantages too. The group might solve
the problem more quickly (since it has more “processing power”). And
if the problem has multiple solutions (multiple hills), the multi-person
approach might find several solutions simultaneously. But the approach
is not “deeply parallel” – that is, the single-person approach uses the same
underlying idea.6

With some ecological strategies, however, parallelism is fundamental to
the solution. Consider the following problem, which arose while two high-
school students were working on a StarLogo project. The students were
using StarLogo to explore the formation of traffic patterns on a highway
(Resnick, 1994). They created several dozen cars, gave them simple rules
to follow (“if there’s a car close ahead of me, slow down; if not, speed up”),
then observed the traffic patterns that formed. At one point, the students
wanted to start the cars in a single lane, evenly spaced along the road. This
was not a trivial problem for the students. Ultimately, they came up with
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the following solution. They created a horizontal road on the computer
screen, and divided the width of the screen by the number of cars to get the
desired spacing between the cars. Then they set the x-coordinates of each
car to maintain the appropriate spacing between cars.

This strategy clearly works. But then one of my graduate students,
Randy Sargent, suggested an alternative (more ecological) strategy that
the high-school students liked much better. In this strategy, the cars start at
random positions along the road (all within a single lane). Then each car
repeatedly applies the following rule:

• calculate the distance to the car in front of me
• calculate the distance to the car behind me
• take a step towards whichever one is further away

When all of the cars follow this strategy, the resulting motion has an
organic feel to it. The cars start jostling around. Some of the cars move
one way, then the other, as if they are making up their minds. Clusters of
cars gradually spread out, filling in the more sparsely populated portions
of the road. Eventually, the cars settle down in an evenly-spaced pattern. It
feels almost like a group of school children, spacing themselves out for a
game of Ring-around-the-Rosie.

This strategy has an aesthetic appeal; the high-school students found it
more interesting to watch than their own program. The strategy is also
more effective in some ways. Like all ecological strategies, it is more
adaptive to changing conditions. After the cars have reached an evenly-
spaced pattern, you can move one of the cars, or even remove a car
entirely, and all of the other cars will automatically adjust, with changes
rippling down the highway, until the overall system “relaxes” a new
equilibrium.

This type of strategy (sometimes known as “constraint propagation”)
is not uncommon among scientific researchers. But it is usually viewed
as an “advanced technique,” and is rarely if ever taught in pre-college
curricula. New computational environments like StarLogo not only make
these techniques more understandable, but they also provide contexts in
which these techniques are much more useful than ever before, even for
young students. Suddenly, these techniques do not seem so “advanced” or
esoteric anymore.

As suggested earlier, the ecological car-spacing strategy is “deeply
parallel” in nature. What do I mean by “deeply parallel”? To answer that,
it is again useful to think about problem terrains. In the algebra example,
the group succeeds as soon as any individual finds a summit. The group
goal is the same as the individual goal. The car-spacing example is more
complicated. Each individual car is trying stay equidistant from its two
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neighbors. But even if it succeeds perfectly, the group hasn’t necessarily
succeeded. For the group to succeed, all cars must be equidistant from their
neighbors. It is as if the group is moving on a different problem terrain
than the individuals. Many of the individuals might be at the hilltops in
their terrains, but the overall group won’t necessarily be at the hilltop of the
group terrain – and it probably won’t get there until some of the individuals
are knocked off of their individual summits. We can call a strategy “deeply
parallel” when the group terrain is different from the individual terrain.
There are no single-person versions for deeply-parallel strategies; these
strategies depend on the interactions among the participants, not on the
performance of any individual.

For me, the car-spacing example brought back a childhood memory.
As a child, I loved watching baseball games. At one point, I wondered
why the bases were placed exactly 90 feet from one another. I noticed
that when a batter hit a ground ball to the infield, the play at first base was
almost always very close. I thought that the choice of 90 feet as the distance
between bases was a great choice: it led to lots of close and exciting plays
at first base. It wasn’t until many years later that I realized the error in
my thinking. In fact, the infielders adjust their positions to maximize the
number of balls that they can reach while still being able to throw out
runners at first. If they often threw out runners by a large margin, it would
mean that they weren’t playing far back enough (and thus not reaching as
many ground balls as they might). So the infielders adjust themselves in a
way that ensures lots of close plays at first base. There is nothing magical
about 90 feet. If the bases were placed 100 feet apart, the infielders would
(ecologically) adjust their locations in a way that would again lead to lots
of close plays at first base.

5. ECOLOGIES ON THE NET

In recent years, education-research conferences have been full of sessions
about the educational implications of the Internet. Many researchers focus
on how the Net will provide students and teachers with easy access to
huge libraries of information. Other researchers focus on how the Net
will make possible new types of learning communities, connecting people
with shared interests from all over the world. But little is heard about
what, in my mind, is the most important implication of the Internet: how
the Net can support and encourage new ways of thinking – in partic-
ular, ecological ways of thinking. To the common metaphors of Internet
as library, highway, and marketplace (Stefik, 1996), we should add the
metaphor of Internet as ecosystem.
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As is well known, the Internet is based on a decentralized structure.
New computers, new users, and new functionality can be added to the Net
without any centralized decision-making. The Net makes possible new
types of decentralized collaborations, enabling large numbers of people
to work together on shared tasks, such as decoding ciphers (Leutwyler,
1994), building online help systems (Whitehead, 1994), or organizing
virtual libraries. In this way, the Internet makes it possible to leverage the
small efforts of the many, rather than the large efforts of the few (White-
head, 1994; Kalil, 1996). Parts of the Internet seem to function as artificial
ecologies. For example, Best (1996) analyzed the newsgroups of NetNews
in terms of ecological interactions. In this view, ideas on NetNews compete
with one another for the attention of human readers and posters; certain
ideas reproduce and flourish (and even spread to other newsgroups), while
others die out.

The ecologies of the Internet could be a particularly fertile ground
for the development of ecological thinking because they can be designed,
manipulated, and analyzed much more easily than “natural” ecologies. As
Papert (1993) has argued, people learn with particular effectiveness when
they are actively engaged in the design and construction of personally-
meaningful artifacts. The Internet enables people to design and play with
“ecological artifacts” to a far greater extent than ever before.

Engaging children in ecological-style thinking was one of the motiva-
tions behind MOOSE Crossing (Bruckman, 1997), an online community
organized by Amy Bruckman (at the time, a graduate student in my
research group). MOOSE Crossing is a multi-person, text-based virtual
world in which children not only interact with one another but also
collaboratively construct the virtual world in which they interact.7 In
MOOSE Crossing, children (mostly between the ages of 9 and 13) create
new rooms and objects – and write programs to control the behaviors of
those objects (using a scripting language called MOOSE). For example, a
ten-year-old girl created a pet penguin that reacts when other people kiss
it, hug it, or feed it. The penguin keeps track of how hungry it is, and it
reacts differently to six different kinds of food. Another MOOSE Crossing
member created a set of potatoes that obey Mendelian genetics; others built
a mega-mall with specialty shops. Children can also take on new personas:
for example, a child might decide to become a munchkin and help others
in building a replica of Oz. Studies of MOOSE Crossing have documented
the ways in which a community can provide strong support for design and
construction activities – and, conversely, the ways in which ongoing design
and construction activities can support the development of a stronger sense
of community (Bruckman, 1997).
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I have been particularly interested in the ways that children on MOOSE
Crossing get ideas for new projects. In any design situation, it is often a
good strategy to start by looking at previously-developed projects, then to
consider variations on these model projects. For this reason, it is important
for designers to have easy access to good sample projects. Suppliers of
computer-based design tools (such as paint programs and programming
languages) often include sample projects with their tools, to help users
get a sense of what’s possible. But there are some important limitations
to these pre-packaged sample projects: they reflect the interests and ideas
of only the supplier (not necessarily of the full range of interests of the
user community) and they are static (changing only if the supplier ships an
updated version).

The collection of sample projects on MOOSE Crossing has a very
different (and more ecological) feel. The sample projects are created by
the MOOSE Crossing members themselves. In fact, since each object
created in MOOSE Crossing is fully inspectable and copyable, each object
becomes a sample project for everyone else in the community. If a MOOSE
Crossing member sees an interesting object, she can “look inside” the
object to see the computer code underlying the behavior – and, perhaps,
create a new version of the object with slightly modified code.

The collection of sample projects in MOOSE Crossing continually
changes, always reflecting the current interests of the community – without
any centralized control. As with other ecological processes, the collection
of sample projects automatically adapts and self-adjusts to changing condi-
tions. If a group of MOOSE Crossing members becomes interested in a
particular type of project, the collection of relevant sample projects auto-
matically increases. At one point, for example, some MOOSE Crossing
members became interested in magic. One member created a magic wand
(and wrote a set of programs to accompany it); another created a “generic
magician” as a new player class; a third created a spell book. The spell
book was full of simple programs that could “cast spells” on other people
in the room. Many children in the community made copies of the spell
book, and many added new spells (programs) to their personalized spell
books. Someone even created a spell that ran all of the other spells in the
spell book – a popular program that was soon copied by many others in
the community. One child opened a “magic store” where members of the
community could get copies of the latest magic-related objects. Eventually,
people started to lose interest in magic, and the number of magic-related
objects gradually decreased over time – again, automatically adjusting to
the current needs and interests of the community.
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It is again useful to think about the problem-terrain representation. In
this case, we can think of the problem terrain as a representation of how
well the MOOSE Crossing sample projects match the current interests of
the community. In the previous examples in this paper, there were clear,
pre-defined optimal solutions: the exact roots of the quadratic equation, an
even spacing among all of the cars. So the group terrains were fixed ahead
of time; the challenge was to find the fixed hilltops. The MOOSE Crossing
case is different. Since the interests of the community are always changing
(as new members join and as existing members develop new interests), the
problem terrain is always shifting. If an “outsider” tried to supply sample
projects to meeting these shifting interests, it would be a very difficult
challenge. The ecological strategy of letting the participants themselves
create the sample projects does a much better job of staying close to the
ever-shifting hilltops. Ecological strategies are especially useful in situ-
ations like this, where the problem terrain is constantly changing. In these
situations, responsiveness to local conditions and adaptiveness to changing
conditions are particularly important.

The hope (and this, admittedly, has yet to be proven) is that children
who actively participate in artificial ecologies like MOOSE Crossing
will be better prepared to use (and understand) ecological-style strategies
in other situations. And with the rise of the Internet, there will be
more opportunities to use such strategies. For example, in MediaMOO
(Bruckman and Resnick, 1995), a networked virtual world intended for
media researchers, one participant proposed an ecological strategy for
automatically creating new (and useful) paths within the virtual world.
The idea was to write a program that kept track of people’s move-
ments. If the program noticed that people often went from one particular
room to another particular room (moving through several other rooms in
between), it could automatically construct “short cuts” to allow people to
jump directly from initial room to the final destination. Several univer-
sities tell stories of how an architect used a similar strategy to decide
on the placement of walkways around the university library: the archi-
tect surrounded the library with grass and waited a year to see where the
paths developed, then installed the permanent walkways. This approach
allowed the community itself to decide on the placement of the walk-
ways (in an informal, decentralized way). As the Internet allows more
people to become “architects” of multi-user spaces, it will become increas-
ingly important for people to learn how and when to use such ecological
strategies.
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6. ECOLOGICAL LEARNING ENVIRONMENTS

Ecological thinking can apply to education at several different levels.
The previous sections focused on the need to help students develop as
ecological thinkers – helping them learn how and when to use ecological
strategies (especially in the context of new computational media). This
section focuses at a different level, discussing how the ideas of ecological
thinking can be applied to the design of learning environments themselves.
Just as students too often adopt centralized strategies in trying to solve
problems, educators too often adopt centralized strategies in designing
learning environments.

In creating The Computer Clubhouse8 (Resnick and Rusk, 1996), we
explicitly tried to apply ecological ideas to the design of a learning
environment. The Clubhouse is an after-school learning center for youth
(ages 10–16) from under-served communities. At the Clubhouse, youth
use new technological tools to work on projects related to their own
interests and experiences. Clubhouse members, with support from volun-
teer adult mentors, become designers and creators (not just users) of
technological artifacts. They create their own animated stories, robotic
constructions, interactive newsletters, musical compositions, Web sites,
and simulations. The goal is not simply to help youth develop new techno-
logical skills, but rather to help them develop new ways of thinking about
the processes of thinking, designing, and learning, and also to help them
explore mathematical and scientific ideas. For example, when Clubhouse
youth use “programmable bricks” (Martin, 1994; Resnick, Martin, Sargent
and Silverman, 1996) to create their own “robotic creatures,” they explore
the differences and similarities between animals and machines, and they
begin to develop intuitions about engineering concepts such as feedback –
concepts that are traditionally taught at the university level.

The activity structures at the Clubhouse are based on ecological prin-
ciples. Adult mentors play a very important role at the Clubhouse, but they
do not plan activities in a centralized way. When Clubhouse members want
to start on a new project, they often begin by looking at samples of previous
Clubhouse projects (which are kept on display throughout the Clubhouse),
then thinking about variations or extensions that they can work on. After
that, their projects continue to evolve through various interactions – inter-
actions with other Clubhouse members, interactions with mentors, and
interactions with the media and materials on hand at the Clubhouse. Many
projects involve groups of Clubhouse members working together, but we
do not explicitly organize members into assigned teams, as is often done
in classroom-based collaborative activities. Rather, we try to create an
environment in which collaborative groups emerge as a natural part of
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ongoing activities. To a large extent, that has happened. At the Clubhouse,
projects and project teams are not fixed entities; they grow and evolve over
time. A member or mentor might start with one idea, a few others will join
for a while, then some others will start working on a related project.

One Clubhouse project, for example, started with two Boston Univer-
sity graduate students who volunteered as mentors. The two students were
both enthusiastic about robotics. Initially, they wanted to organize a work-
shop to teach Clubhouse members about robots. We discouraged that
approach, and instead encouraged them to start by building their own robot
at the Clubhouse. Our hope was that Clubhouse members would view the
graduate students as fellow learners, not as traditional teachers.

For several days, the two graduate students worked on their own; none
of the youth seemed particularly interested. But as the project began to
take shape, a few youth took notice. One decided to build a new structure
to fit on top of the robot, another saw the project as an opportunity to learn
about programming. After a month or so, there was a small team of people
working on several robots. Some youth were integrally involved, working
on the project every day. Others chipped in from time to time, moving
in and out of the project team. The process allowed for what Lave and
Wenger (1991) have called “legitimate peripheral participation” – different
youth were able to contribute to different degrees, at different times. In
general, design teams at the Clubhouse form informally, coalescing around
common interests. Communities are dynamic and flexible, adapting to the
ever-changing needs of the project and interests of the participants – much
as the collection of sample projects adapts in MOOSE Crossing.

As in natural ecologies, diversity is important to this process. At the
Clubhouse, we have tried to attract a community of adult mentors with
diverse professional and cultural backgrounds. One reason is obvious: a
diverse mix of mentors can better match the diverse backgrounds and
interests of the Clubhouse youth. But that is only one reason. There is also
an evolutionary argument in favor of diversity within a learning environ-
ment. New projects at the Clubhouse emerge through a process related to
Darwinian variation and selection. The “selection” of new projects works
best when there is a rich “variation” in the combinations of youth, mentors,
tools, and ideas. As in natural ecologies, diversity at the Clubhouse leads to
a greater robustness and adaptiveness in the types of activities and projects
that evolve.

Designing an ecological learning environment requires a shift in tradi-
tional ways of thinking about “control.” Learning experiences can not be
directly controlled or planned in a top-down way. Indeed, the specific
experiences at the Clubhouse have been quite different from what we
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(as developers) expected. Educational designers can not control exactly
what (or when or how) students learn. In some ways, the design of a
new learning environment is like the design of a StarLogo simulation.
To create a StarLogo simulation, you write rules for individual objects,
then observe the large-scale patterns that emerge. You do not program
the patterns directly. So too with the design of learning environments.
Developers of learning environments can not “program” learning exper-
iences directly. The challenge, instead, is to create fertile environments in
which interesting activities and ideas are likely to grow and evolve.

7. SEEING THE FOREST

This paper has presented the idea of “ecological thinking” through a collec-
tion of metaphors and examples, not precise definitions or models. This
approach runs the risk of misinterpretation. At a recent educational confer-
ence, for example, I described the foraging strategy of an ant colony as
an example of an ecological strategy: the colony as a whole accomplishes
complex tasks (bringing food back to the nest) and adapts well to changing
conditions, even though each individual ant follows very simple rules and
reacts only to local stimuli. In the same presentation, I described the uses
of ecological thinking in the design of learning environments like the
Computer Clubhouse. At the end of my talk, someone in the audience
asked whether an ant colony is really a good model for a learning environ-
ment. Do we really want to think of students as ants, each following the
same simple rules in an almost mindless fashion?

Certainly not. Students in a classroom are, of course, much different
than ants in a colony – or roots on a walking tree. But in all of these cases,
the behaviors of the overall system arise, often in unexpected ways, from
interactions among the parts of the system. The defining characteristic of
an ecological strategy is not the simplicity of the component parts, but the
nature of the interactions among those parts. Developing as an “ecological
thinker” requires a sensitivity to the role of interactions in a system – and
an understanding that effective solutions are not always prescribed in a
centralized way but rather arise indirectly from many interactions.

Another possible misinterpretation involves the role of non-ecological
strategies. This paper aims to highlight the fact that ecological strategies
have been overlooked and undervalued in the past. But it would be a
mistake to read the paper as a rejection of all other (more “centralized”)
approaches. An exclusive focus on ecological strategies is no better than an
exclusive focus on traditional centralized strategies – just as, in economics,
an unyielding commitment to market mechanisms can cause just as many
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problems as an unyielding commitment to centralized planning. If you
focus only on TREE-like strategies, you might not see the forest. There
is no doubt that the quadratic formula is still a very useful strategy to
learn, and teachers still need to play a centralized role in some classroom
situations.

An important research challenge for the future is the development of a
more systematic framework of how, when, and why ecological strategies
are useful. The goal should not be to ignore or replace traditional strategies,
but to expand the repertoire of strategies that people have at their disposal –
and to help people learn which strategies (or which mixtures of strategies)
are best suited to which situations. Indeed, one of the most important bene-
fits of introducing ecological thinking in classrooms is to help students
learn that there are, in fact, multiple ways of thinking about problems.
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NOTES

1 The story of the walking tree, which I heard from a rain-forest guide in Costa Rica, is
actually a mixture of fact and fiction. The tree (genus Socratea, species S.exorrhiza) does
move several centimeters during its lifetime, but its movement is not actually guided by
soil quality. Nevertheless, the story of the walking tree provides a nice metaphor.
2 This physics vs. biology dichotomy is, of course, overly simplistic. Some areas of
physics (most notably statistical mechanics, which focuses on the patterns that arise from
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local interactions among large numbers of elements) are very related to ideas underlying
ecological thinking. And some areas of biology are based on centralized strategies. But the
core ideas of ecological thinking (especially those related to adaptation and change) are
most deeply rooted in the biological fields of ecology, ethology, and evolution.
3 Note that the given equation has two roots: 41 and −37.5. The way the activity was
organized, the teachers found only one of the two roots. But with slight modifications to
the activity, allowing negative numbers and non-integers, the teachers could have found
both roots, though the process would have taken longer.
4 Turtles are computational objects with position and heading. With StarLogo, users can
write programs for thousands of turtles, then observe the patterns that form from all of the
interactions. You can download StarLogo from http://www.media.mit.edu/starlogo/
5 Hill-climbing strategies have some well-known limitations: on certain terrains, they
can get trapped on small hills (local maxima) and never reach higher elevations (global
maxima). Depending on the exact details of the algorithm (e.g., how to make the “next
guess”) and on the nature of the terrain, some hill-climbing strategies never converge. But
it is not a goal of this paper to analyze the limitations of the TREE strategy (or other hill-
climbing strategies) in detail.
6 Papert (1996) makes a similar point about the so-called “rugby problem” (Resnick,
1996b; Wilensky, 1996), noting that the problem can be solved with a single turtle instead
of multiple turtles.
7 MOOSE Crossing is an example of a “MUD” (Curtis, 1993). The first MUDs were
created to support online versions of the game “dungeons and dragons”; the acronym
stands for “multi-user dungeons.” MUDs today are used for many different purposes, not
just adventure games.
8 The Computer Clubhouse is a joint project of the Boston Museum of Science and the
MIT Media Lab. It was co-founded by Natalie Rusk and myself. The first Computer Club-
house opened in 1993; there is now a network of more than 75 Clubhouses. For more
information, see http://www.computerclubhouse.org
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