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 “Science, whatever be its ultimate developments, has its origin in techniques, 
in arts and crafts.... Science arises in contact with things, it is dependent on 
the evidence of the senses, and however far it seems to move from them, must 
always come back to them.” 

      – B. Farrington, Greek Science (1949) 

Introduction 
Science is popularly regarded as a “cognitive” activity – a discipline of the mind. But 

there is also a more physical and tactile tradition in science – a tradition in which 
scientists do not merely measure and theorize but also construct the instruments needed 
to do so. Indeed, many of the most important advances in scientific history were based on 
a combination of science, engineering, and design. Galileo’s construction of his own 
telescope (as described in Galilei, 1610), Boyle and Hooke’s design of the air-pump for 
experimentation with low pressure (Shapin, 1996), and Kelvin’s construction of a tide-
measuring device (MacDonald, 1964) are examples of this tradition and staples of 
scientific lore. By building their own instruments – and understanding the capabilities 
and limitations of those instruments – scientists have historically gained deeper insights 
into the nature of the phenomena under investigation.  

The merits of the instrument-building tradition go beyond the immediate needs of 
research. Indeed, one element of that tradition is a design philosophy that emphasizes 
elegance and beauty in the material objects of scientific work. One can still witness this 
aesthetic tradition in museums and archives, in the writings, drawings, and surviving 
instruments of an earlier era of scientists. Examples are not hard to come by: the 
timepieces of John Harrison, for instance, represented both revolutionary advances in 
instrumentation design and gorgeous, intricately decorated works of functional art (Sobel, 
1995). Tycho Brahe’s observatory was both a working laboratory and a showpiece of 
beautiful devices (Rider, 1983, pp. 52-3). And in the annals of computer science, the 
calculating devices of Pascal and Leibniz, and the 19th-century “analytical engine” of 
Charles Babbage (as reconstructed in the Science Museum in London), each exhibit their 
own variety of mechanical beauty. The optical instruments, navigational devices, and 
glassware of eighteenth and nineteenth century researchers often strike the modern 
viewer as both functional and eye-pleasing; even the historical tradition of scientific 
illustration (as exemplified in the drawings of Audubon) combines precision and beauty 
(e.g., Turner, 1980; Daumas, 1972; Ford, 1993). 
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The instrument-building and aesthetic traditions of science have arguably been 
attenuated in recent years – and, in part, for good reason. Science is no longer the 
province of the individual aristocrat, and the design of scientific instrumentation has 
increasingly become (like much else in this century) a matter of mass production. While 
the democratization of science is welcome, the decline of “scientific craftsmanship” is a 
more problematic phenomenon. In the opinion of some scientists, the experience (and 
perhaps even the quality) of scientific research suffers when the researcher loses close 
physical contact with the tools and materials of the trade. As Pierre-Gilles de Gennes (a 
Nobel laureate in physics) writes,  

In rural France of yesteryear, children used to be in daily contact with nature and 
with the world of craftsmen, which gave them a sense of observation and of 
manual work.... Access to computer technology is a necessity, but if we are 
content to sit our young people in front of computer monitors (which they love), 
we are at risk of losing something precious. To form a generation that knows only 
how to hit a keyboard and produce reports is, to me, a scary prospect. (de 
Gennes, 1996, p. 149) 

And there are more subtle problems as well. Over time, the scientific laboratory may, 
sadly, have become a less beautiful setting in which to work, and a less magical setting to 
the eye of the student and apprentice. The modern-day student of science is less likely to 
experience a sense of comfort and delight in their surroundings; and, as Csikszentmihalyi 
(1996) has observed, the creative enterprise (whether scientific or artistic) is often keenly 
influenced by just such environmental factors:  

Even the most abstract mind is affected by the surroundings of the body. No one is 
immune to the impressions that impinge on the senses from the outside. Creative 
individuals may seem to disregard their environment and work happily in even 
the most dismal surroundings.... But in reality, the spatiotemporal context in 
which creative persons live has consequences that often go unnoticed. (p. 127) 

Both the power and the problem with modern scientific instrumentation are reflected 
in the term “black box” that is commonly used to describe the equipment. Today’s black-
box instruments are highly effective in making measurements and collecting data – 
enabling even novices to perform advanced scientific experiments. But, at the same time, 
these black boxes are “opaque” (in that their inner workings are often hidden and thus 
poorly understood by their users) and they are bland in appearance (making it difficult for 
users to feel a sense of personal connection with scientific activity).  

As suggested by the quote from de Gennes, digital electronics and computational 
technologies have accelerated this trend, filling science laboratories and classrooms with 
ever more opaque black boxes. Most scientific instruments today are filled with little 
more than circuit boards and integrated circuits. Even if they opened up the box and 
looked inside, most students (and even most scientists) would understand very little about 
how the instrument works. 

Paradoxically, the same electronics technologies that have contributed to the black-
boxing of science can also be used to reintroduce a vigorously creative, aesthetic, and 
personal dimension into the design of scientific instrumentation – particularly in the 
context of science education. This paper describes work that we have undertaken over the 
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past two years as part of our Beyond Black Boxes (BBB) project, focusing on the 
development of new computational tools and project materials that allow children (and 
older students) to create, customize, and personalize their own scientific instruments. Our 
tools and materials make use of tiny, fully-programmable computational devices, called 
Crickets, that students can embed in (and connect to) everyday objects. Crickets can 
control motors and lights, receive information from sensors, and communicate with one 
another via infrared light. Because the Crickets are general-purpose computers, students 
can reprogram them for use within a wide variety of home-built instruments; because 
they are tiny, portable, sturdy, and capable of communication with one another, students 
can employ them in novel or idiosyncratic ways. Crickets thus (on the one hand) expand 
the traditional landscape of informal instrumentation design, and (on the other) intensify 
the individual relationship between user and instrument, making it possible to weave 
scientific inquiry into personally designed (or personally meaningful) artifacts and 
everyday activities.  

The remainder of this paper describes ways in which this new technology can enhance 
the creative, aesthetic, and personal dimensions of students’ scientific inquiries. In the 
next section, we begin by placing our work in the context of related traditions of science 
education. The third section provides a brief introduction to Crickets and related 
technologies. The fourth section – the heart of the paper – describes several case studies 
of students involved in the creation, embellishment, or personalization of scientific 
instruments. In the fifth section, we reflect on these case studies, making note of both the 
positive and negative aspects of the experiences – broadly speaking, what has and has not 
“worked” in our efforts to move beyond black boxes in science education. 

Related Research 
Our BBB research effort has been influenced and informed by several related 

traditions of science education. On the one hand, there is a long and venerable tradition 
of “home science” books and materials, suggesting experiments and design projects that 
students can undertake with easily available materials (e.g., Diehn and Krautwurst, 1994; 
Doherty and Rathjen, 1991; Hann, 1979). Related to the home science tradition is a 
compelling literature (primarily British) on “design education,” in which elementary 
school classroom projects focus on the creation of devices, machines, tangible models, 
and so forth (e.g., Banks, 1994; Kolodner et al., 1998; Ritchie, 1995; Williams and Jinks, 
1985). Yet another tradition of work employs microcomputer-based lab (MBL) activities, 
in which computer software and scientific instrumentation are combined to enrich and 
automate a variety of classroom-based science projects (Tinker, 1996). Finally, we have 
been strongly influenced by the tradition of work in children’s programming (and more 
broadly, end-user programming), exemplified by the body of work that has grown around 
the Logo language and its descendants (Papert, 1980). 

Our work has been influenced by ideas from all these sources, but at the same time 
exhibits a combination of features that contrast with any one of these traditions viewed 
individually: 

• Constructionist approach. In most MBL activities, students use pre-built 
instruments; similarly, many “home science” books focus on pre-designed 
demonstrations and experiments. BBB activities take a different approach: students are 
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encouraged to construct and program the instruments that they use – and to design their 
own experiments. In our belief, this “constructionist” approach (Papert, 1993) deepens 
students’ understanding of the scientific concepts involved in the activities. This echoes 
Larkin and Chabay’s (1989) dictum for science education, to “let most instruction occur 
through active work on tasks” (p. 161); similarly, Berger (1994), in his compelling book 
on the Westinghouse Science Talent Search, observes that “too many schools are 
satisfied to spend their time imparting the standard biology and chemistry syllabi. 
Research, though, is the fun part of science, the part that allows for cunning and wonder” 
(p. 235). 

• Real-world science. Traditionally, much work involving children’s programming in 
science education has focused on simulation of natural processes. This use of computers 
has obvious appeal: by programming simulations, students (and researchers) can explore 
phenomena that are otherwise difficult or impossible to see in the real world – 
phenomena that involve idealized (e.g., frictionless) conditions, that occur at very large 
or small scales, or that take place over long periods of time. But simulation, however 
valuable, is only a part of science education. Ultimately, science is an enterprise devoted 
to understanding the material world; as such, investigations of real-world phenomena are 
crucial to students’ development of both scientific understanding and scientific interests. 
BBB activities are thus intended to expand the landscape of children’s programming 
from an exclusive focus on simulation to a deeper involvement with the tangible world 
outside the computer screen. 

• Combine sensing with control. In most MBL activities, students collect and analyze 
data from sensors. Cricket-based activities go a step further: students use sensor data to 
control the actions of motors, lights, and other electronic devices. The combination of 
sensors and actuators within scientific instruments likewise represents a step beyond 
most of the work in both the design education and home science traditions: the former 
often focuses on the construction of static or mechanical artifacts, while the latter often 
assumes an exclusively “low-tech” material basis to informal scientific exploration. 

• Programmability. Unlike most MBL equipment, Cricket-based instruments are fully 
programmable, so that students can more easily modify, customize, and extend the 
functionality of the instruments that they build. 

• Mobility. The small size of the Crickets makes it possible for students to create 
scientific instruments that they can carry with them, distribute in remote locations, or 
even embed inside other objects. 

• Low cost. The low cost of Cricket-based instruments dramatically changes the types 
of investigations that are possible. Students can put Cricket-based instruments “at risk,” 
placing them in dangerous environments without worrying whether a few of them get lost 
or damaged. Both the mobility and relative affordability of Crickets can, we believe, 
effect a sea change in the assumptions of the “home science” and design education 
traditions, moving those traditions toward a more powerful mixture of computational and 
craft media. Ultimately, we feel that Crickets (and their computational descendants) can 
achieve the status of everyday objects – part of the landscape of “stuff” that now includes 
plastic, wire, cardstock, elastic fabric, and other modern-but-mundane materials. 
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• “Daylong Learning”. Many traditional MBL activities involve experiments that, to 
students, seem unmotivated and decontextualized. By contrast, our intention is to help 
students develop investigations that draw on their everyday activities and that, in many 
cases, involve data collection over extended periods of time. The goal is to shift away 
from classroom learning to “daylong learning”; the Cricket’s small size (along with its 
ability to store data collected over time) facilitates this shift.  

• Variety of materials. Typically, BBB activities involve the use of a wide range of 
materials: electronics, wood, paper, LEGO bricks, foam core, and many others. In this 
respect, BBB activities share an interest with the “home science” tradition of making 
creative use of all sorts of objects and resources. Our focus is not, therefore, on using 
Crickets solely within the context of larger pre-existing construction kits in the tradition 
of LEGO, Meccano, Fischer-Technik, and so forth; marvelous and versatile as those kits 
are, we see them as part (an important part) of a larger, more varied world of building 
materials. The use of a wide variety of materials also lends itself well to a focus on the 
aesthetics of design. 

• Aesthetics of design. Most MBL and home science activities pay little or no attention 
to the aesthetics of the instrumentation, or the ways in which instruments are integrated 
into their surroundings; and on those few occasions when home science activities do pay 
attention to aesthetics, they tend to do so in a way that stresses post-hoc decoration (e.g., 
the exterior of a home telescope might be painted after the instrument is constructed). 
While developing a taxonomy of the ways in which scientific instrumentation and art 
may be blended is beyond the scope of this research, the versatility of Crickets 
(especially in conjunction with the various building materials mentioned above) lends 
itself to a thoughtful re-examination of the aesthetics of scientific design. A scientific 
instrument might be an attractively-decorated telescope; or it might be designed to fit 
unobtrusively in a garden, or some other natural setting; or it might be embedded within 
clothing; or it might even be designed primarily as an artistic creation – one whose 
scientific purpose is complementary or incidental to its artistic purpose. In any event, we 
would expect that as scientific investigations extend over longer periods of time and 
connect to everyday activities, aesthetics become increasingly important, if only because 
scientific instruments become part of more “lived-in” environments. BBB projects are 
thus often designed with an eye toward decoration, artistic exploration, or whimsy, in 
keeping with the observations of Csikszentmihalyi quoted earlier. 

Technology Infrastructure 
New technology was needed to support students in the activity of designing and 

building their own scientific instruments. As part of our Beyond Black Boxes effort, we 
developed a new family of tiny computational devices called Crickets (Figure 1). The 
Crickets are somewhat similar to the “programmable LEGO bricks” previously 
developed at the MIT Media Lab (Martin, 1994; Sargent et al., 1996), but they are much 
smaller and lighter (the current prototype is roughly the size of a 9-volt battery), and they 
have enhanced communications capabilities. Crickets can control motors, receive 
information from sensors, and communicate with one another (and other electronic 
devices) via infrared communications (Resnick et al., 1998). 
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Figure 1: Cricket (with LEGO figure shown for scale) 

Most important, the Crickets are fully programmable: students can write and download 
computer programs into the Crickets from a desktop computer. We have extended our 
previous development of Logo-based programming environments, with a goal of making 
it even easier for students to write (and understand) control- and sensing-oriented 
computer programs. At the same time, we have made these programming tools 
compatible with graphing and analysis software “components,” so that students can 
easily investigate trends and patterns in the data that they collect with their Crickets. 

The small size of the Crickets opens up new types of applications. Students can embed 
Crickets inside everyday objects – for example, a Cricket with an accelerometer may be 
embedded inside a ball, or a Cricket and temperature sensor may be woven into the fabric 
of a shirt. The low cost (less than $30 for the current version) and communication 
capabilities of the Crickets make it possible to imagine new applications involving 
dozens of Crickets interacting with one another. 

We believe that computational technologies (such as the Crickets) are particularly 
appropriate for bringing aesthetics considerations back to scientific instruments, since 
they enable a separation of the form of a tool from its function. In the past, the function 
of a tool was directly tied to its physical form. For example, the function of a hammer is 
closely linked to its shape and materials. With computational technology, there is a 
loosening of the binding between form and function. The software in a Cricket can play a 
larger role in determining the tool’s function than the tool’s physical shape or materials. 
No longer held hostage to functional constraints, the forms of objects can now be used 
specifically for communication and expression. 

Of course, Crickets are only one component of the construction kits that we provide 
for BBB projects. Many BBB projects make use of LEGO materials (including not only 
the traditional building blocks but also gears, wheels, and motors) for building structures 
and mechanisms. We provide a variety of different sensors that enable users to monitor 
everything from temperature and light to heart rate and galvanic skin response. We have 
also developed a collection of new output devices (in addition to motors and lights), such 
as numeric displays and “music bricks” for generating sound effects. Just as important as 
these “high-tech” devices are artistic materials. When organizing BBB activities, we 
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make sure to supply a wide range of arts-and-crafts materials, including everyday objects 
such as pipe cleaners, popsicle sticks, and cotton balls. This blend of high-tech devices 
and art supplies makes possible precise explorations and investigations while 
simultaneously fostering a spirit of creativity, exuberance, humor, stylishness, and 
personal expression. 

Case studies 
We have tested our Beyond Black Boxes technologies and activities at a diverse 

collection of educational settings, including not only traditional school classrooms but 
also after-school learning centers for inner-city youth. We have also worked with learners 
of different ages, from elementary-school children to university students. In this section, 
we offer four case studies of BBB projects. These case studies are not intended to suggest 
the complete range of BBB projects. Rather, they are intended to provide a representative 
sampling of how and what students learn when they are engaged in designing their own 
scientific instruments and investigations.  

Bird Feeder 

Jenny, 11 years old, loved all types of animals. In her backyard she had a bird feeder 
which she kept stocked with food for the local birds. But there was a problem: often, the 
birds would come while Jenny was away at school, so she didn’t get to see the birds. So 
when she began working with Crickets at the Build-It-Yourself Workshop (an after-
school center organized by John Galinato), Jenny decided to try to build a new type of 
bird feeder that would collect data about the birds that landed on it.  

Jenny started by making a wooden lever that served as a perch for the birds (Figure 2). 
The long end of the lever was next to a container with food for the birds. At the other end 
of the lever, Jenny attached a simple home-made touch sensor consisting of two paper 
clips. Jenny’s idea: When a bird would land near the food, it would push down one end of 
the lever, causing the two paper clips at the other end to move slightly apart. Jenny 
connected the paper clips to one of the sensor ports on a Cricket, so that the Cricket could 
detect whether the paper clips were in contact with one another.  

But what should the bird feeder do when a bird landed on it? At a minimum, Jenny 
wanted to keep track of the number of birds. She also thought about weighing the birds. 
But she decided it would be most interesting to take photographs of the birds. So she 
began exploring ways of connecting a camera to her bird feeder. She built a motorized 
LEGO mechanism that moved a small rod up and down. She mounted the mechanism so 
that the rod was directly above the shutter button of the camera.  

Finally, Jenny plugged the mechanism into her Cricket and wrote a program for the 
Cricket. The program waited until the paper clips were no longer touching one another 
(indicating that a bird had arrived), and then turned on the motorized LEGO mechanism, 
which moved the rod up and down, depressing the shutter button of the camera. At the 
end of the day, the camera would have pictures of all of the birds that had visited the bird 
feeder. 

Jenny worked on the project for several hours a week over the course of three months. 
By the end, the sensor and mechanism were working perfectly. But when she placed the 
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bird feeder outside of her window at home, she got photographs of squirrels (and of her 
younger sister), not of birds. 

 
Figure 2: Jenny’s bird feeder 

Jenny never succeeded in her original plan to monitor what types of birds would be 
attracted to what types of bird food. But the activity of building the bird feeder provided 
a rich collection of learning experiences. In Beyond Black Boxes projects, science and 
technology can interact in two ways. The most obvious connection is the way students 
use technological instruments to make scientific measurements – as in Jenny’s (never 
completed) plan to use her bird feeder to monitor bird activity. Perhaps less obvious, but 
equally important, is the way students use scientific knowledge to build their 
technological instruments. In the case of the bird feeder, Jenny needed to experiment 
with different lever designs to achieve the necessary mechanical advantage for triggering 
the paper-clip touch sensor. Jenny also systematically experimented with the placement 
of her camera, testing it at different distances from the bird perch in an effort to optimize 
the focus of the photographs. Thus, the bird-feeder activity provided Jenny with an 
opportunity to make use of scientific concepts in a meaningful and motivating context.  

The transparent1 nature of the bird feeder put Jenny in closer contact with the 
technology – and with the scientific concepts related to the technology. Consider Jenny’s 
touch sensor. In general, touch sensors are based on a very simple concept: they measure 
whether a circuit is open or closed. People interact with touch sensors (in the form of 
buttons) all of the time. But since most touch sensors appear in the world as black boxes, 
most people don’t understand (or even think about) how they work. In Jenny’s touch 
sensor, created from two simple paper clips, the completing-the-circuit concept is 
exposed. Similarly, Jenny’s LEGO mechanism for pushing the shutter of the camera 
helped demystify the control process of the bird feeder; sending an infrared signal from 
                                                 

1 We describe an object as “transparent” when its inner workings are easily seen and understood. 
Ironically, some people have recently begun to use the word “transparent” with an almost opposite 
meaning, to describe objects that are so easy to use that you don’t even need to think about their inner 
workings. 
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the Cricket to trigger the camera might have been simpler in some ways, but also less 
illuminating. 

Of course, not everything in Jenny’s bird feeder is transparent. The Cricket itself can 
be seen as a black box. Jenny (and other students working on BBB projects) certainly did 
not understand the inner workings of the Cricket electronics. But that was not the goal. 
As we designed the “construction kits” out of which students would create their BBB 
projects, we made explicit decisions to hide certain processes and mechanisms within 
black boxes, while making other processes and mechanisms visible and manipulable. The 
choices of which features to hide – and which to highlight – were guided by our desire to 
make certain concepts particularly salient and accessible for students. Our hope was that 
students would naturally “bump into” some concepts (and avoid getting distracted by 
others) as they worked on their projects. Black boxes are not inherently bad; the 
challenge is to find the right “level” for the black boxes, hiding unnecessary detail while 
highlighting key concepts. For example, while the Cricket’s electronic circuitry remains 
hidden, Jenny was able to directly control the rules underlying the functioning of her bird 
feeder. Through the course of her project, she continually modified her Cricket Logo 
programs to extend the functionality of the bird feeder. After finishing the first version of 
the bird feeder, Jenny recognized a problem: If a bird were to hop up and down on the 
perch, the bird feeder would take multiple photographs of the bird. Jenny added a wait 
statement to her program, so that the program would pause for a while after taking a 
photograph, to avoid the “double-bouncing” problem. 

This ability to modify and extend her project led Jenny to develop a deep sense of 
personal involvement and ownership. She compared her bird-feeder project with other 
science-related projects that she had worked on in school. “This was probably more 
interesting cause it was like you were doing a test for something more complicated than 
just what happens if you add this liquid to this powder,” she explained. “It was more like 
how many birds did you get with the machine you made with this complex thing you had 
to program and stuff” [emphasis hers]. 

The Chocolate Walk 

We have developed a variety of initial activities to help introduce students to the ideas 
underlying the BBB project. One of the most successful (and popular) has become known 
as “the chocolate walk.” This activity was first developed for a BBB workshop one 
February, with a group of fifth-grade girls at the Computer Clubhouse at the Patriot Trail 
Girl Scout Center in Boston. We gave each girl a Cricket with a temperature sensor, and 
showed the girls a program for recording temperature data at regular intervals. The girls 
took the Crickets and sensors with them as we went on a walk outside to a local donut 
shop. Some girls attached the sensors to their clothing. Others held the sensors in their 
hands and touched the sensor to various objects along the way. At the donut shop, all of 
girls got a cup of hot chocolate. In unison, all of the girls touched their temperature 
sensors to the sides of their cups (and some dunked the sensors into the hot chocolate 
itself).  

After returning to the Girl Scout Center, the girls uploaded their temperature data from 
their Crickets to desktop computers, then used graphing software to plot the temperature 
over time. The resulting graphs, in effect, told the story of the walk to the donut shop. 
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The girls could see, on their graphs, when they had left the warmth of the Girl Scout 
Center onto the chilly downtown street. For those girls who just wore their sensors, the 
graphs were relatively flat and featureless until they reached the donut shop. For girls 
who had used their temperature sensors to touch objects along the way, there were spikes 
and other variations in the graphs. All of the graphs showed a rise in temperature as the 
girls entered the donut shop, then another spike when the girls touched their sensors to 
their hot-chocolate cups. After examining their individual graphs, the girls gathered 
around a common computer and uploaded their Cricket data to a single computer, so that 
the graphs could be superimposed. In this way, the girls were able to examine the ways in 
which their graphs were similar (e.g., the hot-chocolate spikes all occurred at the same 
time) and the ways in which they were different.  

With this activity, the girls learned some of the basic concepts of data collection and 
analysis. We have found that collection of temperature data is a particularly effective 
approach for introducing students to these ideas. Children bring a great deal of 
experience and intuition related to temperature. They grow up hearing the temperature on 
television and radio and in everyday conversation. They are familiar with thermometers, 
and they have a “feel” for different temperature readings – knowing that they need to 
dress warmly if the temperature is in the 20s and that they can go swimming if it is in the 
80s. Because of these well-developed intuitions, students are in a good position to 
evaluate the “reasonableness” of the data they collect and graph, in contrast to many 
classroom science experiments in which students start with relatively weak intuitions 
about the data being collected. 

Of course, we are not the first to notice children’s knowledge and intuitions about 
temperature. In recent years, many researchers and educators have developed projects 
around the topic of weather, hoping to leverage students’ interest and knowledge about 
weather (e.g., Pea, 1993). In some cases, students set up computer-based “weather 
stations” at their schools to measure temperature, humidity, and other weather conditions 
over time.  

At a surface level, such projects seem almost identical to the chocolate walk; in each 
case, students collect and analyze a set of temperature data over time. But we see several 
important differences. Crickets allow for more individualized monitoring and analysis. In 
the chocolate walk, the graphs tell a different (and personalized) story for each 
participant. Each girl was able to identify, on her graph, when she walked outside, when 
she put her sensor inside her friend’s coat, when she dunked the sensor in her hot 
chocolate.  

The chocolate walk, in contrast to traditional weather-monitoring activities, introduces 
a sense of control over what is being measured. As the old saying goes: “Everyone talks 
about the weather, but no one can do anything about it.” In monitoring weather, students 
are just passive observers. In the chocolate walk, students decide which temperatures to 
measure and when. Another difference is the time scale of the activities. In traditional 
weather-monitoring activities, interesting patterns emerge only over the course of days or 
weeks. The chocolate walk works well as an introductory activity since students can see 
interesting stories in temperature data over much shorter time frames.  

 One of the attractions of the chocolate-walk activity is the way in which it aligns with 
students’ existing intuitions, so that students can easily see stories in the graphs. At the 
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same time, this type of activity often yields unexpected surprises in the data – which 
students are able to recognize precisely because most of the data is so familiar. These 
surprises can arise in even the simplest of investigations. 

On one cold day, for example, a group of us wore temperature sensors as we traveled 
from the MIT Media Laboratory to the Computer Clubhouse at The Computer Museum 
in Boston. The trip involved walking from the Media Lab to the subway stop, taking the 
subway for four stops, then walking for a few blocks to the museum. We had made this 
trip many times in the past, so we thought we knew exactly what type of graph we would 
get. When we uploaded the data from our Crickets, many features of the graph were, in 
fact, just as we expected (Figure 3). The temperature went down as we left the Media 
Lab, went up as we walked through another MIT building, went down as we went 
outside, rose as we entered the subway, and fell as we left the subway, and finally rose 
again as we reached the Clubhouse. But even if the overall contour of the graph met our 
expectations, something about the graph seemed very strange. We were surprised that the 
subway portion of the graph was so brief (less than half of the overall trip). In our minds, 
most of the trip to the Clubhouse was on the subway – and, indeed, the subway ride 
accounted for most of the distance of the trip. But the graph showed that, contrary to our 
intuitions, most of the time of the trip was spent walking. 

 
Figure 3: Trip to the Clubhouse 

We have found that such surprises are more the rule than the exception in these 
“everyday data collection” activities. We have often encouraged students to take Crickets 
home to collect data overnight. One 11-year-old girl left her Cricket in the kitchen 
overnight and was surprised to see a temperature spike at 2:00 am. After some detective 
work, she deduced that her Cricket, which she had placed on top of the microwave oven, 
had caught her father making popcorn in the middle of the night. Another class of fifth-
grade students put Crickets with temperature sensors and light sensors in their family 
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bathrooms. By examining when the bathroom lights were turned on and off, the students 
observed patterns in how their families used the bathrooms. Less expected, students 
found that they could use the temperature data to tell when family members were taking 
showers. 

These overnight experiments can reveal patterns not only in human activity but also in 
technological activity. In several classes, students left Crickets with light and temperature 
sensors in their family refrigerators. As expected, the data revealed when family 
members opened the refrigerator door. But the data also contained some real surprises. 
Students expected the refrigerator temperature to be constant in the middle of the night, 
when no one was using the refrigerator. But, in fact, the temperature graph had a cyclical 
pattern, moving up and down in regular intervals. The reason: Refrigerators use 
thermostats that allow the temperature to rise several degrees before restarting the 
compressor, which then stays on until temperature drops to a designated level. Thus, 
while students devised their experiment in order to monitor an activity with which they 
were very familiar (human use of the refrigerator), they ended up gaining an 
understanding of a scientific concept (feedback) that is typically not addressed in pre-
college curricula. 
Marble Machines 

While working at the Science Museum of Minnesota, Karen Wilkinson and Mike 
Petrich organized various types of design workshops for kids. In one workshop, dubbed 
“mini-mini golf,” kids designed and built small-scale versions of miniature-golf courses – 
using Styrofoam and cardboard to create the structures, motors to animate the obstacles, 
and marbles instead of golf balls. In another workshop, kids created “marble machines” – 
whimsical contraptions in which marbles would careen down a series of ramps and 
raceways, bouncing off bells and bumpers. 

When Karen and Mike heard about the BBB initiative, they decided to extend their 
work on marble machines, adding Crickets, motors, and sensors to the bin of construction 
parts. The goal was to help kids create new types of kinetic sculptures, bridging the 
worlds of art and technology. They organized their new marble machine project at the 
Computer Clubhouse in Boston, working with a group of 10-12 year olds. 

Alexandra, a fifth grader, became interested in the marble-machine project right away. 
She started by cutting wooden slats to serve as ramps; it was the first time she had ever 
used a saw or vice. She inserted the ramps into a peg-board and began rolling marbles 
from one ramp to another. Next, she created a Cricket-controlled conveyor belt with a 
small basket on top. Her plan: the marble should roll down a ramp into the basket, ride 
along the conveyor belt inside the basket, then drop onto the next ramp when the basket 
tipped over at the end of the conveyor belt. How would the conveyor belt know when to 
start moving? Alexandra programmed the conveyor-belt Cricket to listen for a signal 
from another Cricket higher up on the peg-board, alerting it that the marble was on its 
way. The conveyor-belt Cricket waited two seconds, to make sure the marble had arrived 
safely in the basket, before starting to move the conveyor belt and basket (Figure 4). 

Alexandra was excited about her project and decided to enter it into her school’s 
science fair. But when she talked to her classroom teacher about it, the teacher said that 
the marble machine was not acceptable as a science-fair project. The teacher explained 
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that a science-fair project must use the “scientific method”: the student must start with a 
hypothesis, then gather data in an effort to prove or disprove the hypothesis. The marble 
machine, said the teacher, didn’t follow this approach. In addition, science-fair projects 
must include references from the library, and Alexandra was not able to find any 
references to “marble machines” in the school library. As an alternative, the teacher 
suggested that Alexandra investigate whether it is possible to grow plants in Coca-Cola. 

 
Figure 4: Alexandra’s marble machine 

Alexandra decided to stick with the marble machine. With support from Karen and 
Mike, she put together a sequence of photographs showing different phases of the 
marble-machine construction. Even though Alexandra never wrote a hypothesis for her 
project, her teacher ultimately relented and allowed her to enter the marble machine in 
the school science fair. Much to Alexandra’s delight, she was awarded one of the top two 
prizes for the entire school. 

The story of Alexandra’s marble machine raises important issues about the nature of 
scientific investigation. While we certainly agree that science education should aim to 
help students gain an understanding of the scientific method, we believe that many 
educators (including Alexandra’s teacher) adopt too narrow a view of the scientific 
method. Indeed, we view Alexandra’s project as a wonderful example of the scientific 
method. Although Alexandra did not start with a single overarching hypothesis, she was 
continually coming up with new design ideas, testing them out, iterating based on the 
results. Each of these design ideas can be viewed as a “mini-hypothesis” for which 
Alexandra gathered data. Over the course of her project, she investigated literally dozens 
of these mini-hypotheses – even if she did not explicitly view them as such. 

While positioning the ramps, for example, Alexandra tested different angles to try to 
find the maximum range for the marble. Alexandra also experimented to find the right 
timing for the conveyor belt. She modified the conveyor-belt program so that the basket 
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would make one complete revolution, returning to its original location, properly 
positioned for the next marble.  

This type of experimentation contrasts with ways inclined planes and balls are used in 
traditional science-classroom experiments. Rather than simply gathering data on the 
speeds and timing of descent for different angles, Alexandra ran her mini-experiments 
within a broader (and more meaningful) design context. As in many BBB projects, 
Alexandra did not start with an intention to investigate specific scientific concepts. But 
we do not see this as a problem: Alexandra’s investigations arose naturally in the course 
of her design process. A critical (and challenging) role for the teacher is to help students 
reflect on these impromptu investigations and make connections to relevant scientific 
concepts. 

Artistic Displays 

The final case study involves the work not of an elementary-school student but of an 
undergraduate student, Adrienne Warmack, in the school of architecture at the University 
of Colorado. Her project was to focus on the aesthetic side of instrumentation design, 
creating “artistic” measurement devices. One of her creations was a light meter created in 
the shape of a flower. This device was simple in principle: it employed a Cricket with a 
light sensor and motor output. The sensor, upon recording a level of light beyond a user-
defined threshold, would activate the motor output, in turn pushing a shaft that opened a 
set of large, foam-core “petals.” When the light level returned to a low value, the motor 
would turn in the opposite direction, “closing” the flower. (Figure 5 shows the device in 
various stages of operation.) 

Another of Warmack’s creations was a device for displaying current paths in closed 
circuits. This device employed a sheet of temperature-sensitive material which changes 
color in response to a temperature shift of approximately 5 degrees Centigrade (from a 
starting point of room temperature). The temperature-sensitive material was placed in a 
circular frame so that it looked rather like the surface of a drum; directly underneath the 
material were criss-crossing patterns of wires from which metal leads descended. 
Underneath this entire apparatus, a Cricket was used to turn a set of positive and negative 
leads (attached to a DC battery); when the Cricket turned from one position to another, 
distinct complete circuits were created through the set of wires sitting underneath the 
temperature-sensitive material. As current ran in these circuits, the wires involved in the 
circuit would heat up and the material would change color in patterns that revealed the 
current running directly underneath. Figure 6 shows several snapshots of the device in 
operation. 

In both of these sample creations, the scientific content is relatively straightforward: 
one device is a prototype for a light meter, the other a display device for current running 
through a wire. To end the analysis here is to miss the point, however: such devices are 
not intended simply as measurement devices, but as occasions for artistic ingenuity and 
whimsy. Indeed, these two devices illustrate the rich possibilities of blending art and 
instrumentation design. As we have observed students creating their own scientific 
instruments, we have been struck by how students seem to form a much stronger 
connection with their instruments (and with the overall activity) when they pay attention 
not just to functionality but also to aesthetics. 
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Figure 5: The “flower” light meter 

   
Figure 6: The current display device 

These two devices reflect the wide range of materials that have become available for 
the purposes of home scientific crafts – materials ranging from portable computers (the 
Crickets themselves), sensors, and innovative materials to plastic toy pieces and “low 
tech” wooden blocks. The light meter made use of a wooden frame, metal piping, and 
foam-core “petals” (in addition to the Cricket and LEGO pieces); the current display 
device made use of a novel material (the temperature-sensitive film) that is available 
from science-education catalogs at a moderate cost. Where, for a previous generation, 
“home science” would often imply a relatively narrow range of simple working materials, 
the combination of Crickets and a burgeoning world of new materials has opened new 
possibilities for informal scientific creation (Eisenberg and Eisenberg, 1998). 

We have found that BBB projects provide a natural way for students to explore issues 
related to the concept of “representation.” As students build displays (such as the flower 
light meter and the current display), they need to think through the most effective way to 
represent the information that they want to convey. For example, at the Build-It-Yourself 
workshop, Luke decided to build a display for Jenny’s bird feeder. He wanted to make it 
easy for people to find out how many birds had come to the feeder that day. At first, he 
created a type of “audio representation.” He programmed the Cricket to keep track of the 
number of birds that landed and built a new button on the bird feeder. When you pressed 
the button, the Cricket would indicate the number of bird visits by beeping the 
appropriate number of times. This representation worked fine when the number of bird 
visits was a small number like 2 or 4 or 5. But when the number of bird visits was higher, 
the representation was awkward: the user would have to count carefully (and for a long 
time). So Luke decided to use two different pitches of beeps: a high pitch for the “tens” 
and a low pitch for the “units.” To indicate 42 bird visits, the Cricket would sound four 
high-pitched beeps followed by two low-pitched beeps. This new representation had 
some clear advantages, but Luke then decided that a spatial readout would be better than 
a temporal readout (the beeps). So he built two dials (one for the tens and one for the 
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units), each controlled by a separate motor. The button was no longer needed: the dials 
could continuously display the number of bird visits. In many other BBB projects, 
students have gone through a similar process of exploring alternative representations. 
Many research studies (e.g., diSessa et al., 1991) have documented the value of this type 
of meta-representational activity, in which learners construct (and reflect on) new forms 
of representation. 

Reflections 
Increasingly, science educators are recognizing the value of learners designing their 

own scientific investigations (rather than replicating well-known experiments). Through 
our case studies, we have tried to demonstrate that designing your own tools can be a 
particularly important component to designing your own investigation. Too often, this 
idea is overlooked. In its influential National Science Education Standards (1996), the 
National Research Council lists “using tools to gather, analyze, and interpret data” as a 
core component of scientific inquiry (p. 23). We certainly agree. But we go a step further, 
arguing that it is critically important for students to have the opportunity to design their 
own tools (not just “use” pre-existing tools). Our BBB case studies point to several 
reasons for the value of this design-your-own approach:  

• Extending the space of possibilities. When students try to design their own scientific 
investigations, they are often limited by the capabilities of the available instruments. In 
many cases, standard scientific instruments are simply not well-suited to the 
investigations that students want to pursue. The BBB solution is for students to create 
their own instruments, tailoring the instruments to the desired investigation. Jenny 
certainly could not have walked into a store and bought a picture-taking bird feeder. For 
many of the investigations that students choose, the small size and mobility of the 
Crickets are particularly important. By freeing students from laboratory-bound 
experiments, the Crickets open up new categories of investigations, as in the Chocolate 
Walk. 

• Motivation. We have found that students often feel a strong sense of personal 
investment in a scientific investigation when they design the scientific instruments 
themselves – particularly, if they add their own aesthetic touches to the instruments. 
When Alexandra first heard about marble machines, she knew that she wanted to build 
her own marble machine as a science-fair project: “I thought it would be interesting and 
different from the other kids’ [projects], like from the solar system or the body. It was 
kind of strange, but fun.” Jenny cared about her bird feeder (and the photographs that it 
took) in large part because she had designed and built it. The “fun part” of the project, 
she explained, “is knowing that you made it; my machine can take pictures of birds” 
[emphasis hers]. 

• Integration of art and technology. The opportunity to design one’s own scientific 
instruments opens up a new avenue into scientific exploration for students who are 
primarily (or, even better, concurrently!) interested in domains such as art, architecture, 
and design. Warmack’s creations, though the work of an undergraduate, suggest the 
appeal of treating scientific design as an artistic project for students at many stages of 
intellectual development. Clearly, one must tread carefully here: we are not advocating a 
watered-down treatment of science in which subjective artistic values take precedence. 
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Rather, we see instrument creation as a means by which interdisciplinary work between 
the arts and sciences can be explored. For instance, one might imagine a school-
sponsored design project in which students create automata based on those seen at the 
marvelous Cabaret Mechanical Theatre museum in London (Onn and Alexander, 1998) – 
but now employing Crickets for control and sensing; or one might create Cricket-driven 
hand-held mathematical puzzles that combine the aesthetics of the popular Rubik’s Cube 
with computationally-controlled behavior; or (following on Warmack’s example) a 
project might focus on creative ways of displaying electrical current. Our belief – based 
on our experience to date – is that scientific instrumentation design has the potential for 
sparking interest in scientific issues among students who otherwise would avoid the 
subject altogether.  

• Developing critical capacity. Too often, students accept the readings of scientific 
instruments without question. When students design their own instruments and 
investigations, we have found that they develop a healthy skepticism about the readings – 
and a better understanding of what readings are reasonable and why. When students got 
“strange” or unexpected readings during everyday data-collection activities (such as the 
Chocolate Walk), they developed the ability to sort through various possible 
explanations. In some cases, they concluded that some piece of their equipment had 
malfunctioned. In other cases (as in the example of the father who made microwave 
popcorn in the middle of the night), they discovered an initially-unknown event to 
account for the unexpected data. In still other cases (as in the cyclical patterns observed 
in refrigerator temperatures), students learned about underlying processes of which they 
had previously been unaware. 

What Didn’t Work 

The case studies highlight some of the strengths and successes of the BBB initiative. 
But it is also useful look at the problems and difficulties encountered. Some of the 
problems have been technical in nature, and have been reasonably easy to fix. For 
example, the Crickets do not have built-in displays, so it was initially difficult for 
students to get real-time feedback (on values of sensors, state of the program, etc.) when 
using Crickets away from a desktop computer. We have started to address this problem 
by developing a small numeric display as a peripheral for the Cricket, so that students can 
get readings from the Cricket at any time, in any place. Similarly, we have continued to 
improve the programming environment for the Crickets to make it easier for students to 
program new behaviors for their BBB constructions. 

The most difficult problems, however, do not have simple technical fixes. BBB 
activities tend to be especially challenging since learners are involved in multiple types 
of design: designing investigations while also the designing the tools needed to conduct 
those investigations. And even the tool-design process itself involves multiple types of 
design: designing structures, mechanisms, and programs. And, as part of the BBB effort, 
we have encouraged students to consider not only the functionality but also the aesthetics 
of the tools they design. We have found that, as a result of these multiple design 
challenges, students often succeed with one part of a project but have difficulty putting 
all of the pieces together.  
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To help students cope with the multiple design dimensions, we have developed 
introductory activities that involve only some of the dimensions. In some of the everyday 
data-gathering activities, for example, students design their own investigations without 
focusing on tool design. Another approach is to start with a focus on the design of tools 
rather than investigations; for example, we have engaged students in building kinetic 
sculptures – works of art incorporating Crickets, motors, lights, and sensors. This 
approach can help students begin to develop their own scientific instruments. One group 
of high-school students built a sculpture with a motor and light sensor, and programmed 
the sculpture to move in different directions and speeds based on the light levels detected 
by the sensor. As they walked down the hall with their sculpture, and saw its motion 
change as they moved in front of different doorways, they realized that their sculpture 
could function as an effective light meter – with a much more interesting “display” than 
traditional light meters. But it is still a big step to go from designing instruments to 
designing investigations. One challenge for teachers is to help students find 
investigations that they care about as deeply as they care about their kinetic sculptures. 
Many students, in their BBB activities, did not follow through on data analysis unless 
they truly cared about the data they were analyzing. Another challenge, of course, is to 
help students move from simply designing investigations to reflecting on the meaning of 
those investigations.  

Generating new ideas for BBB projects is not necessarily easy. We have tried to 
facilitate this process by providing students with a rich collection of sample projects – 
and encouraging them to start by working on variations of those projects. For example, 
we showed Jenny’s bird feeder to Girl Scouts at a summer workshop. Several girls, 
inspired by the animal-monitoring theme, modified a gerbil cage to keep track of the 
activities of their gerbils. Another pair of girls built a “diary-security system” which took 
a picture of anyone who tried to tamper with their diaries. 

As with other design-based and project-based educational initiatives, BBB activities 
raise significant logistical challenges, making special demands on time and space. At one 
BBB research site, students were able to work on their projects just one afternoon a 
week, and they needed to spend large chunks of their time setting up and putting away 
their projects. The same site hosted a summer workshop at which students spent full days 
working on projects each day for three weeks. Students at the summer workshop made 
substantially more progress on their projects and clearly enjoyed the experience much 
more. 

Even more challenging is the task of integrating BBB activities into traditional school 
curricula and aligning with current standards and testing practices. BBB projects often 
cut across traditional disciplinary boundaries (such as science, math, and art) – and, even 
more significantly, make connections to certain engineering concepts (such as feedback 
and control) that are rarely addressed in pre-college education. For all of these reasons, it 
is difficult (if not impossible) to introduce BBB activities while keeping everything else 
constant; greater systemic change is needed in both the logistical and conceptual 
organization of schooling. 



19 

Beyond Black Boxes 
Whereas a previous generation of scientists became hooked on scientific investigation 

by taking apart their radios, today’s children see little that they can understand when they 
open up their radios and other modern electronic devices. James Gleick (1992) alludes to 
this phenomenon in his biography of Richard Feynman:  

Eventually the art went out of radio tinkering. Children forgot the pleasures of 
opening and eviscerating their parents’ old Kadettes and Clubs. Solid electronic 
blocks replaced the radio set’s messy innards – so where once you could learn by 
tugging at soldered wires and staring into the orange glow of the vacuum tubes, 
eventually nothing remained but featureless ready-made chips, the old circuits 
compressed a thousandfold or more. The transistor, a microscopic quirk of 
silicon, supplanted the reliably breakable tube, and so the world lost a well-used 
path into science. 

There is little doubt that computers have made the workings of the world less 
“transparent” for many people. But that need not be the case. In our initial BBB studies, 
we have seen how students, helped by new computational tools, can build their own 
customized instruments and begin to view scientific investigation as a process in which 
they can take part, day-to-day, creatively and pleasurably. Our work so far is just a first 
step. In future research, we plan to focus on more fine-grained studies of how and what 
students learn when they design their own instruments and investigations, and on studies 
of how to make these types of activities succeed in a broader range of settings. 

How will we gauge the long-term success of our project? Our ultimate goal is to 
contribute to the development of a new generation of students who are more likely to 
“look inside” the technological artifacts in the world around them – and feel empowered 
to develop their own tools (even very simple tools) for exploring phenomena in their 
everyday lives. 
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