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ABSTRACT

In this paper, we present ten guiding principles fo
designing construction kits for kids, informed byro
experiences over the past two decades:

* Design for Designers

* Low Floor and Wide Walls

* Make Powerful Ideas Salient — Not Forced

* Support Many Paths, Many Styles

* Make it as Simple as Possible — and Maybe Evemptir

* Choose Black Boxes Carefully

* A Little Bit of Programming Goes a Long Way

* Give People What They Want — Not What They Ask Fo
* Invent Things That You Would Want to Use Yourself

* |terate, Iterate — then Iterate Again

While these principles apply especially to the dewment
of construction kits, we believe that they coulduseful for
everyone who designs new technologies for kids.
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INTRODUCTION

Over the past 20 years, the two of us have worgdther
on the design of a variety of new technologies Kiafs.

Most of our creations can be viewed as “construackits”

— that is, systems that engage kids in designidigcasating
things, sometimes on the screen, sometimes inttsiqal

world, sometimes both. Kids around the world hasedu
our construction kits to create their own animaséaties,
simulations, robotic constructions, interactive Igtures,
scientific instruments, and multimedia presentation

In designing these construction kits, we have hadml
overarching goals: to help kids become more flusmd
expressive with new technologies (and with “old”
technologies too); to help them explore importamoepts
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Programmable Bricks [7], and others). When we desig
new technologies, we do not explicitly refer tostlist of
principles, as if checking off items on an agen@ather,
the principles are always sitting in the back of minds,
subtly (and sometimes not so subtly) informing each
decision we make.

These guiding principles are influenced (some miggy
biased) by our focus on construction kits. But wel fthat
the principles could be useful for everyone whoigles
new technologies for kids — and, perhaps, those ddsign
for adults too.

1. DESIGN FOR DESIGNERS

Probably the most important unifying thread in @illour
projects is our emphasis on “learning through desgy”
Seymour Papert has served as our most important
intellectual mentor, and we have been deeply inflee by

his Constructionist approach to learning and edoicd8].

Like Papert, we believe that the best learning eB&pees,

for most people, come when they are actively engjage
designing and creating things, especially thingst thare
meaningful to them or others around them.

If our goal is to engage kids in meaningful design
experiences, then it makes sense for us to design f
designers — that is, to design things that willld@ids to
design things. We see the traditional LEGO constrndit

as a model for what we are trying to achieve widwn
technologies. We provide kids with a simple sepaits (in
the spirit of LEGO bricks) that they can use toigiesand
create a diverse collection of constructions. But new
construction kits allow new types of creations: lvtkids
use traditional LEGO bricks primarily for statidrutural
creations (such as houses and castles), they usaewu
building blocks for dynamic, interactive creatiofssich as
animations in a virtual world or kinetic sculptures the

(often in the domains of mathematics, science, andphysical world).

engineering) through their expressive activities,amost
broadly, to help them become better learners.

In this paper, we make a first attempt to artieulaur
“guiding principles” for designing construction «itfor
kids. These principles have emerged
collaboration, with a large number of colleagues,the
development of many different construction kitscliing
LEGO/Logo [5], Microworlds, StarLogo [6], Scratchd],

The analogy with LEGO kits also suggests an immbrta
counter-example. In recent years, a growing nuntder
LEGO kits highlight a specific construction (sucha Star
Wars spaceship or a Harry Potter castle), with many

through our specialized pieces. Although it is possible to tese kits

to create a variety of constructions, many kidsidbtine
model suggested on the package, or perhaps shgiatris,
and nothing more. This type of activity might g@alas



“hands-on learning” or “learning-by-doing,” but i not
what we mean by “learning-through-designing.” Oaalgis

to develop technologies that not only engage kids i

constructing things, but also encourage (and suppwem
to explore the ideas underlying their constructions

2. LOW FLOOR AND WIDE WALLS

an example: you can use it to understand manyrdifte
types of phenomena in the world, not only in engiirey,
but also in biology and social sciences. Powedebs are
ideas with leverage: they help you make senseeoiviirid.

In designing construction kits, one of our primagaals is
to help kids explore and understand powerful idéas.

The Logo programming language is often described ashave found that trying to teach powerful ideas alyeis

having a low floor and high ceiling: it is easy foovices to

get started (low floor) and possible for expertsmurk on
increasingly sophisticated projects (high ceiling).

In our own work (especially in recent years), weehaut
less emphasis on high ceilings and more emphasighan
might be called “wide walls.” That is, we have ttri¢o
design technologies that support and suggest a raiclge
of different explorations. When kids use our Progreable
LEGO Bricks, for instance, they can create anyttiiogh a

robotic creature to a “smart” house to an intevacti

sculpture to a musical instrument. We want kida/tok on

projects that grow out of their own interests aadgions —

which means that our technologies need to suppuwitia
range of different types of projects.

When we evaluate the use of our construction kits,

consider diversity of outcomes as an indicatoruscess. If

the creations from a class of students are alllainm one

another, we feel that something has gone wrong. iind

after finishing one project, a student feels thétesis
“done” with the construction kit, again we feelibwe have
failed.

We see our construction kits as defining a spa@xpdore,

not a collection of specific activities. And ourg®is that

kids will continually surprise themselves (and sig@ us
too) as they explore the space of possibilities.eWhve
created Programmable Bricks, we didn’'t imagine Hids
would use them to measure their speed on rollegsladr

not very effective. Rather, our strategy is to pdev
opportunities for kids to encounter and use powedeas
as a natural part of design experiences.

In developing StarLogo modeling software, for exémp

we designed the objects and commands so that kids

naturally encounter the idea of “emergence” in fhecess
of creating models. If they write rules for cars an
highway, they naturally observe how traffic jamseege
from the interactions among the cars. If they writkes for
birds flying in the sky, they naturally observe hfilacks
emerge from interactions among the birds.

We view StarLogo as a “microworld” for exploringetidea
of emergence. Similarly, the original Logo turtenged as a
microworld for exploring ideas of differential geetry,

and Programmable Bricks serve as a microworld for

exploring the idea of feedback. Creating new miades

is not easy. In a successful microworld, differdsds

engage in different design activities (e.g., oreatas a bird
flock, another a traffic jam), but all encountedaise the
same underlying ideas as a natural and integralgbahe

design process. That's very different from traditib
educational applications, in which all kids typlgakork on

the same activity (e.g., solving a specific puzzte)earn a
particular idea.

4. SUPPORT MANY PATHS, MANY STYLES
When we were testing an early version of our LEGIQ#&h
technology, we worked with a fourth-grade classvhich

to create a machine for polishing and buffing their the students wanted to build an amusement park.gémg
fingernails. of students decided to create a merry-go-round.yThe

To support and encourage this diversity, we expjici carefully drew up plans,_ built t_he mechanisms, tiveote a
include elements and features that can be usedamym Program to make the ride spin round-and-round whemne
different ways. The design challenge is to devéégiures ~ SOmeone pressed a touch sensor. Within a couples,hou
that are specific enough so that kids can quickiyeustand ~ their merry-go-round was working.

how to use them (low floor), but general enoughtreat Another group of students decided to build a Fesigel.
kids can continue to find new ways to use them ¢wid But before the ride was working, they put it asmaled
walls). started building a refreshment stand next to theridg-e
3. MAKE POWERFUL IDEAS SALIENT — NOT FORCED wheel. We were concerned: the refreshmgnt stanchtniid'
In a paper [4] written 20 years after the publicatdf his have any motor or sensors or programming. We wabrrie

landmark bookMindstorms: Children, Computers, and that the students would miss out on some of theepilv

Powerful Ideaq?], Papert noted that educators had reacted ?deas underlying the LEGO/Logo activity. But we niid

to the book “as if it were aboghildren and computerss interfere. After finishing the refreshment stanide tgroup

; ; ; . » built a wall around the amusement park, createdr&img
if the third term powerful ideapwas there as a sound bite. . N

In fact, Papert had intended the idea of “poweidehs” to lot, and addgd lots of little LEGO peopl_e _walk|'rrg0| the
be at the core of his book — and his work. park. Then, finally, they went back and finisheditterris

wheel.
What is a powerful idea? IMindstorms Papert describes Th . (1 diff { st
powerful ideas as ideas that “can be used as todlsink ese two groups represent two very different styé

with over a lifetime.” He points to the idea of &@back” as playing, designing, and thinking. Sherry Turkle [13] has



described these styles as “hard” (the first grcan “soft”
(the second). In another classification [12], the styles
are described as “patterners” and “dramatists.”

In designing new technologies, we put a high pitodn
supporting users with all different styles — haagswell as
softs, patterners as well as dramatists. We pagiape
attention to make sure that our technologies acessible
and appealing to the softs (and dramatists), simedeel
that math and science activities have traditiondigen
biased in favor of the hards (and patterners) vemevant to
work affirmatively to close the gap.

5. MAKE IT AS SIMPLE AS POSSIBLE — AND MAYBE
EVEN SIMPLER
In some ways, this guideline seems obvious. Whotsvan

When kids build robotic devices with our Programieab
Bricks, for instance, they learn about mechanismd a
gearing, and they learn about feedback and conBuot.
they generally don't learn about the inner workingfs
motors. The motor remains a black box. If you wdrie
help kids learn how motors work, you should des&@gn
construction kit with lower-level building blockso that
kids could build their own motors.

Similarly, the choice of the basic “building blo¢k® a
programming language determines what kids are ylikel
learn as they use the language. When kids put leget
Logo commands likdorward andright into instructions
like repeat 4 [forward 50 right 90] (to make a square) or
repeat 360 [forward 1 right 1] (to make a circle), they

needless complication? But there is no doubt that 9@ a better understanding of many important nmaéiieal
technology-based products have become more and mor&nd geometric concepts. But the primitive command

complex. One reason is “creeping featurism”: adeana
technology make it possible to add new featureseasth
new generation of products has more and more festur

We yearn for a return to the clean simplicity ofeth
Macintosh of the 1980s. We see a role for complexie
make use of ever-more complex technologies, and/ave
to help users accomplish complex tasks. But we \tlzat
user experience to be simple. We try to developesys
that offer the simplest ways to do the most comiéngs.

We have found that reducing the number of featofesn
improves the user experience. What initially sedikes a
constraint or limitation can, in fact, foster nearrhs of
creativity.

forward is still a black box. Each time the turtle movibg
computer must calculate new x and y positions fitben
original x and y positions using trigonometric caétions.
These calculations are hidden from the user. Ifgbal of
the construction kit were to help kids learn thggmes of
trigonometric calculations, then the turtle would & bad
black box. But by hiding these calculations insadélack
box, the turtle frees the user to experiment anploe&
other mathematical and geometric ideas.

We faced a similar choice when we were developimg
programming language for our Cricket programmalpiekb
We needed a new command for controlling the coldhe
LEDs that plug into the Cricket. At a low-levelgtiCricket
needs to provide the LED with three inputs for ted,

—

In the mid-1990s, for example, we had developed agreen, and blue components of the color. So, st, five

Programmable Brick that was roughly the size ohids
juice box. It could control four motors and receinputs
from six sensors. For a sponsor event at the Mealig we
wanted to create some interactive decorations®tdbles.
We didn’'t need all of the capabilities of the Piamgmable
Brick, so we quickly developed a smaller, scaledato
version, roughly the size of a matchbox car. Itidaontrol
only two motors with inputs from only two sensoWe
expected it to be a short-lived project; we “knehét most
users would want more motors and more sensorsoiBe

provided users with setcolor command with three numeric
inputs, to give them direct control over the coBut kids
found it difficult to use this command for the tgpef
activities that they wanted to do. For exampley tanted

the color of LED to change based on the currendinga
from a temperature sensor. If the temperature senso
reported a low value, they wanted the LED to tuuebas

the temperature increased, they wanted the colothef
LED to move through the spectrum, turning red ahhi
temperatures. It is very difficult to program thishavior

we had developed the scaled-down version, which weusing a three-inpusetcolor command. So we created a
called a Cricket, people kept finding more and more simpler setcolor command with just a single input that

creative applications for it, in spite of (or pepsabecause
of?) its apparent limitations [9]. Over time, wef&d our
research effort, making the Cricket the centerpieteur
new construction kits. Even though the original
Programmable Brick was better suited for certainjquts,
the simplicity of the Cricket won out.

6. CHOOSE BLACK BOXES CAREFULLY

In designing a construction kit, one of the mospamant
decisions is the choice of the basic building bfok the
kit. This choice determines, to a large extent, twbaas
users can explore with the kit — and what ideasamem
hidden from view.

ranges from 0 to 100 (the same range as the reaétiogn
the temperature sensor). Kids could use this newntand
to program the desired behavior with the simplériuasion
forever [setcolor temperature].

In short, we found that the best way to deal wihhe¢
dimensions was to throw away two of them. (Makest
simple as possible — and then even simpler!) Ifprimary
goal were to help kids learn about red-green-blue
composition of light, the single-inpugetcolor command
would be a bad choice. But we have found that ihgles
input setcolor encourages and supports much great
exploration of color effects than the three-inpeitsion.



7. A LITTLE BIT OF PROGRAMMING GOES A LONG
WAY

Programming languages are the construction kitghef
computational world. When kids learn to program, it
extends the range of what they can design, creatd,
invent with the computer. Moreover, it providesrtheiith
experience in using and manipulating formal systems
experience that is important not only in computgesce
but also in many other domains (from mathematics to
grammar to law).

But the history of introducing computer programmitogy
kids is a mixed success. When personal computess fi
moved into schools in the early 1980s, programnitgn
with Logo or Basic) was one of the primary actesti- and,
indeed, one of the main rationales for buying tbmpguters
in the first place. Over the past 20 years, howeter role
of programming has steadily diminished in educatiarses
of computers, even as computers have proliferated i
schools. Many people now view computer programnaisig
a narrow, technical activity, too difficult for themasses,
appropriate only for the small segment of the pafoih
who choose it as a career path.

We continue to believe in the value of everyonerlgg to
program, but we are also well aware of the diftiesl of
learning to program. Many beginning programmers ahit
plateau, able to write simple programs, but undblego
further. We have found that it is difficult to hekids get
beyond this plateau. But, over the years, we haggib to
realize that being “stuck” on the plateau is nathsa big
problem: kids can learn a great deal, and benefjteat
deal, while they are on the plateau. We have shifter
efforts, trying to leverage what kids can do wedther than
focusing on what they can't. Kids generally haveleli
difficulty learning to use imperative (action-orted)
commands (likdorward andon), simple control structures
(like repeat), basic conditionals, and simple procedural

abstraction. So we have been developing programming

languages and contexts that enable kids to do avitbt
those basic elements.

We attribute the success of our Programmable Btickbe
fact that kids can accomplish a lot with a littids can
engage in interesting design projects (and impbrtan
learning experiences) with very simple programs,
controlling lights and motors, triggered by inpudtem
sensors. Our new Scratch programming language ha
similar qualities, enabling kids to manipulate rioredia
(sounds, music, animations) with simple combinatiar
commands.

8. GIVE PEOPLE WHAT THEY WANT — NOT WHAT
THEY ASK FOR

All good designers want to understand their usarsyrder

to design products well-matched to the needs atedeists

of their users. Many design teams invest considertime
interviewing users or talking with focus groupsking
users for feedback and suggestions on features an

capabilities. But is asking questions directly &ers really
the best way to understand what they want?

We don't think so. We have found that user suggastare
usually not very helpful. In some cases, users fask
impractical or infeasible features. When we wersigténg
the first Programmable Bricks, for instance, eletagn

school students recommended that we design th&$Bsic
that they could fly. In other cases, users ask doly

incremental changes, not aware of the possibilités
radical change. With early versions of Logo sofevar the
1980s, users often suggested new ways for thee ttotl
draw — but they never suggested the addition aftgaols.

Another problem is that users often ask for moegifility
than is really needed or desirable. When we shoared
early version of our Scratch software to potenigdrs, they
suggested that all of the window panes in the fater
should be movable and resizable. We implementedva n
version with that type of flexibility, but users wea't happy
with that either. What we needed to do, it turng a@as to
fine-tune the parameters (i.e., adjust the sizahepanes),
not provide full flexibility. Often, designs withell-chosen
parameters are more successful than designs wiitpx fu
adjustable parameters. We are all in favor of gj\dontrol
to users — but only where control will really make
difference in their experiences.

Rather than asking users what they want, we hawedfat
more productive to observe users interacting witlr o
prototypes, and try to infer what they want (and’tdwant)
from their actions. Often, their actions speak kEmuthan
their words. It is usually easy to see when usest g
frustrated, even if they don’t articulate their dtation.
When we observe users repeatedly making the same
“mistake” with a prototype, we sometimes are ablestvise
the software so that it behaves in the way thatsubad
expected. In early versions of our LogoBlocks gregh
programming language, for example, users ofted toeget

rid of blocks by dragging them from the workspaekb
onto the palette. Initially, we did not want tocall this
method for deleting blocks, since we worried thaers
would too often delete blocks by mistake. But afteeing
users attempt this action repeatedly, we changed th
software so that it behaved as users expected antko

9. INVENT THINGS THAT YOU WOULD WANT TO USE
SYOURSELF

At first blush, this guideline might seem incregibl
egocentric. And, indeed, there is a danger of over-
generalizing from your own personal tastes andrésts.
But we have found that we do a much better job as
designers when we really enjoy using the systerat e

are building. And we have found that it is, in fg@bssible

to design systems that are interesting and enjeyfablboth
kids and ourselves.

We feel that this approach is, ultimately, morepessful to
é(ids. Why should we impose on kids systems thatlorgt



enjoy using ourselves? For example, we are gemerall
skeptical of educational software that, in an effto
encourage kids to reflect on their actions, reguihat kids
annotate each action that they take. We wouldnfitu@ do
that with the software that we use, so why showddequire

it of kids?

There is an additional, perhaps less obvious, reasy we
try to invent things that we enjoy using ourselvébe
technologies that we develop can not succeed ondive.
As kids use our technologies, they require supfrom
teachers, parents, and mentors. We aim to buildontyt
new technologies, but also communities of people wdn
help kids learn with those new technologies. Andhage
found that it is easiest to build those communities
everyone involved (adults as well as kids) enjoyngishe
technologies. In New York, for example, groups ofTM
alumni have been volunteering their time to helgskat
Computer Clubhouses [8] learn to use our Progrartenab
Bricks. The MIT alumni are motivated, in part, bylesire
to help youth in low-income communities. But théseno
doubt that they are also motivated by their ownirdet®
build robots.

10. ITERATE, ITERATE — THEN ITERATE AGAIN

In designing our construction kits, we put a higlogty on

“tinkerability” — we want to encourage kids to mesih

the materials, to try out multiple alternatives, saift

directions in the middle of the process, to takagh apart
and create new versions. Kids learn new lessorts edth
iteration.

Just as we want kids to iterate their designs, pyathe
same principle to ourselves. In developing new
technologies, we have found that we never get shingte
right on the first try. We are constantly critiqgiradjusting,
modifying, revising. The ability to develop rapidopotypes

is critically important in this process. We find ath
storyboards are not enough; we want functioning
prototypes. Initial prototypes don't need to workfectly,
just well enough for us (and our users) to playhwib
experiment with, to talk about.

In his bookSerious Plajl1], Michael Schrage argues that
prototypes are especially helpful as conversatiariess, to
catalyze discussions among designers and potarg&b.
We agree. We find that our best conversations ¢amdest
ideas) happen when we start to play with new pypex —
and observe users playing with the prototypes. Alnas
soon as we start to play with (and talk about) prdotype,
we start to think about building the next.

This process requires both the right tools (to suppapid
development of new prototypes) and the right mihdse
be willing to throw out a prototype soon after dieg it).
Too often, the software-development community setms
follow a paradigm of: plan ahead, design carefulhgn
implement once. We much prefer the paradigm prapbge

our colleague John Maeda [1]: imagine, realizetiqere,
reflect, iterate.

Of course, design principles should be subjechi® same
process. The ten principles discussed in this pdee
already gone through multiple iterations — and wpeet
that we will continue to iterate them in the future
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