

Plan

- Pinhole optics
- Lenses
- Projections
- Camera

Questions?

Problem with pinhole?

- Not enough light!
- Diffraction limits sharpness

• Start by rays through the center

- Start by rays through the center
- Choose focal length, trace parallels
- You get the focus plane for a given scene plane All rays coming from points on a plane parallel to the lens are focused on another plane parallel to the lens

Other (possibly annoying) phenomena

Chromatic aberration

Light at different wavelengths follows different paths; hence, some wavelengths are defocussed

- Machines: coat the lens
- Humans: live with it
- Scattering at the lens surface
 Some light entering the lens system is reflected off each surface it encounters (Fresnel's law gives details)
 Machines: coat the lens, interior
 - Humans: live with it (various scattering phenomena are visible in the human eye)
- Geometric phenomena (Barrel distortion, etc.)

• Want to make images

- Pinhole camera models the geometry of perspective projection
- · Lenses make it work in practice
- · Models for lenses
 - -Thin lens, spherical surfaces, first order optics
 - -Thick lens, higher-order optics, vignetting.

Effect of projection

- · Points go to points
- · Lines go to lines
- · Planes go to a half plane
- · Parallel lines go to converging lines
- · Polygons go to polygons

Line through the pinhole go to points Planes through the pinhole go to a line Parallels parallel to the image plane stay parallel Planes parallel to the image plane goes to full planes

H

The equation of projection

• Cartesian coordinates: We have, by similar triangles, that

$$(x,y,z) \rightarrow (f\frac{x}{z},f\frac{y}{z},-f)$$

Ignore the third coordinate, and get

$$(x,y,z) \rightarrow (f\frac{x}{z},f\frac{y}{z})$$

Homogenous coordinates

• Add an extra coordinate and use an equivalence relation

• for 2D equivalence relation $k^*(x,y,z)$ is the same as (x,y,z)

• for 3D equivalence relation $k^*(x,y,z,t)$ is the same as (x,y,z,t)

• Basic notion

Possible to represent points "at infinity"

- · Where parallel lines intersect
- · Where parallel planes intersect

Possible to write the action of a perspective camera as a matrix

The camera matrix

• Turn previous expression into HC's HC's for 3D point are (x,y,z,t)HC's for point in image are (u,v,w)

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$$

Weak perspective

• Issue

- · perspective effects, but not over the scale of individual objects
- collect points into a group at about the same depth, then divide each point by the depth of its group • Adv: easy
- · Disadv: wrong

Camera Overview

- Lens and viewpoint determine perspective
- Aperture and shutter speed determine exposure
- Aperture and other effects determine depth of field
- Film or sensor record image

Focal length (in mm) Determines the field of view. wide angle (<30mm) to telephoto (>100mm) · Focusing distance Which distance in the scene is sharp · Depth of field Given tolerance, zone around the focus distance that is sharp • Aperture (in f number) Ratio of used diameter and focal lens. Number under the divider \rightarrow small number = large aperture (e.g. f/2.8 is a large aperture, f/16 is a small aperture) • Shutter speed (in fraction of a second) Reciprocity relates shutter speed and aperture • Sensitivity (in ISO) Linear effect on exposure

```
100 ISO is for bright scenes, ISO 1600 is for dark scenes
```


Perspective vs. viewpc

· Telephoto makes it easier to select background (a small change in viewpoint is a big change in background.

Depth of field

- The bigger the aperture (small f number), the shallower the DoF Just think Gaussian blur: bigger kernel \rightarrow more blurry This is the advantage of lenses with large maximal aperture: they can blur the background more • The closer the focus, the smaller the DoF
- · Focal length has a more complex effect on DoF Distant background more blurry with telephoto

Near the focus plane, depth of field only depends on image size Hyperfocal distance:

•

Closest focusing distance for which the depth of field includes infinity

The largest depth of field one can achieve.

Depends on aperture.

Exposure
Aperture (f number)
Expressed as ratio between focal length and aperture diameter: diameter = f / <f number=""></f>
f/2.0, f/2.8, f/4.0, f/5.6, f/8.0, f/11, f/16 (factor of sqrt (2))
Small f number means large aperture
Main effect: depth of field
A good standard lens has max aperture f/1.8. A cheap zoom has max aperture f/3.5
Shutter speed
In fraction of a second
1/30, 1/60, 1/125, 1/250, 1/500 (factor of 2)
Main effect: motion blur
A human can usually hand-hold up to 1/f seconds, where f is focal length
Sensitivity
Gain applied to sensor
In ISO, bigger number, more sensitive (100, 200, 400, 800, 1600)
Main effect: sensor noise
Reciprocity between these three numbers: for a given exposure, one has two degrees of freedom.

Recap

- Pinhole is the simplest model of image formation
- Lenses gather more light But get only one plane focused Focus by moving sensor/film Cannot focus infinitely close
- Focal length determines field of view From wide angle to telephoto Depends on sensor size

Next Time

Camera Calibration and Radiometry