

Last Time

Mosaics and Panoramas

Method II: Solving for h	
$\begin{array}{lll} x' \left(h_{31}x + h_{32}y + h_{33} \right) &= h_{11}x + h_{12}y + h_{13} \\ y' \left(h_{31}x + h_{32}y + h_{33} \right) &= h_{21}x + h_{22}y + h_{23} \end{array}$	
 Re-arrange 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
where	$\mathbf{h} = (h_{11}, h_{12}, h_{13}, h_{21}, h_{22}, h_{23}, h_{31}, h_{32}, h_{33})^{\top}$
Rewrite:	$\begin{pmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1^r x_1 & -x_1^r y_1 & -x_1^r \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y_1^r x_1 & -y_1^r y_1 & -y_1^r \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2^r x_2 & -x_2^r y_2 & -x_2^r \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -y_2^r x_2 & -y_2^r y_2 & -y_2^r \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x_1^r x_3 & -x_3^r y_3 & -x_3^r \\ 0 & 0 & 0 & x_3 & y_1 & -y_3^r x_3 & -y_3^r y_3 & -y_3^r \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4^r x_4 & -x_4^r y_4 & -y_4^r \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -y_4^r x_4 & -y_4^r y_4 & -y_4^r \end{pmatrix} \mathbf{h} = 0$
 For n > 4 real point correspondences, A is a 2n x 9 matrix, and there will not be an exact solution to Ah=0. 	
 In this case, a sensible procedure is to again minimise the residuals. It can be shown that the vector that minimises h^TA^TAh subject to h =1, is the eigenvector with least eigenvalue of A^TA. 	

DLT: Homography Estimation

Since vectors are homogeneous, xⁱ, Hx_i are parallel, so

$$\mathbf{x}_i' \times \mathbf{H}\mathbf{x}_i = \mathbf{0}$$

- Let h^T_i be row j of H, h be stacked h_i's
- Expanding and rearranging cross product above, we obtain $\mathbf{A}_{i}\mathbf{h} = \mathbf{0}$, where

$$\mathbf{A}_i = \begin{bmatrix} \mathbf{0}^T & -\mathbf{w}_i^t \mathbf{x}_i^T & \mathbf{y}_i^t \mathbf{x}_i^T \\ \mathbf{w}_i^t \mathbf{x}_i^T & \mathbf{0}^T & -\mathbf{x}_i^t \mathbf{x}_i^T \\ -\mathbf{y}_i^t \mathbf{x}_i^T & \mathbf{x}_i^t \mathbf{x}_i^T & \mathbf{0}^T \end{bmatrix}$$

DLT Algorithm:

- Only 2 linearly independent equations in each A_i leave out 3rd row to make it 2 x 9
- Stack every A; to get 2n x 9 A
- Solve **Ah** = **0** by computing singular value decomposition (SVD) $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{T}$
- h is last column of V
- Solution is improved by normalizing image coordinates • before applying DLT

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}'_i\}$, determine the 2D homography matrix H such that $\mathbf{x}'_i = H\mathbf{x}_i$.

Algorithm

- (i) Normalization of x: Compute a similarity transformation T, consisting of a translation and scaling, that takes points x_i to a new set of points x̃_i such that the centroid of the points $\tilde{\mathbf{x}}_i$ is the coordinate origin $(0,0)^{\top}$, and their average distance from the origin is $\sqrt{2}$.
- (ii) Normalization of x': Compute a similar transformation T' for the points in the second image, transforming points x'_i to x'_i.
 (iii) DLT: Apply algorithm 3.1(p73) to the correspondences x̂_i ↔ x'_i to obtain a
- homography \tilde{H} . (iv) Denormalization: Set $H = T^{\prime-1}\tilde{H}T$.

Simplification: Two-band Blending

Brown & Lowe, 2003
Only use two bands: high freq. and low freq.
Blends low freq. smoothly

What is the Optimal Window?

- To avoid seams
 - window >= size of largest prominent feature
- To avoid ghosting
- window <= 2*size of smallest prominent feature</p>
- Natural to cast this in the Fourier domain
 - largest frequency <= 2*size of smallest frequency
 - image frequency content should occupy one "octave" (power of two)

What if the Frequency Spread is Wide

- Compute F_{left} = FFT(I_{left}), F_{right} = FFT(I_{right})
 Decompose Fourier image into octaves (bands)
- $F_{left} = F_{left}^{1} + F_{left}^{2} + \dots$
- Feather corresponding octaves F_{left} i with F_{right} i
 Can compute inverse FFT and feather in spatial domain
- Sum feathered octave images in frequency domain
- Better implemented in spatial domain

Laplacian Pyramid: Blending

- General Approach:
 - Build Laplacian pyramids LA and LB from images A and B
 - 2. Build a Gaussian pyramid *GR* from selected region *R*
 - 3. Form a combined pyramid *LS* from *LA* and *LB* using nodes of *GR* as weights:
 - LS(i,j) = GR(l,j,)*LA(l,j) + (1-GR(l,j))*LB(l,j)
 - 4. Collapse the *LS* pyramid to get the final blended image

Perez et al, 2003

Limitations:

- □ Can't do contrast reversal (gray on black -> gray on white)
- Colored backgrounds "bleed through"
- Images need to be very well aligned

Some Artfacts Left

- Pyramid blending does not solve this
 - Ghosting—objects move in the scene.
 - Differing exposures between images.

Eliminating ghosting and exposure artifacts in image mosaics. In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.

Eliminating ghosting and exposure artifacts in image mosaics. In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.

Refs

- http://graphics.cs.cmu.edu/courses/15-463/2004_fall/www/Papers/MSR-TR-2004-92-Sep27.pdf
- http://www.cs.ubc.ca/~mbrown/papers/iccv2003.pdf
- http://www.cs.washington.edu/education/courses/csep576/05wi/readi ngs/szeliskiShum97.pdf
- http://portal.acm.org/citation.cfm?id=218395&dl=ACM&coll=portal
- http://research.microsoft.com/~brown/papers/cvpr05.pdf
- http://citeseer.ist.psu.edu/mann94virtual.html
- http://grail.cs.washington.edu/projects/panovidtex/
- http://research.microsoft.com/users/mattu/pubs/Deghosting.pdf
- http://research.microsoft.com/vision/visionbasedmodeling/publication s/Baudisch-OZCHI05.pdf
- http://www.vision.caltech.edu/lihi/Demos/SquarePanorama.html .
- . http://graphics.stanford.edu/papers/multi-cross-slits/