Lecture 10

Homographies, Mosaics and Panoramas

Why Mosaic?

- Are you getting the whole picture?
- Compact Camera FOV $=50 \times 35^{\circ}$

Single View Point Model

- Camera rotates around a single optical center

A pencil of rays contains all views

Can generate any synthetic camera view as long as it has the same center of projection!

Aligning images: translation

Translations are not enough to align the images

Image reprojection
Basic question
Answer to relate 2 images from same camera center?
Draw the pixel where that ray intersects
But don't we need to know the geometry
of the two planes in respect to the eye?
Observation:
Rather than thinking of this as a 3D reprojection,
think of it as a 2D image warp from one image to another

Homography

- Projective - mapping between any two PPs with the same center of projection
- rectangle should map to arbitrary quadrilateral
- parallel lines aren't
- but must preserve straight lines
- same as: project, rotate, reproject
- called Homography
$\underset{\left[\begin{array}{c}w x^{\prime} \\ w y^{\prime} \\ w \\ \mathbf{w}\end{array}\right]}{\left[\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]}$

To apply a homography \mathbf{H}

- Compute p' $=\mathbf{H p}$ (regular matrix multiply)
- Convert \mathbf{p}^{\prime} from homogeneous to image coordinates

Least Squares Example

- Say we have a set of data points $\left(p_{1}, p_{1}{ }^{\prime}\right),\left(p_{2}, p_{2}{ }^{\prime}\right),\left(p_{3}, p_{3}{ }^{\prime}\right)$, etc. (e.g. person's height vs. weight)
- We want a nice compact formula (line) to predict p^{\prime} from p :

$$
p a+b=p
$$

- We want to find a and b
- How many pairs of points are needed?
- What if the data is noisy?

$$
\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{l}
p_{1}^{\prime} \\
p_{2}^{\prime}
\end{array}\right]
$$

\downarrow rewrite

$$
\begin{aligned}
& p_{1} a+b=p_{1}^{\prime} \\
& p_{2} a+b=p_{2}^{\prime}
\end{aligned}
$$

- Find the homography \mathbf{H} given a set of \mathbf{p} and \mathbf{p}^{\prime} pairs

$$
\underbrace{\left[\begin{array}{ll}
p_{1} & 1 \\
p_{2} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]}_{\mathbf{A h}}=\underbrace{\left[\begin{array}{l}
p_{1}^{\prime} \\
p_{2}^{\prime}
\end{array}\right]}_{\mathbf{b}}
$$

- How many correspondences are needed?
- Tricky to write H analytically, but we can solve for it! - Find such H that "best" transforms points p into p'
- Use least-squares!

$$
\begin{aligned}
& {\left[\begin{array}{cc}
p_{1} & 1 \\
p_{2} & 1 \\
p_{3} & 1 \\
\vdots & \vdots
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
q_{1} \\
q_{2} \\
q_{3} \\
\vdots
\end{array}\right]} \\
& \text { overconstrained }
\end{aligned}
$$

$\min |\mid \mathbf{A h}-\mathbf{b}$
-
Ah

- Panorama = reprojection
- 3D rotation \rightarrow homography
- Homogeneous coordinates are kewl
- Use feature correspondence
- Solve least square problem - Set of linear equations
- Warp all images to a reference one
- Use your favorite blending

Planar scene (or far away)

- PP3 is a projection plane of both centers of projection, so we are OK!
- This is how big aerial photographs are made

Go Explore!

Ken Chu, 2004

