Lecture 8
Image Transformations
(globall and local warps)
Handouts: Pst2 assigned

- Interpolate whole images:

$$
\mathbf{I}_{\text {halfway }}=\alpha^{*} I_{1}+(1-\alpha)^{*} I_{2}
$$

- This is called cross-dissolving in film industry
- But what if the images are not aligned?

Failure: Global warping

- What to do?
- Cross-dissolve doesn't work
- Global alignment doesn't work
- Cannot be done with a global transformation (e.g. affine)
- Any ideas?
- Feature matching!
- Nose to nose, tail to tail, etc.
- This is a local (non-parametric) warp

Idea \#2: Align, then cross-disolve

- Align first, then cross-dissolve
- Alignment using global warp - picture still valid

Idea \#3: Local warp \& cross-dissolve

Warp
\downarrow

Avg. Shape

Morphing procedure:

1. Find the average shape (the "mean dog"())

- local warping

2. Find the average color

- Cross-dissolve the warped images

Triangular Mesh

Input correspondences at key feature points
2. Define a triangular mesh over the points (ex. Delaunay Triangulation)

- Same mesh in both images!
- Now we have triangle-to-triangle correspondences

3. Warp each triangle separately

- How do we warp a triangle?
- 3 points = affine warp!
- Just like texture mapping

Transformations

Parametric (global) warping

- Examples of parametric warps:

translation

affine

rotation

perspective

aspect

cylindrical

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:

Parametric (global) warping

$\mathbf{p}=(\mathrm{x}, \mathrm{y})$

- Transformation T is a coordinate-changing machine:

$$
\mathbf{p}^{\prime}=T(\mathbf{p})
$$

- What does it mean that T is global?
- Is the same for any point p
- can be described by just a few numbers (parameters)
- Let's represent T as a matrix:

$$
\mathbf{p}^{\prime}=\mathbf{T p}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Scaling

- Non-uniform scaling: different scalars per component:

$\xrightarrow[\substack{x * 2 \\ y * 0.5}]{ }$

Scaling

- Scaling operation: $\quad x^{\prime}=a x$

$$
y^{\prime}=b y
$$

- Or, in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}_{\text {scaling matrix } \mathbf{S}}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What's inverse of \mathbf{S} ?

2-D Rotation

2x2 Matrices

What types of transformations can be represented with a 2×2 matrix?

2D Identity?

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Scale around (0,0)?

$$
\begin{aligned}
& x^{\prime}=s_{x} * x \\
& y^{\prime}=s_{y} * y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2x2 Matrices

What types of transformations can be represented with a 2×2 matrix?

2D Rotate around (0,0)?

$$
\begin{aligned}
& x^{\prime}=\cos \Theta^{*} x-\sin \Theta^{*} y \\
& y^{\prime}=\sin \Theta^{*} x+\cos \Theta^{*} y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
\boldsymbol{y}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \Theta & -\sin \Theta \\
\sin \Theta & \cos \Theta
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y}
\end{array}\right]
$$

2D Shear?
$x^{\prime}=x+s h_{x} * y$
$y^{\prime}=s h_{y} * x+y$
$\left[\begin{array}{c}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}1 & s h_{x} \\ s h_{y} & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

2x2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Mirror about Y axis?

$$
x^{\prime}=-x
$$

$$
y^{\prime}=y
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Mirror over $(0,0)$?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=-y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

All 2D Linear Transformations

- Linear transformations are combinations of ...

- Rotation,
- Shear, and
- Mirror

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Properties of linear transformations:
- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Homogeneous Coordinates

Homogeneous coordinates

arepresent coordinates in 2 dimensions with a 3-vector

2x2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

> 2D Translation? $\begin{aligned} \boldsymbol{x}^{\prime} & =\boldsymbol{x}+\boldsymbol{t}_{\boldsymbol{x}} \\ \boldsymbol{y}^{\prime} & =\boldsymbol{y}+\boldsymbol{t}_{\boldsymbol{y}}\end{aligned} \quad$ NO!

Only linear 2D transformations can be represented with a 2×2 matrix

Homogeneous Coordinates

Q: How can we represent translation as a 3x3 matrix?

$$
\begin{aligned}
& x^{\prime}=x+t_{x}= \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

Homogeneous Coordinates

- Add a 3rd coordinate to every 2D point
$\square(x, y, w)$ represents a point at location ($\mathrm{x} / \mathrm{w}, \mathrm{y} / \mathrm{w}$)
$\square(x, y, 0)$ represents a point at infinity
$\square(0,0,0)$ is not allowed

Convenient coordinate system to represent many

useful
transformations

Homogeneous Coordinates

Q: How can we represent translation as a 3x3 matrix?

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

- A: Using the rightmost column:

$$
\text { Translation }=\left[\begin{array}{ccc}
1 & 0 & \boldsymbol{t}_{x} \\
0 & 1 & \boldsymbol{t}_{\boldsymbol{y}} \\
0 & 0 & 1
\end{array}\right]
$$

Basic 2D Transformations

- Basic 2D transformations as 3×3 matrices

$$
\begin{array}{cc}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} & {\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]} \\
\text { Translate } \\
\text { Scale } \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} & {\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \boldsymbol{s} \boldsymbol{h}_{\boldsymbol{x}} & 0 \\
\boldsymbol{s} \boldsymbol{h}_{\boldsymbol{y}} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]} \\
\text { Sheare }
\end{array}
$$

Affine Transformations

- Affine transformations are combinations of
- Linear transformations, and
- Translations
- Properties of affine transformations:
- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition
- Models change of basis
- Will the last coordinate w always be 1?

Translation

- Example of translation

Matrix Composition

- Transformations can be combined by matrix multiplication
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right]=\left(\left[\begin{array}{ccc}1 & 0 & t x \\ 0 & 1 & t y \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}s x & 0 & 0 \\ 0 & s y & 0 \\ 0 & 0 & 1\end{array}\right]\right)\left[\begin{array}{l}x \\ y \\ w\end{array}\right]$

$$
\mathbf{p}^{\prime}=\mathrm{T}\left(\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}\right)
$$

$R(\Theta)$
$\mathrm{S}\left(\mathrm{s}_{\mathrm{x}}, \mathrm{s}_{\mathrm{y}}\right) \quad \mathrm{p}$

Projective Transformations

- Projective transformations
- Affine transformations, and
- Projective warps
- Properties of projective transformations:
- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis

2D image transformations

These transformations are a nested set of groups

- Closed under composition and inverse is a member

Translation: \# correspondences?

- How many correspondences needed for translation?
- How many Degrees of Freedom?
- What is the transformation matrix?

$$
\mathbf{T}=\left[\begin{array}{ccc}
1 & 0 & p_{x}^{\prime}-p_{x} \\
0 & 1 & p_{y}^{\prime}-p_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Affine: \# correspondences?

- How many correspondences needed for affine?
- How many DOF?
- An affine transformation is a composition of translations, rotations, dilations, and shears.

$\left[\begin{array}{lll}1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{ccc}s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{ccc}1 & k_{x} & 0 \\ k_{y} & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
translations	rotation	dilations	shear

Recovering Transformations

- What if we know f and g and want to recover the transform T?
- willing to let user provide correspondences
- How many do we need?

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Euclidian: \# correspondences?

- How many correspondences needed for translation + rotation?
- How many DOF?

$$
T=s\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Projective: \# correspondences?

- How many correspondences needed for projective?
- How many DOF?

Warping triangles

- Given two triangles: $\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3}$ and $\mathbf{q}_{1}{ }^{\prime} \mathbf{q}_{2}{ }^{\prime} \mathbf{q}_{3}{ }^{\prime}$ in 2D (6 constraints)
- Need to find transform \mathbf{T} to transfer all pixels from one to the other.
- What kind of transformation is \mathbf{T} ?
- affine
- How can we compute the transformation matrix:
$\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

Trick: Computing T

Forward warping

- Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=\mathbf{T}(x, y)$ in the second image Q: what if pixel lands between four pixels?

Hint: Warping triangles

(Barrycentric Coordinates)
$(0,1)$

Warping sequence

$$
\mathbf{v}=\mathbf{p} \quad+\alpha(t)(\mathbf{q}-\mathbf{p})
$$

Forward warping

- Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=\mathbf{T}(x, y)$ in the second image

Q: what if pixel lands between four pixels?
A: distribute color among neighboring pixels (x^{\prime}, y^{\prime})

- Known as "splatting"
- Check out griddata in Matlab

Inverse warping

- Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=\mathbf{T}^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image

Q: what if pixel comes from between four pixels?

Inverse warping

- Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location
$(x, y)=\mathrm{T}^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image
Q: what if pixel comes from between four pixels?
A: Interpolate color value from neighbors
- nearest neighbor, bilinear, Gaussian, bicubic
- Check out interp2 in Matlab

Forward vs. inverse warping

- Q : which is better?
- A: usually inverse—eliminates holes
- however, it requires an invertible warp function-not always possible...

