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Lecture 3: Face Detection

Reading: Eigenfaces – online paper
FP pgs. 505-512

Handouts: Course Description
PS1 Assigned

Black or White Video

• Face Detection
• Face Localization
• Segmentation
• Face Tracking
• Facial features localization
• Facial features tracking
• Morphing

www.youtube.com/watch?v=ZI9OYMRwN1Q

Richard P. Feynman, Dec. 29, 1959
There's Plenty of Room at the Bottom
An Invitation to Enter a New Field of Physics

• “…If I look at your face I immediately recognize that I have 
seen it before. …Yet there is no machine which, with that 
speed, can take a picture of a face and say even that it is a 
man; and much less that it is the same man that you 
showed it before—unless it is exactly the same picture. If 
the face is changed; if I am closer to the face; if I am 
further from the face; if the light changes—I recognize it 
anyway. Now, this little computer I carry in my head is 
easily able to do that. The computers that we build are not 
able to do that.  …”

Why is Face Detection 
Difficult?

• Severe illumination change

• Varying viewpoint, illumination, etc.

Automated Face Detection
Why is it Difficult?

Face Detection
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http://bensguide.gpo.gov/3-5/symbols/print/mountrushmore.html

Coincidental appearance of faces 
in rock?

Coincidental appearance of face 
profile in rock?

http://www.cs.dartmouth.edu/whites/old_man.html

Face Detection

Nearest Neighbor Clasiffier

• Euclidean distance:

• Given an input image y (also called a probe), the NN 
classifier will assign to y the label associated with the 
closest image in the training set. So if, it happens to be 
closest to another face it will be assigned L=1 (face), 
otherwise it will be assigned L=0 (nonface)
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• An image is a point in             dimensional space

Images
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Image Representation
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pixel value axis representing pixel 1

Image Representation
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Basis Matrix, B 

vector of coefficients, c
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Representation

• Find a new basis matrix that results in a 
compact representation

Toy Example - Representation 
Heuristic

• Consider a set of images of N people under the same viewpoint and lighting
• Each image is made up of 3 pixels and pixel 1 has the same value as pixel 3 

for all images

pixel 1

pixel 3
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Toy Example - Representation 
Heuristic

• Consider a set of images of N people under the same viewpoint and lighting
• Each image is made up of 3 pixels and pixel 1 has the same value as pixel 3 

for all images
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Toy Example - Representation 
Heuristic

• Consider a set of images of N people under the same viewpoint and lighting
• Each image is made up of 3 pixels and pixel 1 has the same value as pixel 3 

for all images

pixel 1

pixel 3
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New Basis Matrix, B 
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D,  data  matrix

Toy Example-Recognition

pixel 1

pixel 3
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D,  data  matrix C, coefficient matrix

• Next, compare           a reduced dimensionality 
representation of           against all coefficient 
vectors                              

•One possible classifier: nearest-neighbor classifier

newc
newi
Nnn ≤≤1   c

Solve for and store the coefficient matrix C:

Given a new image, inew :

Principal Component Analysis:
Eigenfaces

• Employs second order statistics to compute 
in a principled way a new basis matrix

Variables

• Response Variables – are directly measurable, 
they measure the outcome of a study. 
– Pixels are response variables that are directly 

measurable from an image.

• Explanatory Variables, Factors – explain or 
cause changes in the response variable. 

– Pixel values change with scene geometry, illumination 
location, camera location which are known as the 
explanatory variables 

Response vs. Explanatory Variables

• Pixels (response variables, directly measurable from data) 
change with changes in view and illumination, the 
explanatory variables (not directly measurable but of actual 
interest).

The Principle Behind 
Principal Component Analysis1

• Also called: - Hotteling Transform2 or the             
- Karhunen-Loeve Method 3.

• Find an orthogonal coordinate system such that 
data is approximated best and the correlation 
between different axis is minimized.

1 I.T.Jolliffe; Principle Component Analysis; 1986
2 R.C.Gonzalas, P.A.Wintz; Digital Image Processing; 1987
3 K.Karhunen; Uber Lineare Methoden in der Wahrscheinlichkeits Rechnug; 1946

M.M.Loeve; Probability Theory; 1955
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PCA: Theory

• Define a new origin as the mean of the data set

• Find the direction of maximum variance in the samples (e1) and align it with 
the first axis (y1), 

• Continue this process with orthogonal directions of decreasing variance, 
aligning each with the next axis 

• Thus, we have a rotation which minimizes the covariance.
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PCA-Dimensionality Reduction
• Consider a set of images, & each image is made up of 3 pixels and pixel 1 has the same value 

as pixel 3 for all images

• PCA chooses axis in the direction of highest variability of the data, maximum scatter

pixel 1

pixel 3
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• Each image       is now represented by a  vector of 
coefficients          in a reduced dimensionality space.
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• B minimize the following function

The Covariance Matrix
• Define the covariance (scatter) matrix of the input samples:

(where µ is the sample mean)
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PCA: Some Properties of the 
Covariance/Scatter Matrix

• The matrix ST is symmetric

• The diagonal contains the variance of each parameter 
(i.e. element ST,ii is the variance in the i’th direction).

• Each element ST,ij is the co-variance between the two 
directions i and j, represents the level of correlation 

(i.e. a value of zero indicates that the two dimensions are 
uncorrelated).

SVD of a Matrix

Scatter of matrix:

( ) ( )M-DVUMD  of svdby     TΣ=− UB =set 

( )( ) ) of (svd  2
T

TT SUUMDMD Σ=−−

( )( )TT MDMDS −−=

UB =set 

PCA: Goal Revisited

• Look for: - B
• Such that:

– [c1  … cN] = BT [i1  … iN]
– correlation is mininmized Cov(C) is diagonal

Note that Cov(C) can be expressed via Cov(D) and B :

BSB
BMDMDBCC

T
T

TTT ))((
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−−=
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Selecting the Optimal B

How do we find such B ?

Bopt contains the eigenvectors of the covariance of D

Bopt = [b1|…|bd]

BBS Λ=T

iii bbµDµD λ=−− T))((

Data Reduction: Theory

• Each eigenvalue represents the the total variance in 
its dimension.

• Throwing away the least significant eigenvectors in 
Bopt means throwing away the least significant 
variance information

PCA for Recognition
• Consider the set of images

• PCA chooses axis in the direction of highest variability of the data

• Given a new image,          ,  compute the vector of coefficients           associated 
with the new basis, B

T
new

T
new BBiBc == −1

[ ] Nn1   and .s.t 31321 ≤≤== nn
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newi

• Next, compare           a reduced dimensionality 
representation of           against all coefficient 
vectors                              

•One possible classifier: nearest-neighbor 
classifier

newc
newi
Nnn ≤≤1   c
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newc

Data and Eigenfaces

• Each image below is a column vector in the basis matrix B

• Data is composed of 28 faces photographed under same 
lighting and viewing conditions

© 2002 by M. Alex O. Vasilescu
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• Principal components (eigenvectors) of image ensemble

• Eigenvectors are typically computed using the Singular 
Value Decomposition (SVD) algorithm

Eigenimages

pixel 1

pi
xe

l  
kl

pixel 2

2550

255

25
5

. .

Linear Representation:

pixel 1

pi
xe

l  
kl

pixel 2

2550

255

25
5 . 3c+1c 9c+ 28c+

2c
3c

Running Sum: 1 term 3 terms 9 terms 28 terms

1c

ii Ucd = ii Ucd =

.



7

The Covariance Matrix
• Define the covariance (scatter) matrix of the input samples:

(where µ is the sample mean)∑
=

−−=
N
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+ +

PIE Database (Weizmann)

EigenImages-Basis Vectors

• Each image bellow is a column vector in the basis matrix B
• PCA encodes encodes the variability across

images without distinguishing between variability in people,
viewpoints and illumination
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PCA Classifier

• Distance to Face Subspace:

• Likelihood ratio (LR) test to classify a probe y as face or 
nonface.  Intuitively, we expect  dn (y) > df (y) to suggest that y
is a face.  

• The LR for PCA is defined as:
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