

## Lecture 3: Face Detection

Reading: Eigenfaces - online paper
FP pgs. 505-512

Handouts: Course Description
PS1 Assigned

- "...If I look at your face I immediately recognize that I have seen it before. ...Yet there is no machine which, with that speed, can take a picture of a face and say even that it is a man; and much less that it is the same man that you showed it before-unless it is exactly the same picture. If the face is changed; if I am closer to the face; if I am further from the face; if the light changes-I recognize it anyway. Now, this little computer I carry in my head is easily able to do that. The computers that we build are not able to do that. ..."

Richard P. Feynman, Dec. 29, 1959
There's Plenty of Room at the Bottom An Invitation to Enter a New Field of Physics

## Automated Face Detection Why is it Difficult?

- Varying viewpoint, illumination, etc.

. Face Detection
- Face Localization
- Segmentation
- Face Tracking
- Facial features localization
- Facial features tracking
- Morphing



## Why is Face Detection Difficult?

- Severe illumination change


Face Detection


Coincidental appearance of faces


Face Detection


## Nearest Neighbor Clasiffier

- Euclidean distance:
- Given an input image y (also called a probe), the NN classifier will assign to $\boldsymbol{y}$ the label associated with the closest image in the training set. So if, it happens to be closest to another face it will be assigned $L=1$ (face), otherwise it will be assigned $L=0$ (nonface)




## Image Representation



## Image Representation



## Representation

- Find a new basis matrix that results in a compact representation


Toy Example - Representation
- Consider a set of images of | Each image is made up of 3 pixels and pixel 1 has the same value as pixel 3 |
| :--- |
| for all images |

neuristic

## Principal Component Analysis: Eigenfaces

- Employs second order statistics to compute in a principled way a new basis matrix


## Response vs. Explanatory Variables

- Pixels (response variables, directly measurable from data) change with changes in view and illumination, the explanatory variables (not directly measurable but of actual interest).




## Variables

- Response Variables - are directly measurable, they measure the outcome of a study.
- Pixels are response variables that are directly measurable from an image.
- Explanatory Variables, Factors - explain or cause changes in the response variable.
- Pixel values change with scene geometry, illumination location, camera location which are known as the explanatory variables


## The Principle Behind Principal Component Analysis ${ }^{1}$

- Also called: - Hotteling Transform ${ }^{2}$ or the - Karhunen-Loeve Method ${ }^{3}$.
- Find an orthogonal coordinate system such that data is approximated best and the correlation between different axis is minimized.
K.Karhunen; Uber Lineare Methoden in der Wahrscheinlichkeits Rechnug; 1946 M M. Loeve; Probability Theory; 1955



## The Covariance Matrix

- Define the covariance (scatter) matrix of the input samples:
(where $\mu$ is the sample mean)


## PCA-Dimensionality Reduction

Consider a set of images, \& each image is made up of 3 pixels and pixel 1 has the same value as pixel 3 for all images

PCA chooses axis in the direction of highest variability of the data, maximum scatter

data matrix, D

- Each image is now represented by a vector of coefficients in a reduced dimensionality space
- B minimize the following function


## PCA: Some Properties of the Covariance/Scatter Matrix

- The matrix $\mathbf{S}_{\mathrm{T}}$ is symmetric
- The diagonal contains the variance of each parameter (i.e. element $\mathbf{S}_{\mathrm{T}, \mathrm{i}}$ is the variance in the $\mathrm{i}^{\prime}$ th direction).
- Each element $\mathrm{S}_{\mathrm{T}, \mathrm{j},}$ is the co-variance between the two directions i and j , represents the level of correlation (i.e. a value of zero indicates that the two dimensions are uncorrelated).


## SVD of a Matrix

Scatter of matrix:

## PCA: Goal Revisited

- Look for: - B
- Such that:
$-\left[\begin{array}{lll}c_{1} & \ldots & c_{N}\end{array}\right]=B^{\top}\left[\begin{array}{lll}i_{1} & \ldots & i_{N}\end{array}\right]$
- correlation is mininmized $\Longleftrightarrow \operatorname{Cov}(\mathrm{C})$ is diagonal

Note that $\operatorname{Cov}(\mathrm{C})$ can be expressed via $\operatorname{Cov}(\mathrm{D})$ and B :

## Selecting the Optimal B

How do we find such $\mathbf{B}$ ?
$\mathbf{B}_{\text {opt }}$ contains the eigenvectors of the covariance of $D$

$$
\mathbf{B}_{\mathrm{opt}}=\left[\mathbf{b}_{1}|\ldots| \mathbf{b}_{d}\right]
$$

## PCA for Recognition

- Consider the set of images
- PCA chooses axis in the direction of highest variability of the data
Given a new image, $\quad$, compute the vector of coefficients associated


## Data and Eigenfaces

- Data is composed of 28 faces photographed under same lighting and viewing conditions

- Each image below is a column vector in the basis matrix $B$



## The Covariance Matrix

- Define the covariance (scatter) matrix of the input samples:
(where $\mu$ is the sample mean)



## EigenImages-Basis Vectors

## (3) $9965(5)(5)(3) \cdot$

- Each image bellow is a column vector in the basis matrix $B$ - PCA encodes encodes the variability across images without distinguishing between variability in people, viewpoints and illumination




## PCA Classifier

- Distance to Face Subspace:
- Likelihood ratio (LR) test to classify a probe $\mathbf{y}$ as face or nonface. Intuitively, we expect $d_{n}(\mathbf{y})>d_{f}(\mathbf{y})$ to suggest that $\mathbf{y}$ is a face.
- The LR for PCA is defined as:

