Lecture 3: Face Detection

Reading: Eigenfaces – online paper FP pgs. 505-512

Handouts: Course Description PS1 Assigned

Black or White Video

Face Detection

- Face Localization
- Segmentation
- · Face Tracking
- · Facial features localization
- · Facial features tracking
- Morphing

www.youtube.com/watch?v=ZI9OYMRwN1Q

• "...If I look at your face I immediately recognize that I have seen it before. ...Yet there is no machine which, with that speed, can take a picture of a face and say even that it is a man; and much less that it is the same man that you showed it before—unless it is exactly the same picture. If the face is changed; if I am closer to the face; if I am further from the face; if the light changes—I recognize it anyway. Now, this little computer I carry in my head is easily able to do that. The computers that we build are not able to do that. ..."

Richard P. Feynman, Dec. 29, 1959

There's Plenty of Room at the Bottom An Invitation to Enter a New Field of Physics

Why is Face Detection Difficult?

· Severe illumination change

Automated Face Detection Why is it Difficult?

· Varying viewpoint, illumination, etc.

Coincidental appearance of faces

Principal Component Analysis: Eigenfaces

• Employs second order statistics to compute in a principled way a new basis matrix

 Pixel values change with scene geometry, illumination location, camera location which are known as the explanatory variables

The Principle Behind Principal Component Analysis¹

- Also called: Hotteling Transform² or the - Karhunen-Loeve Method ³.
- Find an orthogonal coordinate system such that data is approximated best and the correlation between different axis is minimized.
- I.T.Jolliffe; Principle Component Analysis; 1986 R.C.Gonzalas, P.A.Wintz; Digital Image Processing; 1987
- R.C.Gonzalas, P.A.Wintz; Digital Image Processing; 1987 K.Karhunen; Uber Lineare Methoden in der Wahrscheinlichkeits Rechnug; 1946 M.M.Loeve; Probability Theory; 1955

Thus, we have a rotation which minimizes the covariance.

PCA: Some Properties of the Covariance/Scatter Matrix

- The matrix \mathbf{S}_{T} is symmetric
- The diagonal contains the variance of each parameter (i.e. element $\mathbf{S}_{\text{T,ii}}$ is the variance in the i'th direction).
- Each element S_{T,ij} is the co-variance between the two directions i and j, represents the level of correlation (i.e. a value of zero indicates that the two dimensions are uncorrelated).

Selecting the Optimal **B**

How do we find such B?

 $(\mathbf{D} - \boldsymbol{\mu})(\mathbf{D} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{b}_{i} = \lambda_{i} \mathbf{b}_{i}$

 $\mathbf{S}_{T}\mathbf{B} = A\mathbf{B}$ \mathbf{B}_{out} contains the eigenvectors of the covariance of D

 $B_{opt} = [b_1|...|b_d]$

Data Reduction: Theory

- Each eigenvalue represents the the total variance in its dimension.
- Throwing away the least significant eigenvectors in B_{opt} means throwing away the least significant variance information

