
Chapter

Thirteen
SWYN: A Visual

Representation for
Regular Expressions

Alan F. Blackwell

Computer Laboratory,
University of Cambridge

TNT Job Number: [002564] • Author: [Lieberman] • Page: 245

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 2:47:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Abstract

People find it difficult to create and maintain abstractions. We often deal
with abstract tasks by using notations that make the structure of the ab-
straction visible. Programming-by-example (PBE) systems sometimes make
it more difficult to create abstractions. The user has to second-guess the re-
sults of the inference algorithm and sometimes cannot see any visual repre-
sentation of the inferred result, let alone manipulate it easily. SWYN (See
What You Need) addresses these issues in the context of constructing regu-
lar expressions from examples. It provides a visual representation that has
been evaluated in empirical user testing and an induction interface that al-
ways allows the user to see and modify the effects of the supplied examples.
The results demonstrate the potential advantages of more strictly applying
cognitive dimensions analysis and direct manipulation principles when de-
signing systems for PBE.

13.1 Introduction

Most programming tasks involve the creation of abstractions that can be
broadly grouped into two categories: abstractions over context and abstrac-
tions over time. An abstraction over context defines some category of situa-
tions—objects or data—and allows the programmer to define operations on
all members of that category. An abstraction over time defines events that
will happen in the future as a result of the present actions of the program-
mer. Both of these are potentially labor-saving devices. A good abstraction
can be used as a kind of mental shorthand for interacting with the world.

However, creating abstractions is difficult and risky (Green and
Blackwell 1996; Blackwell and Green 1999). This is why PBE seems like such
a good idea. It is computationally feasible to derive an abstraction from in-
duction over a set of examples. If the abstraction is over context, the exam-
ples might include selections of words within a document or files within a
directory structure. If the abstraction is over time, the examples can be
demonstrations of the actions that the program ought to carry out in the
future.

246 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 246

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 2:47:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

13.1.1 Factors in the Usability of PBE Systems

The consequences for the user that result from this approach to program-
ming can be discussed in terms of Green’s framework for usability design
of programming languages: the Cognitive Dimensions of Notations (Green
1989; Green and Petre 1996; Green and Blackwell 1998). This chapter will
not include an extended presentation of the framework, since many pub-
lished descriptions are available, but the resulting analysis would include
observations of the following kind: PBE offers superb closeness of mapping
between the programming environment and the task domain, because in
PBE the task domain is the programming environment. However, PBE im-
poses severe premature commitment—the PBE programmer must specify
actions in exactly the same order that the program is to execute them, un-
like conventional programming languages. A full cognitive dimensions
analysis of PBE systems would be enlightening: they are likely to be error-
prone, for example, and it is often difficult to apply secondary notation such
as comments to explain why a particular abstraction was created.

As with all programming languages, most designs for PBE systems have
both advantages and disadvantages. No programming language can be the
“best” language, because while some tasks are made easier by one language
feature, the same feature can make other tasks more difficult (Green, Petre,
and Bellamy 1991). In the case of PBE systems, a critical feature of this
type is the question of whether a representation of the inferred program
should be made visible to the user. This is the cognitive dimension of visi-
bility. Some ordinary programming environments make it difficult to see
the whole program at once, but in PBE systems the program is completely
invisible, on the grounds that the programming process should be com-
pletely transparent to the user. These systems create abstractions by induc-
tion from examples, but the programmer is unable to see those abstrac-
tions. This disadvantage of this approach is that it results in concomitant
degradation in other dimensions. An invisible abstraction exhibits high vis-
cosity (resistance to change) because it is difficult to change something that
you cannot see, and any relationships between different abstractions are
certain to create hidden dependencies if the abstractions themselves are
invisible.

The user’s experience of PBE without access to a visible representation
of the inferred program might be compared to repairing a loose part inside
a closed clock by shaking the clock—you know that everything you do has
some effect, but you don’t know what that effect has been until you see and
hear it working. If the clock is very simple on the inside and you understand
how it works, it might be possible to succeed. Unfortunately, the most

Chapter Thirteen: SWYN 247

TNT Job Number: [002564] • Author: [Lieberman] • Page: 247

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 2:47:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

powerful PBE systems employ sophisticated inference algorithms such that
it can be quite difficult to anticipate the effect of adding one more instruc-
tional trace. The task of constructing a training set for these algorithms can
be difficult for a computer scientist; for an end user, the clock-shaking anal-
ogy may be an apt description of the experience of PBE without a program
representation. Other chapters in this book, including 3 and 16, have re-
ferred to the problem of “feedback” in PBE, but analysis in terms of cogni-
tive dimensions makes it clear that the problem is far more extensive than
simply a question of feedback.

13.1.2 A Test Case for Visibility in PBE

This chapter describes an investigation of a very simple experimental case
that has been chosen to test the preceding argument. The programming do-
main is that of the earliest types of PBE system—simple text processing, in
which text strings are identified by example, in order to be transformed in a
systematic way. The simplest example of such a transformation is a search
and replace operation. Even search-and-replace can be regarded as pro-
gramming, because it is an abstraction-creating activity. The search expres-
sion is a transient abstraction over occurrences of some string in a docu-
ment, although this “program” is usually discarded immediately after it has
been executed.

However, straightforward search and replace is not a very interesting
task in programming terms. A more interesting case is where the search ex-
pression includes wild cards, especially the extended types of wild card
matching that are provided by regular expressions. Regular expressions
have interesting computational properties, are widely used in powerful pro-
grammers’ editors, and are of interest in a machine-learning context be-
cause the acquisition of regular expressions from examples is a nontrivial
induction problem. Furthermore, regular expressions can be used as the
core of a powerful language for specifying text-processing scripts, as in sed,
awk, or the Perl language (Wall, Christiansen, and Schwartz 1996).

Regular expressions are also interesting from the perspective of usability.
In a system in which regular expressions can be inferred from examples, it is
still not clear that users will benefit from being shown the resulting expres-
sion. This is not because it is a bad thing for users to see the result of PBE
inference but because regular expressions themselves are confusing and
difficult to read. They appear to be one of the features of Perl that is most
difficult for users; popular Perl texts such as Christiansen and Torkington
(1998) or Herrman (1997) preface their chapters on regular expressions with

248 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 248

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 2:47:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

grim warnings about the difficulties that are in store for the reader. A brief
analysis in terms of Cognitive Dimensions of Notations suggests that the
problems with regular expressions may be a result of the notational
conventions.

Green (personal communication, 15 June, 1999) points out that the con-
ventional regular expression notation is difficult to parse for a number of
reasons:

• some of the symbols are ill chosen (notably / and \);

• the indication of scope by paired elements such as () {} [] is likely to
cause perceptual problems;

• the targets to be matched and the control characters describing the
match requirements are drawn from the same alphabet; and

• the notation is extremely terse; discriminability is reduced and redun-
dancy is very low, so that in general a small random change produces a
new well-formed expression rather than a syntax error.

Furthermore, there is no clear mental model for the behavior of the expres-
sion evaluator. If the notation indicated some execution mechanism
(Blackwell 1996) or allowed users to imagine executing it themselves (Watt
1998), it could be more easily related to program behavior. These consider-
ations give two potential avenues for improvement of regular expressions;
both are tested in the experiment described here.

13.1.3 Summary of Objectives

The system described in this chapter is named See What You Need (SWYN).
It is able to infer regular expressions from text examples in a context that
improves visibility in several important ways:

• The user is always able to see the set of examples that the inference algo-
rithm is using.

• The user is able to see the regular expression that has been inferred from
the examples.

• The regular expression is displayed in a form that makes it easier to
understand.

Chapter Thirteen: SWYN 249

TNT Job Number: [002564] • Author: [Lieberman] • Page: 249

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 2:47:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• The user is able to see the effect of the inferred expression in the context
of the displayed data.

After the next section, which reviews other similar research, the body of the
chapter describes three important components of SWYN. The first is the
method by which the user selects examples and reviews the current effect of
the inferred expression. The second is the induction algorithm that is used
to infer and update a regular expression based on those examples. The third
is a visualization technique that allows users to review and directly modify
the inferred expression.

13.2 Other PBE Systems for Inferring Regular Expressions

As described earlier, the inference of text transformations such as search
and replace expressions was one of the earliest applications of program-
ming by example. Nix’s (1985) Editing by Example prototype allowed users
to define input and output sample texts, from which a general transforma-
tion was inferred. The user gave a command to execute the current hypoth-
esis, which resulted in a global search and replace according to the inferred
hypothesis. The system provided an undo facility to reverse the command if
the hypothesis was incorrect.

Mo and Witten’s TELS system (Mo and Witten 1992; Witten and Mo
1993) could acquire complete procedural sequences from examples, includ-
ing series of cursor movements, insertions, and deletions, in addition to the
search-and-replace functionality of Nix’s system. If inserted text varied be-
tween examples, the inferred program would stop and invite the user to in-
sert the required text, rather than try to infer the text that was required.

Masui and Nakayama proposed the addition of a “repeat” key to a text
editor, which would execute dynamically created macros (Masui and
Nakayama 1994). Their system continually monitored the user’s actions, in-
ferring general sequences. At any time, the user could press the “repeat”
key, and the system would respond by repeating the longest possible se-
quence of actions that had been inferred from the immediately preceding
input.

The acquired description of the input text in these systems is in the form
of regular expressions (Nix uses the term “gap expression” to describe a reg-
ular expression with additional specification of transformed output text). It
would be possible to display the inferences to the user in various forms,

250 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 250

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 2:47:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

such as those introduced later in this chapter. However, previous systems
that infer text-editing programs from examples have extremely poor visibil-
ity when considered as programming languages: they effectively hide the
completed program from the user. They require that the user work only by
manipulating the data, with the option of rejecting incorrect hypotheses af-
ter observing the results of executing an undesired inferred program. Sev-
eral previous PBE systems have recognized this problem and have provided
visual representations of the inferred program. Early systems include PUR-
SUIT (Modugno and Myers 1993) and Chimera (Kurlander and Feiner 1993),
while SMARTedit, described elsewhere in this book (see Chapter 11), pro-
vides a highly expressive program representation language.

Only one example-based text-processing system has addressed the
question of how textual inferences should be presented to a user without
programming skills. In the Grammex (Grammar by Example) system, also
described in this book (see Chapter 12), the user assigns meaningful names
to the subexpressions that have been inferred by the system. The result is
similar to the process followed when defining BNF grammars for language
compilers. No attempt has yet been made to evaluate the usability of the
Grammex system, but some of the usability implications can be anticipated
on the basis of cognitive dimensions. A system in which the user must iden-
tify and name the abstractions being created is abstraction-hungry, and this
property tends to constitute an initial obstacle for inexperienced users.
However, the ability to create names is a simple but effective example of sec-
ondary notation—allowing users to add their own information to the repre-
sentation. An even more valuable form of secondary notation would be the
ability to add further annotations that could be used to describe intended
usage, design rationale, or other notes to future users.

13.3 A User Interface for Creating Regular Expressions from
Examples

The usability improvements that SWYN aims to provide over previous dem-
onstration-based systems are

• that the user should be able to predict what inference will result from
the selection of examples,

• that the inferred program should be visible to the user,

Chapter Thirteen: SWYN 251

TNT Job Number: [002564] • Author: [Lieberman] • Page: 251

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 2:47:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• that the user should be able to anticipate the effects of running the in-
ferred program, and

• that the user should be able to modify the inferred program.

The initial state of the SYWN interface is a simple display of all the text that
is a candidate for selection by a regular expression. If integrated into a
word processor as an advanced search-and-replace facility, the display
could simply be the regular word processor display, and SWYN could be in-
voked as a search-and-replace mode analogous to the incremental search
mode of the EMACS editor.

The user starts to create the regular expression by choosing a string
within the displayed text (dragging the mouse over it). The chosen string is
highlighted, and every other occurrence of the same string within the text is
also highlighted (in a different color), as in Figure 13.1. What the user sees is
the set that would be selected when executing the regular expression de-
fined so far. Of course, after choosing only a single example, the regular ex-
pression created so far is identical to the example, so all the highlighted
strings are the same.

The user can then refine the regular expression by choosing another ex-
ample, one that is not already selected. The regular expression is modified
by induction over the two chosen examples, using the algorithm described
in the next section. The highlighted selection set is immediately changed
to show the user the effect of this new regular expression, as in Figure 13.2.
At this point the selection set will be larger than the initial selection set,

252 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 252

S

R

L

wibble wobble tries to nobble
wibbre wobble tries to nobble
wibble wubbse tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wubble tries to nobble
wibbbbbbble tries to trouble
wibbne wobble tries to nobble

Figure 13.1

Selection set after choosing “wibble” as an example.

V:\002564\002564.VP
Wednesday, December 20, 2000 2:47:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

because the regular expression is more general—it includes both chosen ex-
amples, and possibly other strings sharing their common features, as de-
scribed in the next section.

The user can continue to expand the definition of the regular expression
by choosing further examples of the kinds of string that should be selected.
Every choice of a positive example results in a generalization of regular
expression and an increase in the size of the displayed selection set, as in
Figure 13.3. However the user can also make the regular expression more
specialized by choosing a negative example—a string that should not be

Chapter Thirteen: SWYN 253

TNT Job Number: [002564] • Author: [Lieberman] • Page: 253

S

R

L

Figure 13.2
wibble

wibbne

wobble tries to nobble
wibbre wobble tries to nobble
wibble wubbse tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wubble tries to nobble
wibbbbbbble tries to trouble

wobble tries to nobble

Selection set after adding the new example “wibbne”.

Figure 13.3
wibble

wubble

wibbne

wobble tries to nobble
wibbre wobble tries to nobble
wibble wubbse tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble tries to nobble
wibbbbbbble tries to trouble

wobble tries to nobble

Selection set after adding the new example “wubble”.

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

included in the selection set. Negative examples are chosen by highlighting
them in a different color—currently red rather than the green of positive ex-
amples (although this brings obvious usability problems for color-blind us-
ers). When a negative example is chosen, the regular expression is modified
by performing induction on a negative example, which will have the effect
of making the regular expression more specialized, as described in the next
section. The size of the current selection set will therefore be reduced after
choosing a negative example, as shown in Figure 13.4.

The ability to choose negative examples is an extremely valuable way to
improve the usability of PBE systems. Much research into the acquisition of
programs from examples has concentrated on the theoretical problem of
inference from positive examples only (e.g., Angluin 1980). Induction algo-
rithms can be made more efficient and accurate when they have access to
negative examples, so training sets can be defined more quickly (Dietterich
and Michalski 1984). Furthermore, people naturally describe contextual ab-
stractions in terms of negative exemplars. Human definitions of conceptual
categories often employ negative exemplars to describe an excluded cate-
gory (Johnson-Laird 1983). In the context of SWYN, the ability to work from
negative examples also provides an important feature of direct manipula-
tion—the effect of actions should be not only immediately visible but easily
reversible (Shneiderman 1983). If I choose an example string that causes
the selection set to become too general, it is easy and natural to point to a
string that should not have been selected and allow the induction algorithm
to correct the problem through specialization of the regular expression.

254 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 254

S

R

L

Figure 13.4
wibble

wubble

wibbne

wobble tries to nobble
wibbre wobble tries to nobble
wibble wubbse tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble tries to nobble
wibble wobble tries to nobble
wibble tries to nobble
wibbbbbbble tries to trouble

wobble tries to nobble

wobble

Selection set after choosing a negative example, “wobble”.

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Future versions of SWYN will add a further means of choosing examples.
The probabilistic induction algorithm described at the end of the next sec-
tion is able to identify strings that are borderline cases—the user may or
may not want them included. If the system knew which the user wanted,
this would allow the induction algorithm to remove ambiguities from the
regular expression. Borderline cases would be highlighted in a different
color from the rest of the selection set, giving a cue to the user of the best
way to refine the regular expression. The user can then decide on the ap-
propriate action for each borderline case, simply choosing them as negative
or positive examples in the usual way.

13.4 A Heuristic Algorithm for Regular Expression Inference

The current implementation of the inference algorithm used in SWYN has
been designed to operate using heuristics whose effects can be anticipated
by the user. The approach taken is an extension of the heuristic method
proposed by Mo and Witten (1992). Their heuristic approach improved on
that of Nix (1985) by defining typed character classes as components of the
inferred strings. They suggest that users would normally have some class of
characters in mind when selecting examples and that the function of the in-
ference heuristics should be to identify the class that the user intended.

The heuristic algorithm currently implemented in SWYN incrementally
modifies the regular expression in response to new examples chosen by the
user. A graph reduction algorithm identifies common elements of the ex-
amples and produces minimal regular expressions composed of common
character classes. This process is illustrated in Figure 13.5, which shows
the effects of choosing the first two strings in the figures of the previous
section.

When a new positive example is chosen, it is added to the graph as a
complete alternative expression. Alternatives are branches in the regular ex-
pression graph, as shown in Figure 13.5(a). This graph is then reduced by
merging common elements at the beginning or end of alternative branches.
The result of this merging process is shown in Figure 13.5(b). Where the
graph reduction produces alternatives that are single characters, these are
merged into the smallest general character class, as shown in Figure 13.5(c).
The character class can later be refined by choosing negative examples or
by directly manipulating the regular expression itself, as described later in
the chapter.

Chapter Thirteen: SWYN 255

TNT Job Number: [002564] • Author: [Lieberman] • Page: 255

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Repeated elements in the regular expression are also inferred using
graph reduction heuristics. Figure 13.6 shows the effect of adding an exam-
ple that can be explained as a repeated character in the regular expression.
Where an alternative branch consists solely of repeated elements (either a
repeated single character or repeated subexpressions), these are identified
as a repeated component of the regular expression, as in Figure 13.6(c). Re-
peated branches are then merged with any occurrences of the repeat before
or after the branch, as in Figure 13.6(d).

13.4.1 Probabilistic Algorithm

The heuristic algorithm described earlier is both deterministic and predict-
able, but it may not always result in optimal regular expressions. In the con-
text of SWYN, this is completely intentional. It is better that the user should
be able to imagine the result of choosing new examples than that the results
be optimal. Just as Mo and Witten made some assumption about the classes
of characters that would most likely be intended by the user, this heuristic

256 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 256

S

R

L

Figure 13.5
w i b b l e

w i b b n e

w i b b
l

n
e

a)

b)

c)
w i b b elowercase a-z

Regular expressions induction by heuristic graph reduction: (a) addition of new ex-
emplar as an alternative, (b) reduction of common elements in alternative branches,
and (c) replacement of single-letter alternatives with a character class.

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

graph reduction approach makes some assumptions about the types of reg-
ular expression structure that are most likely intended by the user. This us-
ability feature does result in some loss of generality, but it is always possible
for the user to optimize the expression by direct manipulation, as described
later in the chapter.

However, an alternative is to use a probabilistic algorithm, in which the
examples chosen have more influence on the intended expression. Current
work on SWYN is replacing the simple graph heuristics described earlier
with a probabilistic model based on stochastic context-free grammars, in
which alternative grammars can be assigned probabilities on the basis of

Chapter Thirteen: SWYN 257

TNT Job Number: [002564] • Author: [Lieberman] • Page: 257

S

R

L

Figure 13.6
a)

b)

c)

w i b b l e

w i b b l eb b b b b

w i b b l e

b b b b b

w i b b l e

b

d)
w i b elb

Heuristics for inferring repeated sections of regular expression.

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the examples that the user has chosen. A great advantage of this new ap-
proach is that text not yet chosen by the user can also be assigned probabil-
ities according to different interpretations of the grammar. A string that may
be matched by one possible interpretation but not by another can then be
classed as ambiguous and brought to the user’s attention as a priority for
his or her next decision.

13.5 A Visual Notation for Regular Expressions

The previous sections have described the activity of creating a regular ex-
pression from examples, as though the user might be able to see and modify
not only the examples and resulting selection set but the expression itself. It
would certainly be a good thing if that were possible, for reasons described
earlier. In fact, the previous section did provide a kind of visual representa-
tion of the regular expression for the benefit of you, the reader. The graphs
drawn in the discussion of the graph reduction algorithm are very useful in
understanding how the algorithm works, and they included some ad hoc
syntactic elements that provide clues about how one might represent regu-
lar expressions visually—a loop with an arrow represented repetition of a
character, and a solid black circle represented the beginning and end of al-
ternate subexpressions.

It is difficult to develop usable new visual representations from purely
theoretical considerations. The design of visual representations is partly a
craft skill and partly a question of cognitive science, in which experimen-
tal evidence can be used to assess alternatives. The SWYN project is based
on cognitive research into reasoning with diagrammatic representations
(Blackwell et al., in press) and has taken the second approach to the design
of visual notation.

This section reports an experiment that evaluated four potential repre-
sentations of regular expressions: conventional regular expressions and
three alternatives. Altogether, two of the four alternatives presented the reg-
ular expressions in declarative form, while two suggested an explicit order
of evaluation. Furthermore, two of the alternative notations used only con-
ventional characters from the ASCII character set, while two used graphical
conventions in a way that might be described as a “visual” regular expres-
sion. The design of the experiment allowed the effects of these factors to be
compared.

258 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 258

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

13.5.1 Experiment: Evaluation of Alternative Representations

The four notations used in this experiment expressed equivalent informa-
tion in very different forms. The first of these was that of conventional regu-
lar expressions, although a slightly constrained subset was used. One exam-
ple is that the “+” command was used rather than the “*” command,
because the latter often mystifies novices when it matches null strings. Fig-
ure 13.7 shows a typical example of a regular expression that was used in
the experiment: this example matches a range of English telephone num-
bers: 01223 613234, 0044 1223 356319, 0044 1223 354319, and so forth. Note
that it also matches some strings that are not valid English phone numbers,
such as 0044 1223 303. This is intentional—it is typical of the problems en-
countered by novices when using regular expressions, and the experiment
specifically tested whether users were able to recognize valid matches even
when they were inconsistent with environmental knowledge.

The second alternative notation is still textual, but it defines a strict or-
der of evaluation that can be followed by the user. It also replaces the cryp-
tic control characters of the regular expression with English instructions. An
example, logically identical to Figure 13.7, is given in Figure 13.8.

The third alternative notation is declarative, as in conventional regular
expressions, but it uses graphical cues in place of control characters. These
cues are easily distinguished from the characters in the search expression,
both visually and semantically. Some of the cues—spatial enclosure, for ex-
ample—are so familiar that an explanation seems redundant. Nevertheless,
participants in the experiment were provided with a legend defining the
meaning of each graphical element. An example of this notation is shown in
Figure 13.9(a), and the explanatory legend is in Figure 13.9(b).

The final alternative notation is both graphical and procedural. It might
be regarded as a state transition diagram, typical of those used in computer
science classes in which regular expressions are taught in terms of finite
state automata, or for teaching language grammars. Participants in this ex-
periment, however, treated the notation as an imperative flowchart. An

Chapter Thirteen: SWYN 259

TNT Job Number: [002564] • Author: [Lieberman] • Page: 259

S

R

L

Figure 13.7
(0 0044)1223 [356][0–9]+|

Regular expression defining a set of phone numbers.

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

260 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 260

S

R

L

Figure 13.8
Find one of the following:

a) either the sequence“0”
b) the sequence“0044”

followed by the sequence“1223”
followed by any one of these
characters: “3”or“5”or“6”
followed by at least one,possibly more,
of the following:

-any one of these characters: any
one from“0”to“9”

or

Procedural expression defining the same set as that in Figure 13.7.

Figure 13.9

a

bb
aa

a

a
k–n
b

boxes group sequences together

means either the sequence aa,or the sequence bb can go here

means any character can go here

means that one of the characters a,b or k..n (k,l,m,n) can go here

means that "a" must occur at least once but possibly more times

0044
0

1223 0–953
6

(a)

(b)

Visual declarative expression defining (a) the same set as that in Figure 13.7, and (b)
legend defining notation C.

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

example of the procedural graphical notation is shown in Figure 13.10(a),
and the explanatory legend in Figure 13.10(b).

13.5.2 Method

The participants in the evaluation experiment were thirty-nine post-
graduate students from Oxford and Cambridge Universities, studying a
wide range of arts and science disciplines. None were previously familiar
with regular expressions, but this population clearly has a high level of in-
telligence and might be expected to learn principles of programming more
quickly than average.

Each participant was given an instruction booklet. The first two pages
described the experiment and presented the four different notations. This
introduction did not refer to programming, which has been found to intimi-
date participants in previous experiments on programming notations. In-
stead, it described the expressions as being experimental formats for use in
Internet search.

The following twelve pages in the experiment booklet presented twelve
different tasks, all chosen to represent typical regular expressions that
might be constructed to represent user abstractions. The tasks included
identification of post codes, telephone numbers, market prices, food ingre-
dients, car license numbers, examination marks, email addresses, and Web
pages. Each page presented a single regular expression in one of the four
formats and five candidate text strings that might or might not match the
expression. The participant was asked to mark each of the five candidates
with a tick or a cross to show whether it would be matched by this regular
expression. Participants also used a stopwatch to record the amount of time
that they spent working on each page.

The twelve tasks were divided into six pairs. Within each pair the struc-
tures of the two expressions were made as similar as possible, then dis-
guised by using examples from different fields (e.g., post codes vs. car regis-
trations). A different notation format was used for each half of the pair. The
six pairs of tasks thus allowed direct comparison of all combinations of the
four regular expression notations: format A with format B in one pair, A-C in
another, A-D, B-C, B-D, and C-D. For each participant in the experiment it
was therefore possible to compare their performance on similar tasks using
each pair of alternative notations. Performance comparisons were made ac-
cording to two measures: the completion time for each page and the accu-
racy of responses for that page.

Chapter Thirteen: SWYN 261

TNT Job Number: [002564] • Author: [Lieberman] • Page: 261

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The assignment of notational formats to pairs and to individual tasks
was varied across all participants, as was the presentation order for the dif-
ferent formats. Each participant carried out three tasks using each of the
four notations, but every participant had a different assignment of nota-
tions to tasks.

262 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 262

S

R

L

Figure 13.10

any one of {3,5,6}

any one of {0–9}

1223

0 0044

boxes group sequences together

means either the sequence aa,or the sequence bb can go here

means any character can go here

means that one of the characters a,b or k...n (k,l,m,n) can go here

means that "abc" must occur at least once but possibly more times

abcde

any character

any one of {a,b,k–n}

aa

abc

bb

Visual procedural expression defining (a) the same set as that in Figure 13.7 and (b)
legend defining notation D.

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

13.5.3 Results

The notational format used to carry out the tasks had a highly significant ef-
fect on performance, F(38,1) = 26.8, p < .001. As shown in Table 13.1, all the
alternative notations were completed more quickly on average than con-
ventional regular expressions. Furthermore, the two graphical formats re-
sulted in fewer errors.

More detailed analysis shows that the use of a graphical format has a sig-
nificant effect on completion time: the average completion time for all
graphical notations was 86.1 versus 112.1 seconds for the two textual nota-
tions, F(38,1) = 26.0, p < .001. In contrast, the mean difference between the
two declarative (101.8 s) and the two procedural (96.4 s) notations was
nonsignificant.

An investigation of the individual pairings across all participants con-
firmed that there were statistically significant improvements in perfor-
mance, first when using the procedural graphical format rather than the
procedural text format and, second when using the declarative graphic for-
mat rather than conventional regular expressions, t(39) = 2.57, p < .02 and
t(39) = 5.18, p < .001, respectively.

With notational conventions such as these, it is reasonable to ask
whether more verbose notations like the procedural text might be appro-
priate for novices because they are easier at first sight, even though their
diffuseness might make them inconvenient after more practice (Green and
Petre 1996). In fact, the terse notations of languages such as C or Perl
are justified by the complementary argument—that the verbose prompts
needed by novices are not appropriate for expert users. A further analysis
therefore compared performance on the first task encountered by each par-
ticipant and on the last six tasks, to test whether any notation provides
disproportionate early advantages while being slower with practice. The

Chapter Thirteen: SWYN 263

TNT Job Number: [002564] • Author: [Lieberman] • Page: 263

S

R

L

Table 13.1
Overall performance results.

Time (s) N errors

Conventional regular expression 117.6 60
Procedural text 106.7 48
Declarative graphic 86.1 48
Procedural graphic 86.2 38

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

results in Table 13.2 show that procedural text suffers an even greater disad-
vantage in speed when it is encountered first, and it is still not as accurate
as the graphical alternatives. Furthermore, a comparison of performance
speed relative to the experimental presentation order found that the most
highly correlated improvement in performance over the course of the ex-
periment was for the procedural graphic notation, r = .41, p < .001. This
format was thus the most accurate initially, almost the fastest initially, and
still provided the greatest improvement in performance with further prac-
tice. The declarative graphical format, on the other hand, appears to have
been more error prone toward the end of the experiment.

13.5.4 Discussion

It is clear that graphical notations provide a large improvement in usabil-
ity over conventional regular expressions for typical comprehension tasks.
Clearer text formats that use typographic devices such as indenting and
have interpretative information included in the notation may perform
slightly better overall. But this slight advantage does not reduce the number
of errors, and there is no clear advantage for first-time users.

In fact, the format that is the least error-prone overall also provides the
greatest improvements in usability with practice. It has the disadvantage
common to many graphical notations: it requires far more screen space
than conventional regular expressions. For this reason, the declarative
graphical format may be more effective in practical programming applica-
tions. It still provides large improvements in usability over the conventional
notation, and it is sufficiently compact that it can be used in situ, in place of

264 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 264

S

R

L

Table 13.2
Performance for first and later tasks.

Mean time
on first
task (s)

Percentage
wrong in
first task

Mean time
on last six

tasks

Percentage
wrong in

last six tasks

Conventional regular expression 198 64 104 47
Procedural text 207 44 82 37
Declarative graphic 110 25 77 47
Procedural graphic 123 9 71 27

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

conventional regular expressions. The last part of this chapter describes a
prototype text editor using this notation.

13.6 An Integrated Facility for Regular Expression Creation

This section describes an approach toward integrating all of these ele-
ments in a text-processing environment such as a word processor. It ap-
plies the declarative graphical format that was evaluated in the previ-
ously described experiment, and it integrates this into the user’s
environment so that regular expressions can easily be created from exam-
ples. The graphical representation of the regular expression is displayed
continuously and is updated in response to each selection of a positive or
negative example. The regular expression is overlaid on the text window, so
that the direct correspondence between the regular expression and the
most recently selected string can be indicated via superimposed graphical
links. The simple syntax of the representation means that it can be made
partially transparent, so that it is completely integrated into the task
context.

13.6.1 Visual Integration with Data

This integration is further enhanced by a simple correspondence between
the color of selected example strings in the task domain and coloring of the
elements of the visual representation. Required parts of the regular expres-
sion are colored green, and parts that must not occur (e.g., excluded charac-
ter sets) are colored red. This creates a visual link to the green and red colors
that are used to highlight positive and negative examples in the text and
also to the green outline displayed around all members of the current selec-
tion set.

The resulting visual appearance for SWYN is shown in Figure 13.11. The
structure of the displayed regular expression is indicated by simple blocks
of color, and alternate subexpressions are linked by a containing colored re-
gion. Only two special syntactic elements are used: a wild card character to
represent potential character sets and a style of decorative border to indi-
cate repetition. Both use existing conventions—the wild card element is
represented by a question mark, and the repetition border uses the conven-
tional visual cue of a “stack” of cards.

Chapter Thirteen: SWYN 265

TNT Job Number: [002564] • Author: [Lieberman] • Page: 265

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The regular expression is also directly related to the user’s most recent
action by drawing correspondence lines between the letters of the most re-
cently selected example string and the elements of the visual representa-
tion. This allows the user to see immediately what effect each new example
has had on the inferred result.

13.6.2 Modification of the Regular Expression

In addition to refining the regular expression by selecting further positive
and negative examples, the SWYN visual expression supports two more spe-
cialized ways to modify the regular expression. The first of these is by direct
manipulation of the visual expression itself. The most important direct ma-
nipulation facility supported by the currently implemented algorithms is
the ability to select elements of the regular expression and redefine them.
As described earlier, the induction algorithm assumes very general charac-
ter sets when reducing the expression graph. However, the actual characters
that were used to infer the graph are recorded as annotations to the graph
nodes. If the user wishes to review any character set, he or she can click on
that element in the expression in order to see a list of possible interpreta-
tions that could be drawn from the original examples. This list could be

266 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 266

S

R

L

Figure 13.11

User interface for specification and display of regular expressions. The word “wobble”
on the second row from the top is annotated in red, and the box around the letter “o”
in the center of the screen is red. (This greyscale reproduction obscures the red and
green annotations. See color plate XX in the color insert for full color image.)

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

presented as a pop-up menu, as shown in Figure 13.12, so the user can se-
lect the desired interpretation. Any direct modification of the regular ex-
pression will, of course, result in an immediate update of the current selec-
tion set within the main text display.

Once the probabilistic inference algorithm described earlier has been
incorporated into SWYN, the system will also support active learning by
identifying boundary cases and marking them for the user’s attention. The
user will then be free to refine the current inferred expression by classifying
the boundary case, directly modifying the elements of the expression, or
simply proceed on the basis of current selections. The result should be both
powerful and natural to use, clearly showing the advantages of integrating
principles of visual design and direct manipulation into a PBE system. Fu-
ture work on SWYN will include an empirical investigation of the usability
of the novel interaction techniques described here. This will consider both
the selection of positive and negative examples to construct a regular ex-
pression and the modification of that expression to refine specific boundary
conditions or intended character classes.

13.7 Conclusions

The SWYN project aims to help users create powerful abstractions through
programming by example. Rather than emphasizing sophisticated infer-
ence algorithms, it has applied a relatively simple algorithm for inference
of regular expressions from examples but combined it with thorough
design for usability. This has taken into account both Green’s Cognitive

Chapter Thirteen: SWYN 267

TNT Job Number: [002564] • Author: [Lieberman] • Page: 267

S

R

L

Figure 13.12

Modifying the expression directly by selecting an intended character class.

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Dimensions of Notations framework and also the application of direct ma-
nipulation principles to the domain of abstraction creation.

The consequences for the system design have been that the results of
the inference are made visible to the user—the inferred abstraction and the
effects of the abstraction within the task domain. The inference results are
displayed using a novel visual formalism that is both motivated by sound
theoretical principles and verified in experimental evaluation.

This visualization, the approach to identifying examples in the user in-
terface, and the heuristic algorithms used for inference mean that all user
actions have incremental effects whose results are immediately visible.
Users can both predict and observe the results of their actions, and either
refine their abstractions or correct them accordingly. The result is a tool
that, although it has a rather specialized purpose, exemplifies many impor-
tant future emphases for the development of PBE systems.

Acknowledgments

Kim Marriott first suggested regular expressions as an experimental topic
for investigating direct manipulation of visual expressions in programming.
Thomas Green, Jonathan Pfautz, and Kerry Rodden have given useful feed-
back on the form of the regular expression visualizations and also on ex-
periment design. Participants in the experiment were volunteers from the
choirs of Darwin College, Cambridge, and Wolfson College, Oxford. This re-
search is funded by the Engineering and Physical Sciences Research Coun-
cil under EPSRC grant GR/M16924, “New Paradigms for Visual Interaction.”

References

Angluin, A. 1980. Inductive inference of formal languages from positive data. Infor-

mation and Control 45: 117–135.

Blackwell, A. F. 1996. Metaphor or analogy: How should we see programming ab-

stractions? In Proceedings of the 8th Annual Workshop of the Psychology of Pro-

gramming Interest Group (January), ed. P. Vanneste, K. Bertels, B. De Decker, and

J.-M. Jaques.

Blackwell, A. F., and T. R. G. Green. Investment of attention as an analytic approach

to cognitive dimensions. In Collected papers of the 11th Annual Workshop of the

268 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 268

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Psychology of Programming Interest Group (PPIG-11), ed. T. Green, R. Abdullah,

and P. Brna.

Blackwell, A. F., K. N. Whitley, J. Good, and M. Petre. (in press). Cognitive factors

in programming with diagrams. Artificial Intelligence Review (special issue on

thinking with diagrams).

Christiansen, T., and N. Torkington. 1998. Perl cookbook. Sebastopol, Calif.: O’Reilly.

Dietterich, T. G., and R. S. Michalski. 1984. A comparative review of selected meth-

ods for learning from examples. In Machine learning: An artificial intelligence

approach, ed. R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Palo Alto, Calif.:

Tioga.

Green, T. R. G. 1989. Cognitive dimensions of notations. In People and computers V,

ed. A. Sutcliffe and L. Macaulay. Cambridge: Cambridge University Press.

Green, T. R. G., and A. F. Blackwell. 1996. Ironies of abstraction. Presentation at 3rd

International Conference on Thinking, British Psychological Society, London,

August.

———. 1998. Design for usability using Cognitive Dimensions. Invited tutorial at

HCI’98, Shefield, U.K., September.

Green, T. R. G., and M. Petre. 1996. Usability analysis of visual programming envi-

ronments: A “cognitive dimensions” approach. Journal of Visual Languages and

Computing 7: 131–174.

Green, T. R. G., M. Petre, and R. K. E. Bellamy. 1991. Comprehensibility of visual and

textual programs: A test of superlativism against the “match-mismatch” conjec-

ture. In Empirical studies of programmers: Fourth workshop, ed. J. Koenemann-

Belliveau, T. G. Moher, and S. P. Robertson. Norwood, N.J.: Ablex.

Herrman, E. 1997. Teach yourself CGI programming with Perl 5 in a week. Indianapo-

lis: Sams.

Johnson-Laird, P. N. 1983. Mental models. Cambridge, Mass.: Harvard University

Press.

Kurlander, D., and S. Feiner. 1993. A history-based macro by example system. In

Watch what I do: Programming by demonstration, ed. A. Cypher. Cambridge,

Mass.: MIT Press.

Lieberman, H., B. A. Nardi, and D. Wright. 1999. Training agents to recognize text by

example. In Proceedings of the Third ACM Conference on Autonomous Agents (Se-

attle, May).

Masui, T., and K. Nakayama. 1994. Repeat and predict—Two keys to efficient text ed-

iting. In Proceedings of Human Factors in Computing Systems, CHI ’94.

Mo, D. H. and I. H. Witten. 1992. Learning text editing tasks from examples: A proce-

dural approach. Behaviour and Information Technology 11, no. 1: 32–45.

Modugno, F., and B. Myers. 1993. Graphical representation and feedback in a PBD

system. In Watch what I do: Programming by demonstration, ed. A. Cypher. Cam-

bridge, Mass.: MIT Press.

Chapter Thirteen: SWYN 269

TNT Job Number: [002564] • Author: [Lieberman] • Page: 269

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Nix, R. P. 1985. Editing by example. ACM Transactions on Programming Languages

and Systems 7, 4 (October): 600–621.

Shneiderman, B. 1983. Direct manipulation: A step beyond programming languages.

IEEE Computer 16, no. 8 (August): 57–69.

Wall, L., T. Christiansen, and R. L. Schwartz. 1996. Programming Perl, 2d ed.

Sebastopol, Calif.: O’Reilly.

Watt, S. 1998. Syntonicity and the psychology of programming. In Proceedings of the

Tenth Annual Meeting of the Psychology of Programming Interest Group (Milton

Keynes, U.K., January), ed. J. Domingue and P. Mulholland.

Witten, I. H. and D. Mo. 1993. TELS: Learning text editing tasks from examples. In

Watch what I do: Programming by demonstration, ed. A. Cypher. Cambridge,

Mass.: MIT Press.

270 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 270

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 2:48:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

