Color profile: Generic CMYK printer profile
Composite Default screen

Eleven

Learning Repetitive
Text-Editing Procedures
with SMARTedit

TESSA LAU
University of Washington

STEVE WOLFMAN
University of Washington

PEDRO DOMINGOS
University of Washington

DANIEL S. WELD
University of Washington

V:\002564\002564.VP
Wednesday, December 20, 2000 11:31:15 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 209

‘t—' LU ‘m

Color profile: Generic CMYK printer profile

Composite Default screen

210 Your Wish is My Command

Abstract

The SMARTedit system automates repetitive text-editing tasks by learning
programs to perform them using techniques drawn from machine learning.
SMARTedit represents a text-editing program as a series of functions that al-
ter the state of the text editor (i.e., the contents of the file or the cursor posi-
tion). Like macro recording systems, SMARTedit learns the program by ob-
serving a user performing her or his task. However, unlike macro recorders,
SMARTedit examines the context in which the user’s actions are performed
and learns programs that work correctly in new contexts. Using a machine
learning concept called version space algebra, SMARTedit is able to learn
useful text-editing procedures after only a small number of demonstrations.

Introduction

Programming by demonstration (PBD) has the potential to allow users to
customize their applications as never before. Rather than writing a program
in an abstract programming language to automate a task, users demon-
strate how to perform the task in the existing interface, and the system
learns a generalized program that can perform it in new contexts.

In some domains, such as the Stagecast Creator and ToonTalk systems
described elsewhere in this book, users’ primary goals are to construct pro-
grams. In other domains, users are more interested in getting their work
done than in programming the system. They are focused on their over-
all tasks, and constructing programs to automate repetitive subtasks are
merely the means to an end.

Our work focuses on the latter class of users: those who don’t want to, or
don’t know how to, construct a program to accomplish some task. Ulti-
mately, the process of constructing a program (or recording a macro) boils
down to the problem of choosing the correct action for the system to take at
each step. A PBD system can make this programming process easier in two
ways: by providing a visual representation of the program, thus eliminating
the need to understand arcane syntax, and by inferring the user’s intent
based on demonstrations. In our work, we focus on the latter approach. We
place the burden of inference on the system, rather than on the user; the
system is responsible for figuring out what the user meant to do and for re-
moving enough details to construct a reusable program.

For a PBD inferencing system to be useful, it must be expressive enough
to represent the types of programs users want to construct. On the other

S

__R
_ L

V:\002564\002564.VP

Wednesday, December 20, 2000 11:31:16 AM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page:210

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Eleven: Learning Repetitive Text-Editing Procedures 211

hand, it must be able to perform its inference based on a very small number
of examples—few users would be willing to train the system on hundreds or
even tens of examples! These two goals are directly in conflict with each
other: as the learning system’s expressiveness (and thus the size of its search
space) increases, so does the number of examples required to pick out the
correct concepts in that space.

The approach we have taken, based on a machine learning concept
called version space algebra (Lau, Domingos, and Weld 2000), allows us to
get the best of both worlds: an expressive program representation language,
combined with the ability to make useful inferences after a very small num-
ber of demonstrated examples. We do this by carefully crafting our search
bias—the kinds of programs we can represent—so as to separate the wheat
from the chaff. The version space algebra, which is an extension to Mitch-
ell’s (1982) concept of version spaces for machine learning, lets us represent
only the programs that users might want to write, without being distracted
by nonsensical or useless programs.

We have implemented and tested our framework in the text-editing do-
main. Examples abound of repetitive procedures for editing text: converting
from one file format to another, reformatting address lists, manipulating
bibliographic citations, and so on. Our system SMARTedit (Simple MAcro
Recognition Tool) uses version space algebra to learn useful programs for
editing text based on as little as a single demonstrated example.

Beyond the consideration of a single domain, however, we are also con-
cerned with a system’s ability to scale both to more complex domains and
to other domains entirely. The variety of systems described elsewhere in
this book displays the breadth of application domains that could benefit
from PBD. Given such a wide range, an important factor in the design of a
PBD system is how domain knowledge is represented in the system. The
answer to this question determines how easy it is to add new knowledge to
the system and whether it can be easily applied to a different domain. Previ-
ous PBD systems have been built on domain-specific preference biases—
knowledge about which actions are more likely than others—to force the
system to come to the correct conclusion. Like expert systems, such tech-
niques lead to brittle, poorly understood designs; extending the system to
support a new concept requires delving into the depths of the code and un-
derstanding all of the ramifications of each change. In contrast, our version
space algebra framework proposes a modular approach to the design of
PBD systems: a domain-independent learning algorithm and a structured,
high-level domain representation. Adding new features to the system, or

applying it to a different domain, requires only changes to the domain rep- _S

resentation. We hope that robust solutions such as ours will help PBD
spread more quickly to more applications.

S
__R

_ L

V:\002564\002564.VP

Wednesday, December 20, 2000 11:31:16 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:211

Color profile: Generic CMYK printer profile
Composite Default screen

212 Your Wish is My Command

The SMARTedit User Interface

We illustrate SMARTedit by showing how it automates a simple text-pro-
cessing task. Suppose the user has some HTML with comments embedded
in it and would like to remove the comment tags and all the text inside the
comments. An HTML comment is a string delineated by the tokens <!—
and—>. The comment may span multiple lines and contain arbitrary char-
acters. To delete all such comments, a Microsoft Word user would have to
enter a regular expression of the form \ <!—*—\> into the search-and-re-
place dialog box. While this syntax may look straightforward to program-
mers, even we took several tries to figure out the correct syntax to use for
that regular expression. In SMARTedit, however, no arcane syntax is re-
quired. The user simply demonstrates the desired functionality by deleting
the first HTML comment, and the system is able to do the rest. Let’s walk
through this example to illustrate exactly what SMARTedit can do.
SMARTedit works like a simple macro recorder and follows the familiar
macro recording interface. To begin creating a SMARTedit macro, the user
pushes a start recording button. The button then turns red, indicating that
her actions are being recorded. She then begins demonstrating what she
wants SMARTedit to do. In this task, she first moves the cursor to the begin-
ning of the next HTML comment, right before the <!-—characters, using any

11.1

Step through
macro

Started recording

This is some sarnpl':!——deleterne——b‘ HTML
text from which the comments <1——
including contents ——>ought to be
deleted before <1—— ZZZ ——>publication.

Recording a SMARTedit macro. The blue block is the position of the insertion cursor,

the status bar indicates that the user is recording, and the record button has turned _ S
red to indicate recording is active. __R
L

V:\002564\002564.VP
Wednesday, December 20, 2000 11:31:17 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:212

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Eleven: Learning Repetitive Text-Editing Procedures 213

11.2

Step through
macro

Started recording

This is some sarnpl'HTML

text from which the comments <1——
including contents ——>ought to be
deleted before <1—— ZZZ ——>publication.

Deleting the HTML comment.

combination of cursor-motion keys or mouse clicks (Fig. 11.1). She then de-
letes the entire HTML comment (Fig. 11.2).

Because the demonstration is now complete, the user presses the stop
recording button to indicate that she is finished. SMARTedit has now
learned a macro representing the procedure she has just performed.
Looking more closely at the way the user demonstrated this task, she had to
hit the delete key fifteen times to delete the extent of the comment. It’s un-
likely (though possible) that she wanted to delete exactly fifteen characters.
What'’s more likely (and correct) is that she wanted to delete up until the
comment closing tag. If she were writing a program to delete these HTML
comments, she would have had to specify (in some programming language)
when to stop deleting, using some abstract representation of the text, rather
than the actual text sitting right there.

SMARTedit infers which meaning the user wanted, by using her demon-
stration as an example of the program she is trying to construct. The next
section will show how SMARTedit represents these two possible actions
(and others) as different hypotheses in its version space. But first let’s see
how SMARTedit’s knowledge is used to help the user delete the next com-
ment automatically.

SMARTedit learns procedures consisting of a sequence of actions—rela-
tively high-level text-editing commands, such as moving the cursor to a
new position; inserting a string; selecting or deleting a region of text; or ma-
nipulating the clipboard. The user can invoke SMARTedit’s learned macro
an action at a time by pressing the Step through Macro button. SMARTedit

S
__R
_ L

V:\002564\002564.VP

Wednesday, December 20, 2000 11:31:17 AM
TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:213

Color profile: Generic CMYK printer profile
Composite Default screen

214 Your Wish is My Command

Record Step through Try another
iteration macro guess

Move to the start of '<!--"[40% prob.]

This is some sample HTML

text from which the comments [f1—
including contents ——>ought to be
deleted before <1—— ZZZ ——>publication.

Invoking the macro by pressing the Step through Macro button.

will guess what action she’s likely to take next. In this case, it correctly pre-
dicts that the next action she wants to take is to move the cursor to the be-
ginning of the next HTML comment (Fig. 11.3). Given that’s she’s only dem-
onstrated one example, however, SMARTedit could only predict this action
with 40 percent probability. (For example, it'’s possible that she wanted to
position the cursor after the word sample instead of before the HTML com-
ment; this action and others like it also have nonzero probability.) If the re-
sult of this action is not what the user intended, she could use the Try An-
other Guess button to switch to SMARTedit’s next most likely choice of
action, and so on, until she finds the desired action. The user is always free
to correct SMARTedit and perform the desired action herself.

After the user verifies that SMARTedit has performed the correct action,
she steps to the next action by invoking the Step through Macro button
again. This time, it correctly predicts with 27 percent probability that she
will delete the extent of the HTML comment (Fig. 11.4). The action is visual-
ized by striking through the region that is to be deleted, rather than deleting
it without warning (which caused confusion in an earlier implementation).

The user has now finished deleting the second HTML comment in the
file. The next time she invokes the Step button, SMARTedit will again posi-
tion the cursor at the beginning of the next HTML comment (Fig. 11.5).
However, SMARTedit is adaptive, and it has been learning from her choices
even while she was asking it to make predictions. It makes this prediction
with 100 percent probability based on both the original example as well as _$

the collaborative one. R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 11:31:17 AM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page:214

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Eleven: Learning Repetitive Text-Editing Procedures 215

Record Step through Try another
iteration macro guess

Delete from the start of '<!--’to the end of '——>'[27% prob.]
This is some sample HTML Al

text from which the comments EaastN

I T T
Including contents ——>cpbligiesiiey
deleted before <1—— ZZZ ——>publication.

The macro predicting to delete the entire HTML comment.

Record Step through
iteration macro

Delete from the start of '<!--"to the end of '—=—>’[100% prob.]

This is some sample HTML
text from which the comments ought to be
deleted before Bt ammmarublication.

Pressing the Step button once more to start deleting the next HTML comment with
100 percent probability.

The Smarts behind SMARTedit

We view text editing as a sequence of changes in the state of a text editor ap-
plication. The state includes the cursor position (as a row and column pair),
the contents of the text editing buffer, and the contents of the clipboard.

S
R

_ L

V:\002564\002564.VP

Wednesday, December 20, 2000 11:31:18 AM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page:215

Color profile: Generic CMYK printer profile

Composite Default screen

216 Your Wish is My Command

Each text-editing action performed by the user in some state results in a
new state. For instance, moving the cursor one row forward results in a new
state, which differs from the initial state in that the cursor position is one
row greater. Inserting a string by typing a few keys in one state results in a
new state where the text-editing buffer includes the inserted string.

SMARTedit learns a macro as a sequence of functions that transform one
state to another. For instance, the user’s first action in the earlier example
was to move the cursor to the beginning of the HTML comment; SMARTedit
represented that action as a function that took a text state and output a new
state in which the cursor was repositioned to lie in front of the next occur-
rence of the string <!—.

We have defined several classes of text-editing functions representing
the types of text-editing operations people do in an editor. For example, the
class of Move functions takes the input state with a particular cursor loca-
tion into an output state in which only the cursor location is different. Each
particular Move function moves the cursor for a different reason; possible
reasons include moving to a particular row and column, moving to the next
row or column, or moving the cursor before or after the next occurrence of a
search string. For example, the correct Move function in the prior example
is the one that moves the cursor before the next occurrence of the string
<!—. The class of Insert functions models normal typing by mapping from
an input state with some text buffer into a new state in which the text buffer
includes an inserted string, but nothing else has changed. Each Insertfunc-
tion inserts a different string into the text buffer. Other basic functions in-
clude deleting text, selecting text, and manipulating the clipboard by cut-
ting, copying, and pasting the selected text.

Given this representation of text-editing actions, we view the learning
process as figuring out which functions are consistent with the actions the
user performed. In a programming environment, the programmer would
have to directly specify exactly which function to perform using program-
ming language constructs. However, SMARTedit reduces user effort by in-
ferring the correct function itself. It performs inference by using demon-
strated actions to rule out functions successively until only a few are left.

Figure 11.6 shows the complete space of programs SMARTedit is able to
learn. We call this SMARTedit’s version space, so named because it contains
all possible versions of the target function. Mitchell (1982) first introduced
version spaces as a method for visualizing and efficiently representing the
search for a concept in a space of hypotheses. However, Mitchell’s version
space contained a single set of hypotheses. In contrast, SMARTedit’s version
space (as shown in the figure) is organized hierarchically according to the
important concepts in the domain, using version space algebra. The algebra
defines how smaller, simpler sets can be combined together to construct a

S

R

L

V:\002564\002564.VP

Wednesday, December 20, 2000 11:31:18 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:216

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Eleven: Learning Repetitive Text-Editing Procedures 217

11.6

Program

>

Action Action .. Action

Action

MaTe DeleteSel

Paste

Insert
Select Copy
Location
Delete > .
Location
ConstStr <] Location
Location Location Location
]
RowCol FindPrefix ~ FindSuffix
Row Column SuffStr PrefStr
U U
AbsRow RelRow AbsCol RelCol
Constint Linearint Constint Linearint

Version space algebra representation in which each node represents a set of functions
transforming an input state into an output state. The contents of each node are com-
puted from the contents of its children nodes by either union, cross product (the
bowtie symbol), or transformation (unmarked).

V:\002564\002564.VP
Wednesday, December 20, 2000 11:31:23 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:217

Color profile: Generic CMYK printer profile

Composite Default screen

218 Your Wish is My Command

single more complex set that retains a hierarchical structure. Functions
with similar purpose (e.g., all movement functions) are grouped together
into a single set, rather than being merged with all the other types of text-
editing functions.

The correct function is somewhere in this version space, and
SMARTedit’s goal is to find it. Each node in the tree represents a set of func-
tions that are consistent with the examples seen thus far; that set is con-
structed out of the sets beneath it in the tree. For instance, the root of
the tree, labeled “Program,” represents the set of all programs consistent
with the actions the user has demonstrated. A program is made up of a se-
quence of Action nodes; each Action node is a union of all the different
classes of text-editing functions. For example, the Move node represents the
set of all movement functions consistent with the user’s cursor reposition-
ing activity.

Before the user records her actions, the version space initially contains
the set of all possible functions. After she has made a recording, some of
those functions are thrown out of the version space because they are not
consistent with (do not explain) the observed actions. For instance, if the
first action a user chooses is to reposition the cursor, all functions for insert-
ing, deleting, or selecting text are inconsistent and can be removed from
consideration. The version space for the first Action node is updated such
that all actions other than Move contain the empty set. Moreover, the set of
movement functions is constrained to be only those functions that move to
locations consistent with the observed movement.

Locations in a text file are central to text-editing programs. The Location
node in the version space represents this concept as a set of possible loca-
tions, specified in a variety of ways. Locations can be specified as row
and column position (either relative to the previous position or absolute in
the file), after a certain search string, or before a search string. For instance,
in the prior example, the user’s intent was to move the cursor before the
string <!—. In our terminology, she was conducting a suffix search; the cur-
sor position right before the next occurrence of <!—is one function in the
Location version space. Locations are reused by several actions, such as de-
termining the destination of a cursor movement action or specifying the ex-
tents of a region to be deleted.

Consider the HTML comment deletion example discussed previously.
The program for that task contained two actions: a move and a deletion. Re-
call that the cursor started at the beginning of the line and was repositioned
nineteen characters forward to lie between the word sample and the char-
acters <!—. After the user has repositioned the cursor, SMARTedit’s version
space for the desired location is updated to be consistent with this example.
The row and column version spaces are updated according to the observed

S
R

_ L

V:\002564\002564.VP

Wednesday, December 20, 2000 11:31:23 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:218

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Eleven: Learning Repetitive Text-Editing Procedures 219

difference in row and column positions in this example. For example, a
move to the absolute column 19 is consistent, as is a relative move forward
nineteen columns (because the cursor started out on the zeroth column).

In addition, various string search functions may apply. In this case,
the cursor ended up after the word sample and before the string <!—.
SMARTedit can't tell whether the word sample is the important feature or
whether perhaps the string ample would suffice or even just the string le. (It
knows that the prefix e alone was not the important feature; otherwise, the
user would have positioned the cursor after the e in the word some.) Any
string, including the entire contents of the text file from the beginning
to the current cursor position, may be the important feature. In fact, none
of these prefix search hypotheses are correct, but SMARTedit hasn't seen
enough examples to rule them out yet.

Similarly, a number of suffix search functions are consistent with the ex-
ample: <, <!, <!-, <l—, and so on up to the entire contents of the text file
after the cursor position.

When another example is observed (perhaps as the user is stepping
through the macro on the second HTML comment), some of these hypoth-
eses will be thrown out because they are not consistent with this new exam-
ple. All of the row/column hypotheses are thrown out, because the second
comment is not in the same column as the previous one (though in more
structured editing tasks, the row/column hypotheses might be more impor-
tant). All of the prefix search hypotheses are thrown out, because this HTML
comment appears after the word comments, not after the word sample. In
addition, the contents of this HTML comment differ from the previous one.
Thus, the only hypotheses that remain are those that predict a suffix search
of <, <!, <!-, and <!—.

Our version space algebra representation confers two advantages: an ef-
ficient representation of the set of consistent functions, and a method for
structuring the function space such that related functions (e.g., all Move
functions) are grouped together. Rather than explicitly enumerating every
function hypothesis to determine which hypotheses are consistent with the
examples, SMARTedit efficiently searches through this structured version
space representation of consistent hypotheses to maintain its knowledge
about the actions the user has performed.

Choosing the Most Likely Action

Using the version space representation, SMARTedit is able to maintain a
large and complex space of function hypotheses. Given only a few

S

__R
_ L

V:\002564\002564.VP
Wednesday, December 20

2000 11:31:24 AM
TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page:219

Color profile: Generic CMYK printer profile

Composite Default screen

220 Your Wish is My Command

examples, however, it’s rare for the version space to collapse to a single
function. If the version space contains several functions, SMARTedit none-
theless picks a single action to perform for the user, as follows.

First, SMARTedit captures the current state of the application. It then
treats this state as an input and executes each of the functions in the ver-
sion space on this input, to produce a set of output states. Some functions
may produce the same output state when applied to the same input state;
for example, if the cursor is currently on row 4, moving the cursor to the
next row has the same effect as moving the cursor to absolute row 5. In ad-
dition, some functions may be more likely than others. For instance, it’s rare
for users to be interested in an absolute row; relative row positioning is
much more likely. Thus, each function has associated with it a probability
based on two factors: its own prior probability and the prior probabilities of
the version spaces which contain it.

If the version space execution produces only one output state, then
SMARTedit presents this output state to the user, with 100 percent probabil-
ity that this is what the user intended to do. Since this output state may
have been produced by more than one function, it's possible that
SMARTedit still doesn’t know exactly what the correct function is. However,
it knows enough to be able to predict the correct action.

If there is more than one output state predicted by the version space,
then SMARTedit must choose between them. It does so by choosing the
state that has the highest probability, where an output state’s probability is
the sum of the probabilities of the functions that produce it.

If the chosen state matches the user’s expectations, she can continue ex-
ecuting the next action in the learned macro. If not, she can ask SMARTedit
to switch to the next most likely output state, and so on, until she finds the
correct one.

In the HTML comment deletion task described earlier, SMARTedit is,
in fact, able to learn how to perform the task correctly after only a single
demonstration (for a total of three HTML comments correctly deleted). We
have also tested SMARTedit’s ability in a number of repetitive text-editing
scenarios, such as converting from one XML format to another, rearranging
the order of columns in a structured text file, reformatting mailing ad-
dresses from single-line to multiline, converting C-language comments to
C+ +-style comments, and converting among the Scribe, LaTeX, and HTML
formatting languages. In all cases, SMARTedit requires between one and
three demonstrations before it is able to perform the task correctly on the
remainder of the examples in the scenario.

V:\002564\002564.VP
Wednesday, December 20

2000 11:31:24 AM
TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 220

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Eleven: Learning Repetitive Text-Editing Procedures 221

Making SMARTedit a More Intelligent Student

SMARTedit’s current learning process—learning from observations, guess-
ing a generalized concept, and collaborating with the user to refine those
guesses—represents the first step toward “programming by teaching,” as
PBD is described in the introduction to this book: SMARTedit is an intelli-
gent student poised to learn programs for a teacher. However, SMARTedit
still falls short of fulfilling its role as a student; a truly intelligent student
holds a much richer interaction with his teacher. Moreover, SMARTedit is
not just a student but also an assistant; an automated assistant shares many
traits with a good student but has the added concern of minimizing the
user’s burden. We see the next major steps for SMARTedit as making it a
better student and assistant: taking the initiative to guide the learning pro-
cess with its own questions, learning from gestures and discussion accom-
panying the demonstration, carrying knowledge forward from one learning
episode to the next, and tempering this process with an awareness of the
burden on the user.

To allow SMARTedit to take a more active role in guiding the learn-
ing process, we envision a system that takes the initiative, asking questions
to clarify its knowledge. Currently, SMARTedit either learns from the user
demonstrating an example or from the user’s acceptance or rejection of
SMARTedit’s guess at the next action. In both cases, the user is in control of
the interaction. SMARTedit might instead guide the course of the interac-
tion based on its assessment of the state of its knowledge. As a first step,
SMARTedit can inform the user when it needs more examples and when it
believes (based on the probability of its hypotheses) that it has discovered
the user’s procedure. With this feedback, the user can make an informed
decision whether to begin examining SMARTedit’s guesses or continue
demonstrating examples. SMARTedit could take an even more active role by
asking for information about the current action (e.g., “Are you searching for
a string?”), suggesting that the user demonstrate an example other than the
next one in the text or proposing a series of actions for consideration by the
user rather than just one (e.g., proposing both the move and deletion from
Figs. 11.3 and 11.4 in one interaction).

Careful selection of the next question to ask the user will make
SMARTedit’s learning process zero in on the user’s procedure more quickly.
We can make these selections based on their discriminating power in
SMARTedit’s version space or based on the expected benefit (information
gain) of each question given the current probabilities of SMARTedit’s hy-___$
potheses. The selection of the next question for the user should also take R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 11:31:24 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:221

Color profile: Generic CMYK printer profile

Composite Default screen

222 Your Wish is My Command

into account the burden that question places on the user. An important,
open research question is how we can balance the needs of SMARTedit’s
learning process against the added burden of its queries to the user. How
much and what kind of effort is the user willing to expend answering these
queries? How do the different queries inconvenience different users?

We can also enrich the interaction between SMARTedit and its user/
teacher by allowing the teacher to provide information outside the strict
bounds of the demonstration. In informal observations, we have found that
people find it quite natural to narrate their actions as they perform them.
Much of the “teaching” content of the demonstrations may be in these nar-
rations. One could imagine using these narrations in a variety of ways from
simple keyword detection (e.g., the word searching in the narration might
increase the probability of string search hypotheses) to full-fledged natural
language understanding. In particular, we speculate that technologies used
in information retrieval (e.g., Latent Semantic Indexing, Deerwester et al.
1990) might help connect utterances to the actions the users perform and
the text they are modifying. The “hints” we get from the narrations could
then be used to change the prior probabilities on each of the different ver-
sion spaces, so as to prefer some functions over others.

SMARTedit should also carry aspects of its knowledge forward from one
interaction to the next. Conceptually, we would like SMARTedit to learn how
to deal with different users, texts, and tasks. Context in the form of user
habits or document type can dramatically narrow the scope of reasonable
hypotheses that SMARTedit need consider. Practically, SMARTedit can sup-
port this kind of adaptation by adjusting the initial probabilities of its vari-
ous hypotheses based on the identity of the user and type of file the user is
editing. For example, if SMARTedit detects that the user is editing a comma
delimited table (e.g., a file with the .csv extension), it can increase the initial
probability of string searches containing a comma.

Finally, as an intelligent assistant, SMARTedit should endeavor to reduce
the burden it places on the user. Rather than asking the user to start and
stop the macro recorder explicitly in between demonstrations, the system
should figure out that she has demonstrated the same task twice in a row.
Moreover, SMARTedit should be more robust to user errors, such as per-
forming actions in a different order in subsequent examples or pressing the
wrong key at the wrong time. A more robust SMARTedit implementation
would discount the mistakes, allow the user to correct them, or even auto-
matically correct for the errors.

Together, these directions form an ambitious plan for improving

SMARTedit: asking questions and proposing examples to direct the learn-
R

ing process, taking advantage of the user’s narration of her actions, accu-

S

mulating knowledge about context (users, texts, and tasks), and balancing L

V:\002564\002564.VP

Wednesday, December 20, 2000 11:31:25 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:222

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Eleven: Learning Repetitive Text-Editing Procedures 223

the advantages of all of these against their burden on the user. Principled
use of these techniques will result in fundamental improvements to
SMARTedit—improvements that should carry over to other domains and
PBD systems. A more intelligent student will ease the burden on a teacher
in any domain.

Other Directions for SMARTedit

There are many other avenues of research to explore. In the immediate
future, we plan to increase SMARTedit’s expressiveness by elaborating
SMARTedit’s state representation (perhaps including features such as sen-
tence, paragraph, and section numbers) and adding to the set of version
spaces used to construct programs. Moreover, we plan to construct a larger
corpus of repetitive text-editing scenarios with which to evaluate the sys-
tem’s performance. We expect these two avenues to complement each
other, suggesting new capabilities to introduce into SMARTedit and high-
lighting its limitations.

Another dimension to pursue is to evaluate the system’s ability to scale,
both to larger and more expressive languages, and even to other domains.
Will the version space approach suffice when the number of different func-
tions grows to the hundreds or thousands? Is the version space approach
appropriate for other domains besides text editing, such as spreadsheets or
the desktop? We believe that careful construction of the version space hier-
archy will allow our approach to scale; we envision component version
spaces becoming part of a generally applicable, reusable library. Further-
more, we believe that the representation of procedures as functions over
states is quite general, but undoubtedly we will find limitations in our ap-
proach when we consider different domains.

Comparison with Other Text-Editing PBD systems

Unlike most previous text-editing PBD systems, SMARTedit uses a formal
machine learning technique to describe the generalization that is per-
formed by the system. Witten and Mo (1993) describe the TELS system that
records high-level actions similar to the actions used in SMARTedit and
implements a set of expert rules for generalizing the arguments to each
of the actions. TELS also uses heuristic rules to match actions against each
other to detect loops in the user’s demonstrated program; it outperforms

S

__R
L

V:\002564\002564.VP

Wednesday, December 20, 2000 11:31:25 AM
TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 223

Color profile: Generic CMYK printer profile

Composite Default screen

224 Your Wish is My Command

SMARTedit in this respect. However, TELS’s dependence on heuristic rules
to describe the possible generalizations makes it difficult to imagine ap-
plying the same techniques to a different domain, such as spreadsheet
applications.

Nix (1985) describes the Editing by Example (EBE) system that looks not
at recorded actions but at the input/output behavior of the complete dem-
onstration. EBE attempts to find a program that could explain the observed
difference between the initial and final state of the text editor. In this re-
spect, SMARTedit is a refinement of EBE that uses not only the initial and
final states but intermediate states as well. SMARTedit’s approach has the
drawback that it is sensitive to the order in which the user chooses to per-
form actions; on the other hand, it is making use of more information than
EBE is given, and so SMARTedit is able to learn programs for more complex
text transformations than EBE.

Masui and Nakayama (1994) describe the Dynamic Macro system for
recording macros in the Emacs text editor. Dynamic Macro performs auto-
matic segmentation of the user’s actions, breaking up the stream of ac-
tions into repetitive subsequences, without requiring the user to invoke the
macro recorder explicitly. Dynamic Macro performs no generalization, and
it relies on several heuristics for detecting repetitive patterns of actions.

Maulsby and Witten’s (1997) Cima system uses a classification rule
learner to describe the arguments to particular actions, such as a rule de-
scribing how to select phone numbers in the local area code. (SMARTedit is
able to learn a program to select all but one of the phone numbers given a
single demonstration. The anomalous phone number lacks a preceding
area code and is also difficult for Cima to classify correctly) Unlike other
PBD systems, Cima allows the user to give “hints” to the agent that focus its
attention on certain features, such as the particular area code preceding
phone numbers of interest. However, the knowledge gained from these
hints is combined with Cima’s domain knowledge using a set of hard-coded
preference heuristics. As a result, it is never clear exactly which hypotheses
Cima is considering or why it prefers one over another. In SMARTedit, these
types of hints could be used to bias the probabilities on its different
hypotheses.

Conclusion

We have described the SMARTedit PBD system that automates repetitive
text-editing tasks. SMARTedit represents text-editing actions as functions

S
R
L

V:\002564\002564.VP

Wednesday, December 20, 2000 11:31:25 AM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page:224

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Eleven: Learning Repetitive Text-Editing Procedures 225

from one text-editing state to another and uses version space algebra to
represent efficiently the set of functions that are consistent with the dem-
onstrated examples. The system learns useful text-editing procedures based
on a very small number of demonstrations.

SMARTedit’s version space algebra representation allows it simulta-
neously to maintain different beliefs about the user’s desired actions. It
keeps a record of all functions that could possibly explain the observed se-
ries of state changes and throws out only those functions that are inconsis-
tent with the observed data. This representation allows SMARTedit to fail
gracefully—if its best guess for the user’s next action is not correct, it can fall
back to the next best guess, and so on, rather than failing completely.

We believe that the holy grail of an intuitive, intelligent, and flexible PBD
system is within reach. The technologies behind SMARTedit are some of the
first steps toward this goal.

References

Deerwester, S., S. Dumais, G. Furnas, T. Landauer, and R. Harshman. 1990. Indexing
by latent semantic analysis. Journal of the American Society for Information Sci-
ence 41, no. 6: 391-407.

Lau, T., P Domingos, and D. S. Weld. 2000. Version space algebra and its application
to programming by demonstration. In Proceedings of the Seventeenth Interna-
tional Conference on Machine Learning.

Masui, T., and K. Nakayama. 1994. Repeat and predict—Two keys to efficient text ed-
iting. In Human factors in computing systems: CHI ‘94 Conference Proceedings.
Reading, Mass.: Addison-Wesley.

Maulsby, D. and I. H. Witten. 1997. Cima: An interactive concept learning system for
end-user applications. Applied Artificial Intelligence 11, nos. 7-8: 653-671.

Mitchell, T. 1982. Generalization as search. Artificial Intelligence 18: 203-226.

Nix, Robert P. 1985. Editing by example. ACM Transactions on Programming Lan-
guages and Systems 7, no. 4: 600-621.

Witten, 1. H., and D. Mo. 1993. TELS: Learning text editing tasks from examples. In
Watch What I Do: Programming by Demonstration, ed. A. Cypher. Cambridge,
Mass.: MIT Press.

V:\002564\002564.VP
Wednesday, December 20, 2000 11:31:25 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 225

Color profile: Generic CMYK printer profile
Composite Default screen

V:\002564\002564.VP
Wednesday, December 20, 2000 11:31:25 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:226

