Color profile: Generic
Composite Default scree:

CMYK printer profile
T

Seven

Bringing Programming
by Demonstration to
CAD Users

PATRICK GIRARD

Laboratoire d’Informatique Scientifique et Industrielle
Ecole Nationale Supérieure de Mécanique et d’Aérotechnique

‘t—' LU ‘m

V:\002564\002564.VP

Monday, December 18, 2000 2:00:44 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 135

Color profile: Generic CMYK printer profile

Composite Default screen

136 Your Wish is My Command

Abstract

This chapter presents a suite of systems we developed that constitute a so-
lution for bringing programming to end users in the field of computer-
aided design (CAD), by using programming by demonstration (PBD). This
suite includes the LIKE system, which laid the foundations of our method,
and the EBP system (Example Based Programming in Parametrics), which is
intended to enable CAD system users to generate every program that de-
scribes the geometric shapes of a collection of parts through the interactive
graphic design of one example of this collection. From a PBD point of view,
they prove that, at least in some application area where system users have
particular skills, complete PBD environments may be developed. From a
CAD systems point of view, this approach proves that parametric CAD sys-
tems, which are already very successful for sequential (or simple repetitive,
pattern-based) parametric design, may be extended to support the para-
metric design of every conditional or repetitive shape aspect. From a user
interface viewpoint, it also proves that very powerful macro-with-example
recorders may be developed.

Introduction

Over the last few years, lots of advances have been achieved to reduce the
programming skills and the abstraction level that are required for computer
use and programming. Visual programming (Glinert 1990) permits users
to select graphically both the functions and the variables that constitute
programs. Programming by demonstration, or PBD (Cypher 1993), allows
direct interaction with example values that represent the program vari-
ables instead of their abstract names, or iconic presentations. Many experi-
mental systems have proved both the usability and the interest of the latter
approach. Nevertheless, no PBD system, to our knowledge, has reached
the same expressive power as conventional programming in its application
area.

The goal of this chapter is to present a suite of systems we developed
that constitute a solution for bringing programming to end users in the field
of computer-aided design (CAD), by using PBD. This suite includes the LIKE
system, which laid the foundations of our method, and the EBP system (Ex-
ample Based Programming in Parametrics), which is intended to enable
CAD system users to generate every program that describes the geometric

S
__R
_ L

V:\002564\002564.VP

Monday, December 18, 2000 2:00:45 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 136

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Seven: Programming by Demonstration to CAD Users 137

shapes of a collection of parts through the interactive graphic design of one
example of this collection (“variant programming”; Roller 1990).

PBD and CAD

In her book A Small Matter of Programming: Perspectives on End-user Com-
puting, Nardi (1993) has identified CAD as a natural candidate for end-user
programming, because these systems “allow end users to create useful ap-
plications with no more than a few hours of instruction.” We will see in this
section how this can be extended to complete PBD features. First, we de-
scribe the application field of PBD in CAD, called parametrics program-
ming. Then, we detail two approaches, variational and parametric, and re-
late them to PBD terminology. Last, we give the requirements for PBD we
adopted.

CAD: A suitable Area for PBD

PBD opens the door to new generations of programming environments.
In the fields where some visual appearance may be assigned to variable val-
ues, direct manipulation of these values allows implicit programs design.
SmallStar (Halbert 1984) for iconic desktop programming, Peridot (Myers
1993), Garnet (Myers et al. 1990], Macros by Example (Olsen and Dance
1988) for UIMS programming, KidSim (Cypher and Smith 1995) for simula-
tion, WYSIWYC Spreadsheet (Wilde 1993), Geometer’s Sketchpad (Jackiw
and Finzer 1993), and ProDeGE+ (Sassin 1994) in drawing systems have
proven in different fields the validity of this approach. Despite this success,
most systems seem to be mainly at a prototype stage. In the CAD area, PBD,
under the name of “parametrics,” has really found some commercial
market.

Designing new products often entails assembling preexisting compo-
nents intended to be used in different products. These components, named
“standard parts,” are gathered into families described by a part family
model (see Fig. 7.1). According to Shah and Méantylad (1995), “a part family
model represents a collection of parts exhibiting some variation in dimen-
sions, tolerances, and overall shape that nevertheless are considered similar
from the viewpoint of a certain application.” The context of some part fam-
ily corresponds to some product standard (e.g., the family of ISO 1014 hex-

S

agonal screws), to some supplier’s environment family, or some family of__R
L

V:\002564\002564.VP
Monday, December 18, 2000 2:00:45 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 137

Color profile: Generic CMYK printer profile

Composite Default screen

138 Your Wish is My Command

7.1

VIS ATETE HEXAGONALE
NF E 22-300/ 70 Série 02

- lL Jeu de valeurs autorisees
[) D L Lf RS | sutave | Oymamiaud
Y mm | mm mm | mm Co C
10 30 9 1 212 380
- 12 32 10 1 305 540
)
- 15 15| 15 | 15 15 | 15
' 17 17 17 17 17 17

20 20 20 20 20 20

Rs = D
- - 25 25 25 25 25 25
30 30 30 30 30 30
35 35 35 35 35 35
G _/
Example of part family.

firm-specific components, which are described by end users for internal
use. Because of the rather huge number of members of these collections,
some unique part family shall describe the whole collection of correspond-
ing shapes.

In the first generation of CAD systems, part family models were de-
scribed as parametric programs. In these conventional CAD systems, such
programs were textually described, often in fortran or in the C language.
When triggered, they create geometric entities by means of application pro-
gramming interface (API). A lot of these systems have been developed on
end-user sites where draughtsmen were trained on CAD modeling. So, a
strong requirement exists in the CAD area for an end-user-oriented pro-
gramming paradigm.

The second reason that the PBD approach may be easily implemented
in the CAD area is the kind of dialogue language CAD systems support.

S
__R

_ L

V:\002564\002564.VP

Monday, December 18, 2000 2:00:49 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 138

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Seven: Programming by Demonstration to CAD Users 139

7.2
]

Create Circle Line 1

Radius Projection m(—/]

—

Extremity Line 2

Line 1

Line 2

Example of a structured task in CAD.

CAD models, or technical drawings, are very different from pictures or artis-
tic drawings: they must conform to strong rules depending on the applica-
tion area (mechanical design, architectural area, etc.). When designing such
drawings, draughtsmen perfectly know the relationships that must exist be-
tween the entities of their model, and they want to have the capability of ex-
pressing these constraints in their design process. Since the early beginning
of CAD, every CAD system provides commands that enable the expres-
sion of such constraints. Geometric constraints are so specified by means of
geometric operators (e.g., middle_of, starting _point, projection_of . . . onto
...). Numerical constraints are specified by display calculators that provide
both algebraic operators (e.g., +, -, *, /) and geometric functions. These
functions (e.g., distance_of, angle_between, radius_of) refer to model enti-
ties as parameters and return numerical values that, in turn, may be in-
volved in numerical expressions. Therefore, CAD system interfaces enable
users to specify explicitly every constraint that shall hold between objects,
and CAD users are accustomed to specifying such constraints. Just record-
ing these constraints builds the basis of sequential imperative program
recording.

Figure 7.2 shows a typical CAD task: assume we want to create a circle
whose center is geometrically constructed as a projection of a line extremity
on another line (the two lines are assumed to be already drawn). The goal/
subgoal hierarchy, as shown on the left part of the figure, is often broken in
CAD systems to allow users to make appropriate constructs. For example,

S
R

_ L

V:\002564\002564.VP
Monday, December 18, 2000 2:00:54 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 139

Color profile: Generic CMYK printer profile

Composite Default screen

140 Your Wish is My Command

this typical task may be achieved by the following sequence of CAD system
primitives (italicized words denote CAD primitives):

* Create a point at the end of line 1 (creating point 1).
e Create a vertical line through this point (creating line 3).
* Create a point at the intersection of this line and line 2 (creating point 2).

e Create a circle whose center is point 2 and radius is 10.

This explicit constraint-based definition of geometrical entities is very nat-
ural in CAD systems. Rather than direct manipulation, it involves com-
mand-operand dialogue style.

Variational and Parametric solutions

While every modern CAD system supports this kind of constraint-based
definition of entities, constraints recording appeared much more recently.
Beside the MEDUSA system (Newell, Parden, and Parden 1983), which pro-
vided for constraint-recording capabilities in 1983, the generalization of this
feature appeared in the late 1980s. At this time, a new generation of systems
appeared on the market; they were able to record these constraints, to
change the numerical values involved in these constraints, and to compute
the new model resulting from these values. These systems, often called di-
mension-driven systems (Roller 1990), have a twofold data structure and a
twofold behavior. On the one hand, users may build (or change or com-
pute) the displayed model. On the other hand, users may ask for visualiza-
tion of the constraints and the numeric values that are involved in the ex-
ample design. This information, which stands for the program in the PBD
terminology, is displayed in some conventional symbolic way—for instance,
through dimensioning. Then, users select the values they want to change
and enter new values, and the system automatically computes the new
model that corresponds to the same constructive process, or to the new so-
lution of the same set of constraints.

In fact, dimension-driven systems proceed from two different ap-
proaches: declarative and imperative (Pierra, Potier, and Girard 1994).
Variational systems hide the declarative program. Users build the example
and specify the constraints, either explicitly or implicitly. These constraints
are recorded as a set of equations, and some solver derives the solution.
Variational geometry lies in geometric problem solving. The solution may

S
__R
_ L

V:\002564\002564.VP

Monday, December 18, 2000 2:00:54 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 140

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Seven: Programming by Demonstration to CAD Users 141

be unknown from the user. Once constraints are stated, with some approxi-
mate geometric description, the solver tries to compute a solution. This ap-
proach corresponds to the popular sketchers that are available on most re-
cent CAD systems: users draw some freehand sketch of a 2D model, and the
solver computes the exact model after constraints are stated. The user in-
terface is very friendly. Lots of methods have been used to solve these con-
straints. Most efficient methods are based on graph reduction (Bouma et al.
1995 ; Owen 1991).

Despite an actual progress, this approach suffers from three intrinsic
weaknesses. First, the set of equations has generally many solutions (expo-
nential number), and only system specific heuristics have been defined so
far to guess the “user intent.” Very simple examples have been published
(Bouma et al. 1995) in which the computed solutions were obviously not in-
tended to be the right ones. Second, because of the heuristic-driven nature
of solving processes, different systems should provide different solution for
the same model. Finally, Pure variational systems are unable to capture the
purely procedural constructs, such as Boolean regularized operations or
sweeping. Therefore, every so-called “variational system” is in fact a hybrid
system that is variational in 2D and mainly procedural in 3D.

Procedural systems, often called parametrics, address a very different
problem: “given a class of shapes whose design process is well known and
may be supported by the interface of some CAD systems, we want every in-
stance, characterized by its parameter values, to be generated automatically
in a deterministic way.” Parametric systems hide an imperative program.
This program is often captured using the example design process: the CAD
system “spies” on draughtsmen while they are designing their example. As
long as the example model grows, the constructive logic of draughtsmen is
captured. Afterward, the CAD system is able to replay the constructive logic,
possibly with new input values. The internal representation of programs
may be textual, but it is more generally based on data structures (Pierra et
al.; 1994; Solano & Brunet 1994) such as directed acyclic graphs (Cugini,
Folini, and Vicini 1988). The Pro-Engineer system (Parametric Technology
Inc.) is the most popular example of this approach.

In the CAD area, the dimension-driven approach is so attractive that
presently every competitive CAD system must provide such capabilities.
This large diffusion proves the practical interest of the approach. It also
proves that draughtsmen, end users, are able to generate parametrized
shapes (i.e., real visual programs) without programming knowledge—that is
not to say without any modification of their working process. Effectively,
drawing shapes is slightly different from drawing families of shapes. Never-

S

theless, this activity does not stand at the abstract level of conventional __R
L

V:\002564\002564.VP

Monday, December 18, 2000 2:00:54 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 141

Color profile: Generic CMYK printer profile

Composite Default screen

142 Your Wish is My Command

programming activity. Dimension-driven systems, or parametrics for short,
largely facilitate the design of part family models. For collection or single
shapes, just designing one shape provides for generating every family’s
shape.

Requirements for PBD in CAD

Most choices that have been made for our systems are governed by the do-
main area (CAD), especially users’ habits and needs (particularly their ex-
plicit way for describing relations between objects), and by the goals of the
PLUS (Parts Library Usage and Supply) project, in which our work took
place.

The portability of parts libraries between different CAD systems is a ma-
jor economic concern for CAD system users, component manufacturers,
and CAD systems vendors. This portability would drastically increase the
number of available part families on the different CAD systems and there-
fore would increase the quality and the productivity of the design pro-
cess for assembly modeling. To allow such a portability, a whole set of con-
cerns, known as the CAD-LIB approach, has been developed (Pierra and Ait
Ameur 1994). They constitute the agreed basis of European and Interna-
tional standardization works (CEN/TC310-pr ENV 40004 and ISO/TC184/
SC4-ISO 13584 P-LIB).

Besides an object-oriented data model for the exchange of parts library
data, the PLUS project had to develop an approach for the exchange of
part family geometric models. When the project started (in 1993), the para-
metric technology did not appear mature enough to be able to commit to
the development of a standard exchange format for parametric data mod-
els. Therefore, the selected approach has been rather conservative. It con-
sisted in developing a standard API (now available as ISO DIS 13584-31) as-
sociated with a Fortran binding. Every CAD system that supports some
implementation of this standard API would be able to execute Fortran pro-
grams referring to this API. However, this approach was in fact less conser-
vative than it might appear at first glance: the project also included the de-
velopment of a PBD system that was intended to be able to generate these
variant programs through pure graphical interactions.

This context defines the requirements that governed the EBP system de-
sign. First, the generation process should be deterministic and fully con-
trolled by the designer: one and only one shape should be generated for ev-
ery allowed value of the input parameters, and precisely the shape that
corresponds to the part. Second, every kind of shape family that might be

S
__R
_ L

V:\002564\002564.VP

Monday, December 18, 2000 2:00:55 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 142

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Seven: Programming by Demonstration to CAD Users 143

described using some conventional way of programming should be able to
design using this system. Finally, the system should be able to generate an
external representation of its internal data structure in the format of a For-
tran program conforming to the standard API.

Note that if the first requirement to follow a procedural approach with-
out any implicit inference or heuristic mechanism is met, neither of the two
last requirements were fulfilled by either the existing parametric systems
or the existing prototype of PBD systems. While several systems support
predefined repetitive pattern structures, none of them, as far as we know,
supports general-purpose program/subprogram structure with graphical
parameter passing mechanisms and recurrence-based iterations where
each loop is defined through explicit recurrence relationships within the
previous branch.

Toward a Complete Solution

In this section, we describe the solutions we adopted to build actual PBD
systems in the CAD area. First, we briefly describe the system with a stan-
dard CAD point of view. Then, we focus onto the naming problem. Last, we
expose how we reach a complete expressiveness into constructed programs.
In this part, we focus on PBD control structure definition.

Classical 2D CAD systems

As mentioned in the introduction, we developed two CAD PBD systems,
named LIKE and EBP. LIKE was built in late 1980s, to study the possibilities
of including PBD in CAD. Written over the GKS system, it has been replaced
in 1992 by EBP, which is more complete. In the following, we only describe
EBDP because its present features include the results of the LIKE study.

The EBP system (Potier 1995) is a 2D CAD system. It manipulates simple
geometric entities (points, unbounded lines, trimmed lines, circles, curves,
etc.) and structured entities (composite curves, planar surfaces, and struc-
tured sets). Most constraints that result from technical drawing rules are
supported. EBP provides a powerful display calculator that enables graphi-
cal inputs of both numerical and graphical expressions. Last, EBP allows
model definitions through the use of menus and graphical interactions. The
first version of EBP used the X-MOTIF interface and ran on Sun-Solaris (Sun
Inc.) and DEC-Alpha (Digital) platforms. A new industrial version has been

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 2:00:55 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 143

Color profile: Generic CMYK printer profile
Composite Default screen

144 Your Wish is My Command

Files Edit Msit Modify Partsilib ﬂelp[

_—
Sictaing M omimoz [eenperte Lo i
Dimension Prit £ xy | Prt fc ‘ Seg/2c ‘ -

ooo -100.000 -40.000 ~60.000 ~40.000 -20.000 0.000 20.000 40.000 60.000 80.000
Changing = . ~ E !
Lin Ori. I Lin Ver. ‘ Arc i 3c J
Drawing
Linf2c Lin Orth. Chanfr.
Cirfcr | Cir / 2c ‘ fillet ‘
Profile

—

Views mode
Edit mode

html mode

=

Queries numeric caloulator ’
Select

TR 3.75
oo« | ST TN I |
Numbers

Scale il £ - g - : - schh

e 8| 7 | e |t | |

B e [o L |

L Exp . E cice

Enter your number value :

o

Valide Inhibe Clear |

.II

Command ;| creste a line by constraints.. Operandes : r: XY : Choix : Prt Geo : Lin Sup : Prt: Lin : Cir ;| Informations : ;=624 y=-106.8

Snapshot of the EBP system.

developed under Tcl-Tk, and a complete distribution that runs on PC Win-
dows platforms is available at the URL http://www.lisi.ensma.fr.

Figure 7. 3 shows a snapshot from the “classic” CAD system EBP. On the
right, we can see the drawing area, which displays the CAD model. The left
part of the window is divided in three command areas. On the top, 2D clas-
sic commands are available, while in the middle, viewing commands are
given. The third area is devoted to low-level entries, such as string or nu-
merical entries. On this snapshot we can see a classical feature on a CAD
system: the display calculator, which allows expressions including graphical S
functions (e.g., distance between two entities). EBP owns another calculator,

__R
the logical calculator. This feature, which shares some commonalties with a L

V:\002564\002564.VP
Monday, December 18, 2000 2:00:56 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] e Page: 144

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Seven: Programming by Demonstration to CAD Users 145

mechanism presented in Smith’s (1977) Pygmalion system (bottom, left),
enables CAD users, trained in using the numerical display calculator, to
specify graphically the control predicate of their alternative or repetitive
shape aspects. For instance, a fillet may be defined as dependent onto the
constraint

val (line_1) > 2 x distance (point_1, point_2),

where val(line_1) means the length of line_1, and where line_I, point_I and
point_2 are objects that can be graphically selected on the example.

Naming and Its specificity in CAD

The major difference between simple scripts that record user interactions
and real programs concerns the identification of the status of the values in-
volved in interactions. For example, the integer value 3, which is an input in
interactive mode, may have, in programs, three different statuses: (1) a con-
stant, (2) a parameter (i.e., a value that must be provided again every time
the program is triggered), or (3) an “internal” variable (i.e., a variable whose
value results from a previous program statement). Many works in PBD ad-
dressed this problem, and the first of them, SmallStar (Halbert 1984, 1993),
proposed an a posteriori explicit differentiation. The specificity of CAD al-
lows us to choose a different solution, but it also highlights the problem of
dynamic references to variables. We illustrate our arguments with the LIKE
system, in which we first implemented our solutions. EBP has a similar ob-
ject management.

The Problem of Naming

It is clear that, when it receives the integer value 3, the system cannot de-
cide what should be the status of this value for the implicit program being
constructed. The real challenge for PBD systems is to define conventional
dialogue protocols that appear natural enough to users to enable a nearly
implicit specification of the status of every object.

The great particularity of CAD systems that belongs to a general class of
interactive applications we can classify as “editors” is that their main goal
is to create new objects from user inputs. The example of standard parts
is more precise: the goal of programs to be constructed is to draw (in

fact, create into the CAD model) graphical entities from mainly numerical

parameters. This fact implies, in terms of programming, that a program re-
corded during the use of such a system would essentially create new objects

__R
L

V:\002564\002564.VP

Monday, December 18, 2000 2:00:56 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 145

Color profile: Generic CMYK printer profile

Composite Default screen

146 Your Wish is My Command

at any step. Its context (the set of objects it manipulates) would increase at
any instruction. To respect this particularity, the LIKE system applies differ-
ent rules for managing the three classes of objects.

Despite their nature (string, real numbers, or graphical entities), param-
eters of a program must be explicitly defined by the user, who is supposed
to give a name, a question prompt, and a specific example value to each pa-
rameter. This constitutes a “parameter context.” Furthermore, parameters
may be selected for using menus. The way parameters can be defined is not
very important: some informal experiences on users that we managed show
us that our class of users (CAD expert users) was not afraid to have to ex-
plicitly define the parameters they used. Giving two examples differing by
values of parameters (as in Tinker; Lieberman 1993), to let the system “in-
fer” that these values were varying, was not considered to be efficient. They
preferred doing it themselves.

Because we chose this explicit solution for parameters, its appeared nat-
ural to the one hand to consider “simple” objects, as numbers or strings, to
be implicitly constants when the user enters them and, on the other hand,
to consider graphical entities, which may be visually selected on the display,
to be implicitly internal variables.

During the recording phase, the LIKE system performs two tasks. First, it
manages the dynamic context: objects are automatically introduced in the
context as soon as they are created by the CAD system. Therefore, the CAD
system notifies the PBD manager for each created object. It also provides
the database reference of this object. Second, it ensures value/reference
substitution. As soon as the user selects them, the PBD manager must iden-
tify the objects by comparing them to the values contained in its context.
The corresponding variable references are stored in the program. This fil-
tering process also permits the PBD manager to forbid any access to objects
that are not considered as visible (i.e., that are neither in the dynamic con-
text nor in the parameter context). Obviously, this automatic naming mech-
anism is based on numbering (later we will see the consequences of this
point).

During the running phase, symmetrical actions are done: dynamic con-
text management is performed in the same way, allowing the inverse refer-
ence/value substitution needed by the running process in the CAD system.
Each time an object is created, its reference is stored in the right variable.
Then its value is sent to the CAD system, for each program reference, to the
corresponding variable.

In recording mode, each input (command or value) from the user goes
through the PBD manager (arrows 1 and 2 in Fig. 7.4). The values that corre-
spond to references on model entities are captured after the identification
layer (selecting layer) of the user interface, where locator positions are

S

R

L

V:\002564\002564.VP

Monday, December 18, 2000 2:00:57 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 146

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Seven: Programming by Demonstration to CAD Users 147

7.4

Key
<«—— recording mode
-<----- running mode PROCEDURES
USER
Visual display
<«
MODEL

Interaction
Selecting layer

\ :
1 W\ 2 l 13
\\\ *

PHD 4 CONTEXT)
“Program” |-
MANAGER No. | Type Value
-
1 Point SRef
- 2 Line SRef
3 Point SRef
4 Line SRef
\S %

Architecture of the LIKE system.

replaced by entity identifications. Commands are recorded in the program,
together with operators of the display calculator that are considered com-
mands. Each entity identifier is replaced by the corresponding variable, by
means of looking to the dynamic context. The dynamic context manager is
notified for every entity creation (arrow 3), and new internal variables are
created and assigned to entity identifiers.

The context is dynamically extended during the whole process of the ex-
ample design. It enables, during the program construction, the substitution
of values (system identifiers) by names (numbers) in the recorded program.
It permits, while the program is running, the substitution of names (num-
ber) by values (system identifier) that are to be sent to the system. The con-
sistency of these rules is obviously based on the assumption that every run-
ning of the program will generate the same types of objects in the same
order as in the example. In particular, when debugging programs, each
change that results in a different number of object creations shifts the “

S

__R
_ L

V:\002564\002564.VP

Monday, December 18, 2000 2:01:01 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 147

Color profile: Generic CMYK printer profile

Composite Default screen

148 Your Wish is My Command

naming” of further objects. Consequently, each reference on these shifted
variables has to be modified. Moreover, the debugging suppression of ac-
tions that generate objects requires the checking and the possible invalida-
tion of further actions that use these particular objects. All this manage-
ment must be performed by the PBD manager.

Another consequence is more important. The validity of example-based
programming is based on one prerequisite: it is assumed that running will
repeat the example. Values may change, but actions and control flow have
to be the same. This condition, quite natural for purely sequential pro-
grams, no longer has meaning in the structured programming context.
When conditionals are used, the two branches cannot be assumed to create
the same number of objects. For loop structures, the number of iterations
varies from any execution. Hence, creation number of variables may vary.
We will see in the following section how this problem may be solved.

Ambiguity Removal and System Determinism

Another specificity of CAD systems has consequences on deducing and
translating what the user means. It relates to the ambiguity of geometric
constructs. This ambiguity is not specific to variational systems; it is, in fact,
intrinsic to geometry, in which every constraint that involves a circle or a
distance corresponds, in general, to two different solutions.

For example, building a line that starts on a given point and ends tan-
gential to a circle leads to two possible solutions, as pointed out in Figure
7.5(a). This problem is perfectly solved in interactive geometric design.
Most CAD systems use the mouse-click position of each input object to dis-
criminate the possible constructs. They assume that the designer approxi-
mately knows the expected solution. For example, in the case of Figure
7.5(b), the pointing click position results in the choice of the upper line
solution.

If this user-friendly dialogue convention shall be maintained at the user
interface level; that is, to design the example/program, it cannot be stored
in the parametric program where, for different values of the parameters,
the position might correspond to a different solution. This problem of con-
straint-based geometric constructs is also well known in variant program-
ming (Roller 1990), in which programming languages were used for defin-
ing part family models.

In such parametrics programs, context-free ambiguity removers are
defined. In the target API, ambiguity removal is defined by topological
informations: geometry entity orientation and in/out for circles. For
example, Figure 7.5(c) shows the unique solution of the function
Line_by_Point_and_Circle from Figure 7.5(b), which is defined by coherent

S
R

_ L

V:\002564\002564.VP

Monday, December 18, 2000 2:01:01 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 148

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Seven: Programming by Demonstration to CAD Users 149

7.5

Ve
(a) (b) ()

An example of the ambiguity of geometric constructs: (a) the two possible solutions, (b) interactive solv-
ing with a click, and (c) a good solution for programs.

entities orientation. EBP ensures the translation from the context-sensitive
information captured at the user interface level (the position of the mouse
click) into a context-free information recorded in the program.

In EBP every entity is oriented according to the way it was con-
structed. Lines are oriented from their origin (first point) to their extremity
(last point), circles are oriented according to the given points (when defined
by three points) or counterclockwise (when created by center and radius),
and so on. During program recording, the system translates the proximity
disambiguity mechanism into the orientation mechanism as follows:

e With the proximity mechanism, the system calculates the right
construction.

e Then, the system checks for the circle orientation.

e If this orientation is consistent with the solution (as in Fig. 7.5[c]), the
system records the drawing without modification.

e Ifnot, the system records the following sequence: change circle orienta-
tion, draw the line, and change the circle orientation again.

This mechanism, which remains unknown from wusers, is perfectly

determinist.
Expressiveness

S
In Cypher, Kosbie, and Maulsby (1993), characterizing PBD systems is done _R
by quoting whether they support either kind of structure as loop, L

V:\002564\002564.VP
Monday, December 18, 2000 2:01:05 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 149

Color profile: Generic CMYK printer profile

Composite Default screen

150 Your Wish is My Command

alternative, and so on. We considered the problem from the opposite point
of view: what mechanisms give a full expressiveness of programs?

Following the structured programming paradigm, we decided to in-
clude in our systems every classic control structure: sequence (implicitly),
alternative, iteration (general loop structure), and subroutines allowing re-
cursion. Two kinds of feature must be quoted: internal support of these
structures by the program mechanisms (essentially by the context manager)
and interactive definition of the structures by users.

Full Control Structure Support

Thanks to our implicit context management (Girard and Pierra 1990, 1995),
our systems may include a full-control structure support. More precisely,
conditionals, iterations and subroutines are fully supported.

Applying the encapsulation principle to the context of subroutines is
straightforward: each subroutine has its own dynamic context (internal
variables) and parameter context. Subroutines are stored together with the
example values for their parameters. This allows running them during pro-
gram construction, as soon as the user selects parameters, for example,
through a menu.

In our present implementation, subroutines have unique output param-
eters that consist in the set of every graphical entity created by each subrou-
tine. These sets are inserted as unique variables within the dynamic context
of the calling program. The content of this variable is a pointer toward the
dynamic context of the embedded program. When the embedding program
is run, the expressions that define the current parameters are again evalu-
ated, and the PBD manager performs parameter matching before triggering
the embedded program.

The language is considered as block structured, so each block may ac-
cess its embedding context. Each control structure is considered as a block
and is associated with its own context. Yet, this context is considered as a
whole, and is inserted as a unique (pointer) variable in the embedding con-
text. Nevertheless, this context is structured. Each branch corresponds to
one context, which is defined during the example phase. In running mode,
this context is created again before performing the control structure. The
context of an If Then Else End_If structure consists of two branch contexts.
Both exist in example definition, but only one is used when the program is
run (according to the value of the control predicate).

In a loop structure, the loop context consists of a list of contexts, each

one associated with one turn. Specific associations between objects of each

context allow the definition of recurrence relationships and, in so doing,
general loops (see the next section).

S
__R

_ L

V:\002564\002564.VP

Monday, December 18, 2000 2:01:06 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 150

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Seven: Programming by Demonstration to CAD Users 151

This block structure of the dynamic context allows the use of a stack
mechanism during example phase or running phase. While executing in ei-
ther mode, the visible context is the stack of the dynamic contexts in use at
the present time. So, implicit references may be searched through the whole
stack. In terms of user dialogue, this means that the user is able to refer to
the objects of the current branch but also to those of all the including
branches.

PBD Control Structure Definition

Purely interactive definition of control structure by PBD is a rather differ-
ent problem than supporting any structure in PBD systems. As for other
choices, we always have privileged deterministic solutions and explicit
mechanisms triggered by users. Among our systems, EBP is the most com-
plete for control structure definition.

Conditionals and iterations require Boolean expression definition,
which is made explicitly through both numerical and logical calculators.
The two alternate branches of conditionals may be defined either in a con-
sistent way (running again the instance with alternate parameter values) or
in some inconsistent way (drawing the two solutions with the same param-
eter values).

Several iteration features are provided: set iterations over rubber-band
rectangle selections and multiple geometric transformations are straight-
forward in CAD systems and supported by EBP. As for ambiguity removal,
context-dependent information (the two corners of the rubber-band rect-
angle) are translated into context-free information (the set of entity names
that were referenced by this shortcut). But much more general features,
such as Repeat n times, While loops and Repeat . . . until loops are also pro-
vided. They allow recurrence-based definitions, in a purely interactive way.

Let us illustrate an interactive REPEAT UNTIL definition. Assume we
want to design the drawing shown in Figure 7.6. It is made of circles de-
creasing by a rate of one-half radius at each loop, to reach a given mini-
mum. In classical CAD systems, the constructing process for this drawing is
very tedious: while every CAD system owns geometrical transformation that
may, for example, duplicate the left part of this figure from the right part,
none of them owns the specific geometric transformation that allows build-
ing this suite of circles. Each step must be done independently from the
previous one, with the repetition of actions such as “creating a circle tan-
gential to a line and a circle, with a radius being half of the one of another
circle.”

Nevertheless, the definition of a general algorithm to build this drawing
is possible. The program to be constructed might be defined as an iteration

S

__R
_ L

V:\002564\002564.VP
Monday, December 18,

2000 2:01:06 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 151

Color profile: Generic CMYK printer profile

Composite Default screen

152 Your Wish is My Command

7.6

A (rather complex) drawing.

(to obtain one column of circles) and a symmetry (to obtain the other one).
We only need to know the value for the biggest radius and the value for the
minimum radius (to stop the construct). Any loop but the first might be de-
fined as follows: build a first circle, tangential to the corresponding circle in
the previous loop, tangential to the central vertical axis, and with a radius
half that of corresponding circle in the previous loop; then create a second
circle whose center is the same as the first circle, and whose radius is half the
previous circle. As shown in Figure 7.6, the first loop has a slightly different
specification because the constraints that define the first circle refer to enti-
ties of the embedded context (the horizontal line). But, in fact, the only dif-
ference is in the nature of the manipulated objects.

If we analyze this problem, three points are to be highlighted: (1) in one
loop, objects are defined from objects created during the previous loop and
during the current loop; (2) actions performed during the first loop are the
same as actions performed during the next ones—the only difference con-
cerns the reference to the objects belonging to the previous loop, which
must be found in the embedding context (in the example, the first circle is
tangential to both existing lines); and (3) recurrence relationships may be
fully defined during the second execution of the first loop actions, just by
asking the user for the actual object that shall be used for every refer-
enced object in the first loop. it may be the same object (the vertical line in
our example) or any object that has been created during the first loop (in
our example, the horizontal line must be replaced by the first circle of the
first loop).

S

__R
_ L

V:\002564\002564.VP

Monday, December 18, 2000 2:01:10 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 152

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Seven: Programming by Demonstration to CAD Users 153

These three remarks are the basis of the user interface and the dialogue
conventions of the EBP system. The definition process is the following. Two
commands are provided: REPEAT and UNTIL. The first one initiates the
loop description and allows the user to record the actions of each loop. The
second one stops the loop definition and starts the condition definition. Be-
cause of the PBD process, another step is necessary, which consists of de-
fining the recurrence relationships between one loop and the following. Af-
ter some experience with users, it seemed more usable to do this recurrence
definition prior to the condition definition.

Figure 7.7 illustrates the different steps of this definition. Before the
loop, the user has to define the two required parameters (Radius and Mini-
mum, which are displayed as menus options by the system, rectangles in
the figure) to create the two lines and then select the REPEAT command
(Fig. 7.7[al).

At this point, the first loop can be demonstrated, with full access to
the embedding context. So the user selects the create circle command (the
rounded rectangle “cercle”), points out the two lines, and clicks on the
menu item that denotes the radius. The first circle is created (Fig. 7.7[b]).
Then, he or she constructs the second circle: the same command is needed,
and the user must point out the first circle (in so doing, they are assumed
to have the same center). To give the right radius, the user must define a
formula with the calculator. So, he or she activates the calculator com-
mand (“calcul”), gives the radius of the circle by clicking on the radius
command (rayon) and pointing out the circle, and clicks on the different
buttons “/”, “2,” and “=.” The system can build the second circle (Fig.
7.7[cl).

The first loop is now complete. To follow the definition of the iteration,
the user selects the UNTIL command. The system automatically switches to
running mode, to perform the second loop and to help the user define the
recurrence relationships. Every command performed during the first loop is
run, and the system echoes the embedding context objects. To define the
relationships, it asks the user for either picking the same (which defines a
constant reference during the whole iteration) or picking another object
that has been created during the previous loop (which defines a recurrence
relationship, reevaluated for any loop). Every other entity selection is re-
fused by the system. The same mechanism is provided for any expression,
allowing the definition of new expressions (in our example, the expression
for the radius of the first circle). Figure 7.7(d) illustrates this interactive
phase.

Once each object reference has been confirmed or changed by some ref-
erence to entities from the first or the current loop, the system asks the user
for the definition of the control expression. This solution implicitly defines

S
R
L

V:\002564\002564.VP

Monday, December 18, 2000 2:01:10 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 153

Color profile: Generic CMYK printer profile
Composite Default screen

154 Your Wish is My Command

7.7

RAYON
MIN

CERCLE

R?AY;\‘)N CALCUL RAYON CALCUL

MIN
RAYON

CERCLE CERCLE

RAYON

~|=]»|~
o|n|un|e
Ifw|lo|o

g

RAYON
MIN

Interactive definition of a loop.

a recurrence-based relation that is consistent for the whole iteration. Using
the display calculators (Fig. 7.7[e]), the user can access every object from
the iteration and the embedding context. In our case, he or she must acti-
vate the logical calculator (“calcul” command), and demonstrate the ex-
pression: the radius (“rayon” command) of the last circle (the user points
the circle) is lower (“<“ command) than the minimum (click on the menu
item that denotes the minimum, “Min”). Clicking on the “=* box fires the
calculus and implicitly asks EBP to handle the execution of the loop (the it-
eration definition is complete).

V:\002564\002564.VP
Monday, December 18, 2000 2:01:15 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 154

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Seven: Programming by Demonstration to CAD Users 155

After that, the system runs the remaining loops until the controlling ex-
pression fires. Each recurrence relation is evaluated from any loop. The re-
sult is given in Figure 7.7(f). Finally, the user must define a symmetry of ev-
ery created circle (a native operation in CAD systems), which involves the
whole context of the iteration (any circle).

True Explicit PBD Solutions

EBP provides for true explicit PBD solutions. In this section, we detail the
features of PBD. In the first subsection, we explain the specific commands
that have been added to the CAD system to make PBD, focusing on record-
ing and running programs. In the second subsection, we detail the features
that make EBP an actual programming environment.

Fully Integrated PBD Systems

Compared to CAD systems, the EBP system is able to describe every collec-
tion of shapes that might be described by conventional programs, even if
they contain repetitive or alternative shape aspects. Compared with the ex-
isting PBD systems, (1) users may specify on the example every kind of con-
ditional or recurrence-based loop structure without any textual manipula-
tion, (2) the system does not use any inference mechanism but explicit
dialogue conventions that are fully integrated within the usual dialogue of
the CAD system, and (3) the system generates neutral forms of programs
that may be run, later on, on every other CAD system that supports a stan-
dard application program interface (API).

Visual Programming by Demonstration is achieved by “command re-
cording” mode. This means that, unlike some parametrics systems in which
“programs” are directly related to example values (e.g., the function
line_2_points directly refers to the example point), in EBP, programs (which
are called instances) are separated from examples. Relationships between
example values and program variables are given through the dynamic con-
text of the program. This mechanism, usual in programming languages,
ensures an indirect reference from the program variables to their current
values (in the example). It provides more independence between the PBD
manager that deals with variables and the CAD system in which example
values are CAD database pointers. When the program is rerun (e.g.,

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 2:01:15 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 155

Color profile: Generic CMYK printer profile
Composite Default screen

156 Your Wish is My Command

during modification), the EBP variables are not changed, but their ad-
dresses, stored in the dynamic context, are updated.

After recording mode activation (Record Instance), the EBP system
“spies” on the user and builds an instance. Switching to running mode al-
lows the system to run this instance (Apply Instance).

The only additional commands from traditional CAD systems are de-
signed to RECORD / NAME / LOAD / APPLY instances and to DEFINE / READ
/ WRITE / ENTER parameters. Adding control structures requires other spe-
cific commands (IF / THEN / ELSE, REPEAT / UNTIL), as stated in the pre-
vious section.

A typical session of EBP would be as follows: after piece analysis (What
are the parameters? Where are the dependencies?), the user begins PBD re-
cording. He or she defines the parameters and then draws an example, us-
ing the parameters instead of “direct values.” The DEFINE command opens
a window, where a name is given (it is displayed every time the program is
run). The ENTER command enables entering the values of the parameters
for the example. These values are entered through the CAD system inter-
face, and their types define the parameter’s types. The WRITE/READ com-
mand enables recording/getting values on/from a file that will be linked to
the program instance. This is used for recording the allowed sets of parame-
ter values for part families. As soon as parameters are defined, they are dis-
played in a menu where the user can pick them up, for example, when de-
fining expressions using the display calculators.

When the example is complete, the user can save the resulting instance,
change some parameters, and try a new run. Recording in files values for
parameters is very easy; this allows rapid testing. Recorded instances are in-
cluded in a pop-up menu and are usable with minimal effort.

The LOAD command selects an instance, and the APPLY command runs
it. Note that these commands may be selected both outside and inside the
recording mode. In the first case, a model will be created into the CAD sys-
tem database. EBP appears as a macro-by-example facility. In the second
case, the APPLY command is recorded as a call routine in the embedding in-
stance, and EBP ensures parameter passing. In both cases, after the Apply
command has been selected, EBP displays each parameter name and waits
for a value. This value is defined using the whole CAD system user interface.
This means that, when applying the instance in recording mode, parameter
value definition consists of every expression that involves entities or param-
eter values of the embedding instance. These expressions are stored in the
embedding instance, and the expression value stands for the actual param-
eter value in the embedded instance.

V:\002564\002564.VP
Monday, December 18, 2000 2:01:15 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 156

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Seven: Programming by Demonstration to CAD Users 157

An Actual Programming Environment, but for users...

EBP is a complete programming environment that provides for every usual
debugging facility, in a programming-by-example style. Every interaction
with programs is done through example interaction. Generated programs
are shown in some specific window that is only displayed upon user re-
quest. A special menu, the Visit menu, allows rerunning the instance.

Intelligent UNDO/REDO and Program Modification

During both program recording and debugging, every modification may be
done into the program. Successive UNDOs enable returning to previous
steps. Then, some additional constructs may be done, and some steps may
be modified or deleted. EBP manages the program dynamic context to en-
sure that addition/deletion does not change references to variables. When
REDOing some command that references some deleted entity, EBP asks the
user for a new entity to replace the previous one.

Note that UNDOing is quite surprising at first use: the system does not
record every user interaction, such as pulling down a menu to choose a user
command or pointing at a graphical object. Instead, it records CAD actions
as a whole, such as “creating a circle” So, UNDOing and REDOing are
done in terms of CAD actions.

UNDOing and REDOing control structures are even more difficult. Be-
cause of control expressions, the definition of these structures is rather dif-
ferent from their simple execution. So, Undoing such a structure “undoes”
the structure as one step, and REDOing “redoes” it as a whole, too. Stepping
into a control structure is a debugging facility, as stated in the next section.

Debugging on Example

To have a complete programming environment, debugging facilities must
be provided to the user. As in every debugging environment, the EBP man-
ager enables programs to be run step by step or until their end or to be
reinitialized. But specific needs result from PBD.

The first one relates to dynamic context management. At any point of a
rerun, inserting or deleting actions is possible. In the first case, it may result
in adding new variables in the context of the program. This is perfectly as-
sumed by the context manager, which adjusts every implicit variable refer-
ence. In the second case, consequences may be more dangerous: while de-
bugging a whole program, deleting actions often result in not creating

S
R

L

V:\002564\002564.VP
Monday, December 18,

2000 2:01:16 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 157

Color profile: Generic CMYK printer profile

Composite Default screen

158 Your Wish is My Command

objects that may be used later in the program. After analyzing the user tasks
and habits, we decided to provide two mechanisms to help good debug-
ging: the user can replace or delete an action. When the user replaces an
action, he or she is assumed to give a new action whose resulting object
has the same semantics as the first one. This is the case when a wrong pa-
rameter was first used. For example, in our example of Figure 7.7., the sec-
ond circle has a radius that is either half the radius parameter or half the
first circle’s radius (the same value, in fact). But, in the logic of the needed
algorithm, only the second interpretation is right; the first would result in a
surprising construct.

When the user deletes an action (assuming this action really builds an
object), the system looks in the program and searches for every object
whose construction depends on the result of the deleted action. Then, it
can help the user modify by deleting invalidated actions or replacing the
nonexisting object by new one. In the same way, control structures can be
inspected and modified, as can actions for control or recurrence relation-
ship definition.

Another specific feature of EBP must be explained. It may be called “de-
bugging on example.” Because the textual representation of programs is
never supposed to be displayed, debugging “virtual” programs might ap-
pear difficult. Fortunately, the example always give an input/output inter-
face with the program: It is possible to visit the program until one entity is
drawn. The user graphically selects this entity, and the program is run until
it is drawn. The user may then make every modification on the example/
program, before rerunning the remainder of the program. This point is very
important, because it states that concrete representation of programs is not
needed to achieve a complete programming environment.

Program Generation and New Features

EBP was designed to produce standard parts-portable program libraries
(ISO13584-compliant Fortran programs reference the ISO 13584-31 API).
Figure 7.8 illustrates this code generation.

Within the PLUS project, EBP is already used to generate the library of a
bearing and linear system supplier. Some other exchange formats have
been generated, including AutoLISP, Java classes, and a STEP-compliant
parametric exchange format that was recently proposed (Pierra et al. 1996).
Future work includes the development of an industrial product for an ISO
13584-compliant file generator and 3D extensions.

Another point under study in our laboratory is to split from structured
PBD to object-oriented PBD. Nontrivial problems, such as new PBD classes’

S
R
L

V:\002564\002564.VP

Monday, December 18, 2000 2:01:16 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 158

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Seven: Programming by Demonstration to CAD Users 159

7.8

session manager on the EBP system

L
Fles Edit Misit Modify Partsilib

_—
B ESTTAETI AT,

Dimension Pt /3y Prtic R0 T TN R iRl i R Th e TR IEEET At it TRt et T e

[ARRR SR TREARERE AR R RENE (RRRE SRRRE FRERE CRRRE ARTRA R RRE VERRE (RERE (RRRE MR TR AR
Lin Ver.

Changing
Drawing

Lin Ori.

=3

llrftersechon of 2 lines
prtnm2 = PNT_INTERSECTION_2_ENT(lin3C1, lin1C1, TOB)
!

£

I circle by its centre and its radius
cirSC1 = CIRCLE_RAD_AZP ((diameter / 2.00000000), &
lib_aZp_prt{ prtnm2) false, TOE)
CALL ADD_ENT_GRP(grpfix, cir5C1)
!
! circle by its radius and ancther circle
CALL ARC_RETRIEVE_A2P(cirdC1,a2pnm1)
CALL ARC_RETRIEVE_SENSE(cirdC1, arc_senset)
CALL ARC_RETRIEVE_RAD (cirdC1, arc_radius1) -
cir6C1 = CIRCLE_RAD_AZP [&
arc_radius1 + 0.20000000 * dismeter, & Rar !E m
a2pnmi, arc_sensed, TDB) IS0 13584-31
CALL ADD_ENT_GRP(grpfix, cirBC1)
] Data Model Express
! radius of a circle Dats Cluse Java

CALL ARC_RETRIEVE_RAD(cir5C1,radius1, TDB]
reanm1 = radius1 Program Auto-Lisp

|
|
tnsze || Linorth,
Cirfer |

Profile

Cirf2c

2

—
View mode

2= BEmD

html mode

]

&

Z

B K Ry KRR EEER Y R
2

v

Queries numeric calculztor l
Select
Files 3.75

el | o [[
RN I A e ™
oo | I
5 e 2|
R 3 o

E—

vaiide | rhive | clesr |

Command :| Transiation IS0 13584.31 0K Operandes - | : Choi Infor mations : | ;| x=568 =32

reanmZ = 0,20000000 * reanm1
reanm3 = reanm?2

! circle by its radius and another circle
CALL ARC_RETRIEVE_A2P(cirSC1,aZpnm1)
CALL ARC_RETRIEVE_SENSE(cir5C1, arc_sense1)
CALL ARC_RETRIEVE_RAD { cir5C1, are_radius1)
cir7C1 = CIRCLE_RAD_AZP [arc_radius1 + reanm3,&
aZpnm, arc_sense1, TDE |
CALL ADD_ENT_GRP(grpfix, cir7C1)

1

!line distant of 3 given walue from ancther line
lingC1 =lib_lin_parallel{ 1in3C1, diameter)
CALL ADD_ENT_GRP(grpfix, lingC1)

'

! Changes the orientation of an curves entity
Call CHG_ORIENTATION_ENT (lin2€1)

]

line distant of a given value from another line
lin3C1 = lib_lin_parallel(lin2C1, 2.00000000 * diameter |
CALL ADD_ENT_GRP(grpfix, linaC1)

ST

P S GO T

Hllustration of program generation.

definitions, and “PBD in the large” have to be addressed. Recent advances
have been made for the first issue (Texier and Guittet 1999), and need to be
extended.

Conclusion

In this chapter, we have presented a suite of PBD environments for CAD __8

systems. These systems

V:\002564\002564.VP
Monday, December 18, 2000 2:01:17 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 159

Color profile: Generic CMYK printer profile
Composite Default screen

160 Your Wish is My Command

* do not use any inference mechanism to ensure full user control onto the
(implicit) program,

* support every control structure of imperative programming without any
direct interaction with the program,

e are able to generate conventional programs that may be used on differ-
ent CAD systems, and

e constitute a full PBD environment.

From the PBD point of view, the EBP system proves that, at least in some
application areas in which system users have particular skills, complete
PBD environments may be developed. “Complete PBD environment”
means both computational completeness of generated programs and real
debugging with example facilities.

From the CAD system’s point of view, this approach proves that para-
metric CAD systems, which are already very successful for sequential (or
simple repetitive, pattern-based) parametric design, may be extended to
support the parametric design of every conditional or repetitive shape
aspect.

From a user interface viewpoint, usual interactive systems are generally
only sequential systems. The EBP system suggests extending the dialogue
command language toward recurrence-based repetitive command con-
structs. It also proves that very powerful macro-with-example recorders
may be developed.

References

Bouma, W, I. Fudos, C. Hoffmann, J. Cai, and R. Paige. 1995. Geometric constraint
solver. Computer Aided Design 27, no. 6: 487-501.

Cugini, U., E Folini, and I. Vicini. 1988. A procedural system for definition and stor-
age of technical drawings in parametric form. In Eurographics’88. Eurographics.

Cypher, A, ed. 1993. Watch what I do: Programming by demonstration. Cambridge,
Mass.: MIT Press.

Cypher, A., D. S. Kosbie, and D. Maulsby. 1993. Characterizing PBD systems. In
Watch what I do: Programming by demonstration, ed. A. Cypher. Cambridge,
Mass.: MIT Press.

Cypher, A., and Smith, D. C. 1995. KidSim: End user programming of simulations. In S
Human factors in computing systems (CHI'95), Denver, May 7-10). New York: R

ACM/SIGCHI. _ L

V:\002564\002564.VP
Monday, December 18, 2000 2:01:17 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 160

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Seven: Programming by Demonstration to CAD Users 161

Girard, P, and Pierra, G. 1990. End user programming environments: Interactive
programming-on-example in CAD parametric design. In EUROGRAPHICS’90,
(Montreux, Sept 3-7). Cambridge: Eurographics.

. 1995. Structures de contrdle générales en programmation par démon-
stration. In Journées Francophones sur l'Ingénierie de !Interaction Homme-
Machine (IHM’95), Toulouse, October 11-13, ed. P. Palanque. Cépadues.

Glinert, E., ed. 1990. Visual programming environments. IEEE Computer. Los
Alamitos, California.

Halbert, D. 1984. Programming by example. Ph.D. diss. University of California,
Berkeley.

. 1993. SmallStar: Programming by demonstration in the desktop metaphor.
In Watch what I do: Programming by demonstration, ed. A. Cypher. Cambridge,
Mass.: MIT Press.

Jackiw, R. N., and W. E Finzer. 1993. The Geometer’s Sketchpad: Programming by ge-
ometry. In Watch what I do: Programming by demonstration, ed. A. Cypher. Cam-
bridge, Mass.: MIT Press.

Lieberman, H. 1993. Tinker: A programming by demonstration system for begin-
ning programmers. In Watch what I do: Programming by demonstration, ed. A.
Cypher. Cambridge, Mass.: MIT Press.

Myers, B. A. 1993. Peridot: Creating user interfaces by demonstration. In Watch what
I do: Programming by demonstration, ed. A. Cypher. Cambridge, Mass.: MIT
Press.

Myers, B. A., D. Giuse, R. Dannenberg, B. Vander Zanden, D. Kosbie, E. Pervin, A.
Mickish, and P. Marchal. 1990. GARNET: Comprehensive support for graphical,
highly interactive user interfaces. IEEE Computer 23, no. 11: 71-85.

Nardi, B. A. 1993. A small matter of programming: Perspectives on end-user comput-
ing. Cambridge, Mass.: MIT Press.

Newell R., G. Parden, and P. Parden. 1983. Parametric design in MEDUSA System.
Paper presented at CAPE’83, Amsterdam, April 25-28.

Olsen, D. R., and J. R. Dance. 1988. Macros by example in a graphical UIMS. IEEE
Computer Graphics and Applications 12, no. 1: 68-78.

Owen, J. 1991. Algebraic solution for geometry from dimensional constraints. In
ACM symposium on foundations of solid modeling, (Austin, Tex., May 8-10). New
York: ACM/SIGGRAPH.

Pierra G., and Y. Ait Ameur. 1994. Logical model for parts Libraries. ISO-CD 13584-
20.

Pierra, G., Y. Ait Ameur, E Besnard, P. Girard, and J.-C. Potier. 1996. A general frame-
work for parametric product model within STEP and parts library. In European
PDT Days (London, April 18-19). London: PDTAG-AM.

Pierra, G., J.-C. Potier, and P. Girard. 1994. Design and exchange of parametric mod- ___S
els for parts library. In 27th International Symposium on Advanced Transporta- ___R
tion Applications, ISATA'94 (Aachen, Germany, October 31-November 4). _ L

V:\002564\002564.VP
Monday, December 18, 2000 2:01:17 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 161

Color profile: Generic CMYK printer profile
Composite Default screen

162 Your Wish is My Command

Potier J.-C., 1995. Conception sur exemple, mise au point et génération de
programmes portables de géométrie paramétrée dans le systéme EBP. (Ph.D.
diss.): LISI/ENSMA, Université de Poitiers.

Roller, D. 1990. Dimension-driven geometry in CAD: S survey. In Theory and practice
of geometric modeling. Berlin: Springer.

Sassin, M., 1994. Creating user-intended programs with programming by demon-
stration. In IEEE symposium on visual languages, (St. Louis, Mo., October 4-7),
ed. A. L. Ambler and T. D. Kimura. : IEEE.

Shah, J. J., and M. Mintyld. Parametric and feature-based CAD/CAM: Concepts,
techniques and applications. New York: Wiley.

Smith, D. C. 1977. A computer program to model and stimulate creative thought.
Basel: Birkhauser.

Solano, L., and P. Brunet. 1994. Constructive constraint-based model for parametric
CAD systems. Computer Aided Design 26, no. 8: 614-621.

Texier, G., and L. Guitter. User defined objects are first class citizens. In Third Con-
ference on Computer-Aided Design of User Interfaces (CADUI/99), (Louvain-la-
Neuve, Belgium, October 21-23), ed. J. Vanderdonkt and A. Puerta. The Hague:
Kluwer Academic.

Wilde, N. 1993. WYSIWYC (What You See Is What You Compute) spreadsheet. In
IEEE Symposium on Visual Languages, August 24-27, 1993. Bergen, Norway:
IEEE.

V:\002564\002564.VP
Monday, December 18, 2000 2:01:18 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 162

