
Chapter

Three
Demonstrational

Interfaces:

Sometimes You Need a Little
Intelligence, Sometimes You

Need a Lot

Brad A. Myers

Human Computer Interaction Institute
Carnegie Mellon University

Richard McDaniel

Siemens Technology to Business Center

TNT Job Number: [002564] • Author: [Lieberman] • Page: 45

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Abstract

Over the last fifteen years, we have built over a dozen different applications
in many domains where the user can define behaviors by demonstration. In
some of these, the system uses sophisticated artificial intelligence (AI) algo-
rithms so that complex behavior can be inferred from a few examples. In
other systems, the user must provide the full specification, and the exam-
ples are primarily used to help the user understand the situation. This
chapter discusses our findings about which situations require increased in-
telligence in the system, what AI algorithms have proven useful for
demonstrational interfaces, and how we cope with the well-known usability
issues of intelligent interfaces such as knowing what the system can do and
what it is doing.

3.1 Introduction

Demonstrational interfaces allow the user to perform actions on concrete
example objects (often by direct manipulation), but the examples repre-
sent a more general class of objects. This can allow the user to create
parameterized procedures and objects without requiring the user to learn a
programming language. The term demonstrational is used because the user
is demonstrating the desired result using example values. Significant differ-
ences exist among demonstrational systems along many dimensions. Some
demonstrational interfaces use inferencing, in which the system guesses the
generalization from the examples using heuristics. Other systems do not
try to infer the generalizations and therefore require the user to tell the sys-
tem explicitly what properties of the examples should be generalized. One
way to distinguish whether a system uses inferencing is that if it does, it can
perform an incorrect action even when the user makes no mistakes. A
noninferencing system will always do the correct action if the user is correct
(assuming there are no bugs in the software, of course), but the user is re-
quired to make all the decisions.

The use of inferencing comes under the general category of intelligent
interfaces. This category entails any user interface that has some “intelli-
gent” or artificial intelligence (AI) component, including demonstrational
interfaces with inferencing but also other interfaces such as those using
natural language. Systems with inferencing are often said to be “guessing”

46 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 46

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

what the user wants. Another term is heuristics, which refers to rules that
the system uses to try to determine what the user means. The rules in most
demonstrational systems are defined when the software is created and are
often quite specialized. (For another discussion of the strategies used by
demonstrational systems and other intelligent interfaces, see chap. 3 of
Maulsby 1994.)

Over the past fifteen years, the Demonstrational Interfaces group at Car-
negie Mellon University has created over a dozen demonstrational systems
that use varying amounts of inferencing. Some systems have none and just
create an exact transcript of what the user has performed so it can be re-
played identically. Most provide a small number of heuristics that try to
help users perform their tasks. Our most recent system, Gamut, employs
sophisticated AI algorithms such as plan recognition and decision tree
learning to infer sophisticated behaviors from a small number of examples.
(Gamut is described in more detail in chap. 8 of this book.)

This chapter discusses our experience with using various levels of “intel-
ligence” in the interfaces. Some have criticized the whole area of intelligent
interfaces because users may lose control. We strive to overcome this prob-
lem by keeping users “in the loop” with adequate feedback so they know
what is happening and opportunities to review what the system is doing
and to make corrections. However, this is still an unsolved area of research
and reviewing the different trade-offs in different systems can be
instructive.

First, we provide an overview of the demonstrational systems we have
created, followed by a discussion of systems that have no inferencing, sim-
ple rule-based inferencing, and sophisticated AI algorithms. Finally, we dis-
cuss the issue of feedback, which is important to keep the user informed
about what the system is doing.

3.2 Our Demonstrational Systems

The Demonstrational Interfaces group at Carnegie Mellon University has
created a wide variety of demonstrational systems over the last fifteen years.
This section summarizes our systems.

• Peridot (Myers and Buxton 1986; 1990): One of the first demonstrational
systems to use inferencing, it allows users to create widgets such as
menus and scroll bars entirely by demonstration. It uses extensive

Chapter Three:Demonstrational Interfaces 47

TNT Job Number: [002564] • Author: [Lieberman] • Page: 47

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

heuristic, rule-based inferencing from single examples and, for each rule
that matched, asks the user to confirm the inference.

• Lapidary (Myers, Vander Zanden, and Dannenberg 1989;
Vander Zanden and Myers 1995): It allows application-specific graphical
objects, such as the prototypes for node and arc diagrams, to be created
interactively. Lapidary uses simple heuristics from a single example.

• Jade (Vander Zanden 1990): It automatically creates dialogue boxes from
a specification. Some of the parameters of the layout could be specified
by demonstration.

• Gilt (Myers 1991b): This is an interface builder where the parameters to
the callbacks attached to the widgets can be demonstrated by example.
A callback that set some widget’s value based on others can be elimi-
nated by demonstrating its behavior. Gilt uses simple heuristics from
single examples.

• Tourmaline (Myers 1991c; Werth 1993): It uses rule-based inferencing of
text structures and styles from one example. When an example contains
more than one kind of formatting, the system tries to infer the role of
each part and its formatting. For example, if a conference heading is se-
lected, the system tries to infer the separate formatting of the author, ti-
tle, affiliation, and so forth.

• C32 (Myers 1991a): It provides a spreadsheet-like display for defining
and debugging constraints. The constraints can be generalized by giving
an example.

• Pursuit (Modugno, Corbett, and Myers 1997; Modugno and Myers
1997b): It creates scripts for automating “visual shell” (desktop) tasks on
files. Focuses on providing a visible record of the inferred program in a
graphical “comic book”–style visual language. Generalizes the objects on
which to operate based on the properties of a single example.

• Gold (Myers, Goldstein, and Goldberg 1994): It creates business charts
and graphs given an example of one or two elements of the chart and
the desired data. It generalizes from the example marks to match the
format of the data, and the results of the inferences are immediately
shown in the chart.

• Marquise (Myers, McDaniel, and Kosbie 1993): It creates drawing editors
by showing examples of what the end user would do, and then what the
system would do in response. Built-in heuristics and widgets help with

48 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 48

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

palettes that control modes and parameters. Feedback to the user is pro-
vided using an English-like presentation of the inferred code, where
choices in the code are pop-up menus.

• Katie (Kosbie and Myers 1993, 1994): It records high-level events (e.g.,
“delete object-A”) as well as low-level events (e.g., mouse-move) and al-
lows macros to use any level. Katie proposes that macros could also be
invoked when low- or high-level events occur.

• Turquoise (Miller and Myers 1997): It creates composite Web pages from
examples of what they should contain. The demonstration is performed
by copying and pasting content from the source Web pages.

• Topaz (Myers 1998): It creates scripts in a graphical editor, in a way anal-
ogous to macros in textual editors such as Emacs. Generalizations of pa-
rameters to operations are available in dialogue boxes. The generated
script is shown in an editing window.

• Gamut (McDaniel and Myers 1998, 1999; see also chap. 8): Sophisticated
inferencing mechanisms allowed the creation of complete applications
from multiple examples, both positive and negative. Novel interaction
techniques make specifying the behaviors easier.

3.3 Level of Intelligence

Many of our systems, and most of the PBD systems by others, have used
fairly simple inferencing techniques. The hope has been that since these
systems are interactive, the user will be “in the loop,” helping the system
when it cannot infer the correct behavior. Furthermore, many of the PBD
system developers have not been AI researchers, so they have been reticent
to apply unproven AI algorithms. Finally, a number human-computer inter-
face (HCI) researchers (e.g., Shneiderman 1995) have argued against “intel-
ligent” user interfaces, claiming that this will mislead the user and remove
the necessary control. On the other hand, experience with the many PBD
systems shows that users continually expect the system to make more and
more sophisticated generalizations from the examples, and the PBD re-
searchers want their systems to be able to create more complex behaviors.
Therefore, there is pressure to make the systems ever more “intelligent.” In
our own systems, we have explored systems at both ends of spectrum and
many points in between.

Chapter Three:Demonstrational Interfaces 49

TNT Job Number: [002564] • Author: [Lieberman] • Page: 49

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3.3.1 No Inferencing

Our Topaz system for creating macros or scripts of actions in a video editor
requires the user to explicitly generalize the parameters of the operations
using dialogue boxes (Myers 1998). For example, Figure 3.1(a) shows a
script window (in the background) with a pop-up dialogue box that can be
used to generalize the references to objects in the recorded script. The
script was created using specific example objects, but the user could gener-
alize these objects in various ways. Among the choices in the dialogue box
are that the run-time object should be whatever object is selected at run
time, the objects that result of a previous command, and so forth. The only
heuristic built into Topaz is that when a script creates objects and then op-
erates on the created objects, the default generalization for the latter opera-
tions is that they operate on the dynamically created objects each time the
script executes. This heuristic is almost never wrong, so there is little
chance of the system guessing incorrectly in this case.

Since there is no inferencing, the system never makes mistakes, and the
user has complete control. However, the user must figure out how to get the
desired actions to occur, which often requires clever use of special Topaz
features, such as searching for objects by their properties and the different
ways to generalize parameters.

Many other PBD systems take the no-inferencing approach, including
the seminal Pygmalion (Smith 1977) and SmallStar (Halbert 1993) systems.

3.3.2 Simple Rule-Based Inferencing

Most of our systems have used simple rule-based heuristic inferencing for
their generalizations. For example, the early Peridot system (Myers 1990)
used about fifty hand-coded rules to infer the graphical layout of the ob-
jects from the examples. Each rule had a test part, a feedback part, and
an action part. The test part checked the graphical objects to see whether
they matched the rule. For example, the test part for a rule that aligned the
centers of two rectangles would check whether the centers of the exam-
ple rectangles were approximately equal. Because the rules allowed some
sloppiness in the drawing, and because multiple rules might apply, the
feedback part of the rule was used to ask the user if the rule should be ap-
plied. For example, Peridot would ask something like, “Do you want the se-
lected rectangle to be centered inside the other selected rectangle?” If the
user answered yes, then the action part of the rule generated the code to
maintain the constraint.

50 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 50

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TNT Job Number: [002564] • Author: [Lieberman] • Page: 51

S

R

L

Figure 3.1

(a)

(c)

(b)

(a) The dialogue box for generalizing objects in Topaz, with the script window in the background. The
user must select which generalizations to apply. Using such dialogue boxes, sophisticated scripts can be
created, such as (b) a script to create a “Sierpinski Gasket” and (c) a script that applies DeMorgan’s law
by changing an And gate and a Not gate into two Not gates and an Or gate and reconnects the wires.

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Subsequent systems have used similar mechanisms, although often
without the explicit list of rules used by Peridot. For example, Tourmaline
contained rules that tried to determine the role of different parts of a
header, such as the section number, title, author, and affiliation, and the
formatting associated with each part (Werth and Myers 1993). The results
were displayed in a dialogue box for the user to inspect and correct. Many
other PBD systems use the rule-based approach from single examples, in-
cluding Mondrian (Lieberman 1992) and Pavlov (Wolber 1997).

An important advantage of using such rule-based heuristics that gener-
alize from a single example is that it is much easier to implement. No so-
phisticated AI algorithms are required, and the developer can hand-code
the rules and adjust their parameters. It is also easier for the user to under-
stand what the system is doing, and eventually users may internalize the
full set of rules. The disadvantages are that only a limited form of behavior
can be generalized, since the system can only base its guess on a single ex-
ample. More complex behaviors either are not available or must be created
by editing the code generated by the PBD system. Since predetermined be-
haviors are all that are available, some argue that these behaviors might in-
stead be made available in a direct-manipulation way, such as a menu, to
avoid the problems of inferencing.

Another interesting issue with rule-based systems is whether the end
user can change the rules. Most existing PBD systems have used a fixed set
of rules created by the designer. In many cases, the users might have a
better idea of the rules that would be appropriate for the applications they
would like to build, so it would be useful for the end user to be able to spec-
ify new rules. However, if users could write the code for the rules, then they
would probably not need PBD support. No one has produced a system that
allows new rules to be entered into the system using PBD, which is an inter-
esting metaproblem.

3.3.3 Sophisticated AI Algorithms

Recognizing the limitations of single-example, rule-based approaches, and
wanting to create more sophisticated behaviors, the Gamut system infers
behaviors from multiple examples (McDaniel and Myers 1999).

Gamut begins building a new behavior in much the same way as the sin-
gle-example systems. However, each time the developer refines the behav-
ior by adding a new example, Gamut uses metrics to compare the new ex-
ample with the current behavior and choose how the behavior should be
changed. For example, if Gamut sees that parts of the code that were

52 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 52

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

previously executed are no longer being used in the new example, it will en-
close that code in an if-then statement. If Gamut sees that an object is being
set with a different value, it will use the new value along with heuristics to
select changes to the code that produces that value. Gamut also uses a deci-
sion tree algorithm to generate code that could not be generated from rules
alone. For example, Gamut uses decision trees to represent the predicates
of if-then statements.

Gamut uses interaction techniques to support its algorithms. For exam-
ple, the developer can create “guide” objects to represent the state of the
application that is not part of its visible interface. These are visible at design
time but disappear at run time. The developer can also highlight objects
into order to give the system hints. The hints guide Gamut’s heuristic algo-
rithms when they select relationships to put into a behavior. Gamut can
also request that the developer highlight objects when its algorithms reach
an impasse and can no longer infer code without the developer’s help.

Other PBD systems have worked from multiple examples. Some script-
based systems, such as MetaMouse (Maulsby and Witten 1989) and Eager
(Cypher 1991), compare multiple executions of commands to look for pos-
sible macros that the system might create automatically for the user. From
the matches, these systems generalize the parameters to the operations, us-
ing simple heuristics such as the next item in a sequence, or offset by a con-
stant factor. InferenceBear can generate more sophisticated behaviors by
supporting linear equations to compute the parameters and letting the user
provide negative examples to show when behaviors should not occur (Frank
1994).

When inferring from multiple examples, the system must be able to rec-
ognize both positive and negative examples. In the simplest case, a positive
example demonstrates a condition when a behavior should occur; a nega-
tive example shows when the behavior should not occur. Without negative
examples, a system cannot infer many behaviors, such as ones that use a
Boolean-OR. In Gamut, the developer can use either the Do Something
or Stop That button to create a new example. These choices roughly corre-
spond to creating a positive or negative example. In some other systems,
negative examples are recognized implicitly. For instance, when Meta-
Mouse detects that a behavior is repeating, the actions that are not repeated
in the current iteration act as a negative example. This will signal to the
system that a conditional branch is required. InferenceBear required users
to note negative examples explicitly, which proved difficult for users to
understand.

The primary advantage of using more sophisticated techniques is that
the system can infer more complex behaviors. The disadvantages include

Chapter Three:Demonstrational Interfaces 53

TNT Job Number: [002564] • Author: [Lieberman] • Page: 53

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

that the systems are much more difficult to implement, and they still may
not infer correctly. There is a “slippery slope” for all intelligent interfaces,
including PBD systems: once the system shows a little intelligence, people
may expect it to be able to infer as much as a human would, which is well
beyond the state of the art. It is still an open problem to balance the sophis-
tication of the system with the expectations of users.

3.4 Feedback

In user studies of the EAGER system, users were reticent to let the system
automate their tasks because it provided no feedback about what the stop-
ping criteria were (Cypher 1991). Another important issue is how can users
edit the program if they change their mind about what it should do?

Clearly some form of representation of the inferred program is desirable.
But since users of PBD are generally considered to be nonprogrammers, it
seems inappropriate to require them to read and understand code. If they
could understand the code, they might be able to write it in the first place,
so no PBD would be needed. In some cases, however, the goal of the PBD is
to help the user get started with the language. Since it is easier for people to
recognize than to recall, seeing the code generated from the examples may
help people learn the language and give them a start on their programs.
This is an important motivation for adding the record mode for creating
macros by example in spreadsheets and other programs. However, much
evidence indicates that people have great difficulty understanding the gen-
erated code and modifying it when it isn’t exactly correct. Therefore, an im-
portant challenge for PBD systems is how to let the user understand and
edit the program without obviating the benefits that PBD provides.

Peridot (Myers 1990) used question-and-answer dialogues to confirm
each inference, which proved to be problematic because people tended to
simply answer yes to every question, apparently assuming that the com-
puter knew what it was doing. Peridot also had no visible representation of
the code after it was created, so there was no way to check or edit the result-
ing program.

Our Pursuit system (Modugno and Myers 1997) focused on studying the
issue of feedback. It used a novel graphical presentation that showed before
and after states, based on a “comic strip” metaphor. The domain was the
manipulation of files in a “visual shell” or desktop, and the visual presenta-
tion showed examples of files icons before and after each operation. Figure
3.2 shows an example of a relatively complex program in Pursuit. The same

54 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 54

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

visual language was used to allow users to confirm and repair inferences by
the system (e.g., how to identify the set of files to operate on) and to enable
editing of programs later, (e.g., if the user wanted a slightly different pro-
gram for a new task. User studies with Pursuit showed that people could
more easily create correct programs using the graphical language than with
an equivalent textual representation and that they could make relatively
complex programs containing conditionals and iterations.

Marquise (Myers et al. 1993) generated a textual representation of the
program, as shown in Figure 3.3. The evolving program was represented as
sentences, with each choice represented by a button embedded in the sen-
tence. Clicking on a button would provide alternate options, and changing
the option might also change the subsequent parts of the sentence.

Experience with this form of feedback showed that it had a number of
problems. The implementers found it very difficult to design the sentences

Chapter Three:Demonstrational Interfaces 55

TNT Job Number: [002564] • Author: [Lieberman] • Page: 55

S

R

L

Figure 3.2

<nl>.tex

<nl>.tex

no errors

exists

<nl>.tex

<nl>.tex

<nl>.tex

<nl>.tex

<nl>.tex <nl>.tex

copy-of-
<nl>.tex

copy-of-
<nl>.tex

copy-of-
<nl>.tex

copy-of-
<nl>.tex

IS

IN

papers

papers papers

papers papers papers

copydelete

copy

FOREACH

A program represented in Pursuit that looks for all the files in the papers directory that
match “*.tex” and, for each of these, tries to copy the file. If an error occurs during
copying because the resulting file already exists (lowest branch), then the program de-
letes the old file and does the copy again.

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

so they were readable and still contain the correct options. When users
wanted to change the behavior in significant ways, it was often difficult to
figure out which button to use.

The Topaz system (Myers 1998) used a relatively straightforward repre-
sentation of the program (see Figure 3.1[a]). The operation name shown in

56 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 56

S

R

L

Figure 3.3

This behavior, shown in the feedback window of Marquise, con-
trols the drawing of a line. When the create palette is in the line
mode, a dotted line follows the mouse, and when the mouse but-
ton is lifted, a solid line is drawn. The embedded buttons repre-
sent options that can be used to edit the behavior.

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

the script was often the same as the menu item that the user selected (e.g.,
To Top), and the parameters started off constant and could be changed us-
ing dialogue boxes. All the usual editing operations are supported for the
script, such as Cut, Copy, and Paste. Clicking on a parameter would bring
up the dialogue box used to generalize that type of parameter. The result is
that this representation seems easy to understand and edit.

Like EAGER, Gamut has no visible presentation of the inferred program,
and user studies with Gamut’s report that one would be desirable
(McDaniel and Myers 1999). Gamut gets around the editing problem by al-
lowing users to supply new examples at any time that will modify the exist-
ing behaviors, so it is never necessary to edit code directly.

Many other systems have researched different presentations of the gen-
erated program. Most use custom languages designed specifically to match
the PBD system. SmallStar (Halbert 1993) provided a textual representation
of the program created from the examples, and the user had to explicitly
edit the program to generalize parameters and add control structures.
InferenceBear (Frank and Foley 1994) used a novel form of event language
as its representation called Elements, Events & Transitions (EET) in which
the actions and their parameters were represented as event handlers. This
relatively complex language is probably not accessible to nonprogrammers.
Mondrian (Lieberman 1992) provided a comic strip–style visual program,
similar to Pursuit. Pavlov (Wolber 1997) tries to make the program accessi-
ble to nonprogrammers by using a time line–based view, in the style of
MacroMedia’s Director but based on an event-based model. This makes the
language more appropriate for describing graphical applications since they
are primarily event based (using the keyboard and mouse generates events
that are handled by the application).

3.5 Conclusion

Designing the heuristics for a PBD system is a very difficult task. The more
sophisticated the inferencing mechanism, the more complex the behaviors
that can be handled, and, hopefully, the more likely it is that the system will
infer correctly. On the other hand, sophisticated inferencing mechanisms
often bring with them more elaborate user interfaces to control the
inferencing, and these systems are much more difficult to implement. In
any kind of PBD system, it is important that there be a well-designed feed-
back mechanism so that users can understand and control what the system
is doing and change the program later. Much more research is needed on

Chapter Three:Demonstrational Interfaces 57

TNT Job Number: [002564] • Author: [Lieberman] • Page: 57

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

the appropriate level of intelligence and the forms of feedback in PBD
systems.

Acknowledgments

The systems reported here were developed under many research grants,
with support from the National Science Foundation under grants IRI-
9020089 and IRI-9319969, DARPA under Contract No. N66001–94-C-6037,
Arpa Order No. B326, and others. The views and conclusions contained in
this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the U.S.
government.

References

Cypher, Allen. “Eager: Programming Repetitive Tasks by Example.” Proceedings of

CHI ’91, ACM, New Orleans, 1991, pp. 33–39.

Frank, Martin R., and James D. Foley. 1994. A pure reasoning engine for program-

ming by demonstration. In ACM SIGGRAPH symposium on user interface soft-

ware and technology (Marina del Rey, Calif., November).

Halbert, Daniel C. 1993. SmallStar: Programming by demonstration in the desktop

metaphor. InWatch what I do: Programming by demonstration, ed. Allen Cypher.

Cambridge, Mass.: MIT Press.

Kosbie, David S., and Brad A. Myers. 1993. A system-wide macro facility based on ag-

gregate events: A proposal. InWatch what I do: Programming by demonstration,

ed. Allen Cypher. Cambridge, Mass.: MIT Press.

———. 1994. Extending programming by demonstration with hierarchical event his-

tories. In Human-computer interaction: 4th International Conference EWHCI’94.

Lecture Notes in Computer Science, Vol. 876. Berlin: Springer.

Lieberman, Henry. 1992. Dominos and storyboards: Beyond icons on strings. In

1992 IEEE Workshop on visual languages (Seattle, Wash., September).

Maulsby, David. 1994. Instructible agents. Ph.D. diss. University of Calgary, Calgary,

Alberta, Canada.

Maulsby, David L., and Ian H. Witten. 1989. Inducing procedures in a direct-manip-

ulation environment. In Human factors in computing systems (Austin, Tex.,

April). ACM CHI ’89 Proceedings

58 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 58

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

McDaniel, Richard G., and Brad A. Myers. 1998. Building applications using only

demonstration. In 1998 International Conference on Intelligent User Interfaces

(San Francisco, January). ACM

———. 1999. Getting more out of programming-by-demonstration. In Human fac-

tors in computing systems (Pittsburgh, Pa., May 15–20). ACM CHI ’99

Proceedings

Miller, Robert C., and Brad A. Myers. 1997. Creating dynamic World Wide Web pages

by demonstration. Carnegie Mellon University School of Computer Science,

CMU-CS-97–131 and CMU-HCII-97–101.

Modugno, Francesmary, Albert T. Corbett, and Brad A. Myers. 1997. Graphical repre-

sentation of programs in a demonstrational visual shell—An empirical evalua-

tion. ACM Transactions on Computer-Human Interaction. 4, no. 3: 276–308.

Modugno, Francesmary, and Brad A. Myers. 1997. Visual programming in a visual

shell—A unified approach. Journal of Visual Languages and Computing 8, nos.

5/6: 276–308.

Myers, Brad A. 1990. Creating user interfaces using programming-by-example, vi-

sual programming, and constraints. ACM Transactions on Programming Lan-

guages and Systems. 12, no. 2: 143–177.

———. 1991a. “Graphical techniques in a spreadsheet for specifying user inter-

faces.” Proceedings of CHI ’91, ACM, New Orleans, 1991, pp. 243–249.

———. 1991b. Separating application code from toolkits: Eliminating the spaghetti

of call-backs. In ACM SIGGRAPH symposium on user interface software and tech-

nology (Hilton Head, S.C., November).

———. 1991c. Text formatting by demonstration. In Human factors in computing

systems.

———. 1998. Scripting graphical applications by demonstration. In Human factors

in computing systems (Los Angeles, April).

Myers, Brad A., and William Buxton. 1986. Creating highly interactive and graphical

user interfaces by demonstration. In Computer graphics (Dallas, Tex., August).

Myers, Brad A., Jade Goldstein, and Matthew A. Goldberg. 1994. Creating charts by

demonstration. In Human factors in computing systems (Boston, April).

Myers, Brad A., Richard G. McDaniel, and David S. Kosbie. 1993. Marquise: Creating

complete user interfaces by demonstration. In Human factors in computing sys-

tems (Amsterdam, April).

Myers, Brad A., Brad Vander Zanden, and Roger B. Dannenberg. 1989. Creating

graphical interactive application objects by demonstration. In ACM SIGGRAPH

Symposium on user interface software and technology (Williamsburg, Va.,

November).

Shneiderman, Ben. 1995. Looking for the bright side of user interface agents. ACM

Interactions 2, no. 1: 13–15.

Chapter Three:Demonstrational Interfaces 59

TNT Job Number: [002564] • Author: [Lieberman] • Page: 59

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Smith, David Canfield. Pygmalion: A computer program to model and stimulate cre-

ative thought. Basel: Birkhauser.

Vander Zanden, Brad, and Brad A. Myers. 1990. Automatic, look-and-feel indepen-

dent dialog creation for graphical user interfaces. In Human factors in comput-

ing systems (Seattle, Wash., April).

———. 1995. Demonstrational and constraint-based techniques for pictorially spec-

ifying application objects and behaviors. ACM Transactions on Computer-Hu-

man Interaction 2, no. 4: 308–356.

Werth, Andrew J., and Brad A. Myers. 1993. Tourmaline: Macrostyles by example. In

Human factors in computing systems (Amsterdam, April).

Wolber, David. 1997. An interface builder for designing animated interfaces. ACM

Transactions on Computer-Human Interaction 4, no. 4: 347–386.

60 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 60

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 10:12:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

