
Collecting and Using Knowledge About Goals for Personal Event Management

	Dustin Smith
Media Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139 USA

dustin@media.mit.edu, (+1-617) 253-0315
	Henry Lieberman
Media Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139 USA

lieber@media.mit.edu, (+1-617) 253-0315


ABSTRACT

Applications such as Calendar programs, meeting schedulers, or project management trackers address the problem of event management. This involves planning when, where and how events should occur, satisfying prerequisites, and envisioning (perhaps unintended) consequences. Conventional tools simply record and visualize explicit human decisions regarding event specifics. 

We are working towards event management tools that know something about the goals for which events are scheduled. We can then provide capabilities such as providing context-specific recommendations, suggesting alternative plans, and filling in missing values.



Goal-based event management requires a source of knowledge about goals and activities. We also present Common Consensus, a fun, self-sustaining web-based game, following the Human Computation paradigm of Von Ahn [21]. It both collects and validates knowledge about actions and goals. A small user study gave promising results: users find the game fun, knowledge quality is very good, and the rate of knowledge collection is rapid. 

Author Keywords

Event management, personal calendar assistants, commonsense computing, goals
ACM Classification Keywords

H5.2 User interfaces: Natural Language
INTRODUCTION
People are busy in the modern world. Many of us keep personal calendars that track appointments, maintain to-do lists, help us determine how much free time we have, and so forth. We organize our events with calendaring programs like Now Up-to-Date, Google Calendar, ICal, and others. But these applications are all the same – they simply record specific a specific set of user decisions, like exactly when an appointment begins and ends.
In the process of making an intelligent calendar assistant, Event Minder, we immediately recognized the need for a deeper understanding of the text entries on the users’ calendars in order to solve a winder range of problems.  Contemporary natural language understanding software can handle a wide variety of natural language inputs, but a large part of understanding includes both identifying and associating the components of the calendar entry with different sources of background knowledge.
Why goal knowledge? 
Event Minder uses three kinds of background knowledge. general Commonsense knowledge [10, 18], specific user knowledge, and knowledge about goals and methods for achieving them, which is the subject of much of this paper.  General Commonsense knowledge is obtained from the Open Mind Common Sense knowledge base [18]. While OMCS contains some knowledge specifically about goals, it is generally insufficient, so we augment this with some handcrafted goal knowledge, and we will describe a game for collecting a large amount of knowledge of this form. 


An example of general knowledge is "Meetings take place in offices"; user knowledge would be “The Commonsense Computing group meets on Fridays at 1pm” and goal knowledge might be "To plan a meeting you need to invite the participants".  
Commonsense knowledge provides general default values for structures like meeting events. Specific values come from user knowledge, which can be specified by the user, or  learned by observing past events. 
Goal knowledge is a particularly useful type of knowledge for interconnecting these many sources of knowledge and to constrain our learning problems.   Goals serve as a “representational glue,” holding together these different types of knowledge.  By knowing the relations between pieces of knowledge to goals, we can use goals to connect different areas of the system and fill in missing values.  Goals provide a natural representation for learning and managing ambiguous categories, categories whose features come from many different underlying reasons. In addition, goals are understandable to the user, so the user can always communicate and override the systems defaults—a mixed-initiative ability that is particularly useful during initial learning periods. 
We are well aware that no system can automatically infer the goals of a human user with 100% reliability. There will always be knowledge that is outside the system, unusual situations that the system is unaware of, incompleteness of its reasoning, and many other factors. Our goal is to simply to achieve the kind of filling in of missing details, or reasonable inference ("taxis are faster than buses for getting someplace"), that you might expect from a minimally competent personal assistant or secretary. We are careful in the interface design, to always allow the user to correct or override system assumptions. 
Structure of this paper
In the first half of this paper, we present an overview of the ways we use goal knowledge in our calendar program, Event Minder.  We use goal knowledge to:
•  Learn and interact with ambiguous categories, such as the types of locations for a given event
•  Allow the user to browse locations and plans by goals
•  Predict and suggest locations and plans by goals  

• Augment the user’s self-reflection by analyzing his or her past overall goals
No fully adequate repository of goal knowledge is currently available, so we are collecting the knowledge ourselves.  In the second section of this paper, we introduce a web-based game, CommonConsensus, which is a distributed approach for collecting this goal-based commonsense knowledge.






USING GOALS IN EVENT MANAGEMENT

Learning Goals from Categories
Our prototype Event Minder takes input in natural language, which is often the easiest and most flexible way for users to express their needs. 

[image: image1.wmf]
When the user said, "Dinner with Chris this Friday at All Asia", a lot was left unsaid. When is Dinner? Where is All Asia? By recognizing that this description contains the goal “eat dinner”, our Commonsense knowledge is able raise specific questions and provide some general answers: Dinner is a meal that typically occurs in the evening, around 6 or 7 pm, and takes place at restaurants.  "All Asia" may then be the name of a restaurant.  If the user did not specify a time, we would guess that dinner takes place at the default time of 7pm. If the system has previous examples of dinner events from our particular user’s history, it can search and take an average for start time and duration. 

Event Minder’s main concern is the problem of recognizing and filling in missing information, which is a core problem in natural language understanding. When the user specifies the restaurant “All Asia” we can search for proper names of restaurants in the Citysearch database, which yields an entry for "All Asia Café".  The system displays the calendar event entry, with many defaults filled in:

[image: image2.wmf]
What happens when the user does not specify a restaurant, or wants to see their alternatives to places like “All Asia” (perhaps All Asia is closed that day)?  We would want to show the user other restaurants of the “same” category.
We now have the problem of learning types of places a user will visit for dinner:  Given observations of specific locations (from the user’s past or current decisions), we want to discover categories of restaurants so we could offer as suggestions.  Commonsense tells us that dinners take place in restaurants, but when we start to offer more specific assistance, such as providing types of restaurants, we immediately butt our heads against the vicious problem of context.  One category, say "cheap restaurants near the office", may be useful when you are eating with colleagues during the week, but is inappropriate for many other dinner events, like romantic dates. 
In addition to learning locations, the same problem arises in other areas.  Consider the "method of travel" slot that specifies a nominal value (e.g., subway, car, taxi).  While its value largely depends on situational factors, namely the distance that the user has to travel and the means that are available, the value is also modulated by the user’s goals and goal priorities: if the goal “save time” supplants the “save money” goal, then the user would decide to take a taxi. 
How do we learn and use these ambiguous categories? Some research in cognitive science has also suggested that this is what happens when people learn categories.   Categories originate in problem-solving contexts and they develop to meet the constraints of the situation and the agent’s goals [8].  

Category Learning with Goal Knowledge
The problem of learning categories of restaurants requires knowledge of the situation and the user’s goals.  Goals are necessary because there are many different motivations for selecting a particular restaurant—and we need to tease apart these often-interacting influences.  
Automatically uncovering general categories from a set of examples is the unsupervised learning problem of clustering.  While many forms of clustering result in groups that can only be described (to the end-user) by example members, approaches to clustering that also result in meaningful descriptions of the resulting groups are known as concept learning algorithms.
A naïve concept learner would learn categories that conflate many different irrelevant features (e.g., "cash only", "Indian food"), combining accidental features from the restaurants the user has visited.  Some of those features were relevant to the users' ever-changing goals, while many were not. If we know Boolean relationships between features and goals, we can use this knowledge to recognize which goals or features are mutually dependent, exclusive or disjoint.  Knowing the goals, we can produce the features, and visa versa.  Consequently, we can exchange the problem of learning categories with the problem of learning goals.  

As is, the hypothesis space of possible sets of goals is still large enough to make the learning period impractical; however, because additional information about which goals are active can come from other parts of the event model (including from the user directly in the interface) we can further constrain the hypothesis space and, during the unpredictable learning period, depend on the user to take over and specify their goals directly.
Constructing ad-hoc categories from goals
The knowledge of specific instances (e.g., restaurants, people) can come from different resources local to the user.  We used the tool Citysearch to supply knowledge of bars, restaurants and nightclubs in the Boston, Massachusetts area. This knowledge tells the details about particular restaurants, including contact information and categories of properties (tags).  For example, here are some of the properties Citysearch has listed for All Asia Café:

Cuisines:
Asian, Thai, Chinese

Meal Price: 
$

Amenities: 
Bar Scene, Dine at the Bar, Group Dining, Live Music, Late Night Dining, Family Style

The people who frequent All Asia Café do so for a variety of reasons, and any of the above properties (as well as others that are unspecified) could be relevant to each person’s reasons for visiting the café.  In our program, whether or not these attributes are useful for constructing a category depends largely on which goals the user is actively pursuing.   
Instead of navigating by categories, in Event Minder there is an operation "Infer or Search by Goals" that allows the user to explore and search by the goals for a particular location. If we choose to Infer Goals for the All Asia example,

[image: image3.wmf]
a list of possible goals is computed from the Citysearch information about the restaurant. Because All Asia has a liquor license, "Drink booze" is a possible goal.

Here, though, we have an unusual combination. If we check "hear music" (the restaurant in question often features live music), and also "eat Asian food", that narrows down the possibilities considerably. The Search by Goals feature returns,

[image: image4.wmf]
Figure 1.  Other than our original choice,  “All Asia”, the restaurant “Kapow” is the only other bar in Boston to feature both Asian food and live music.
In the user interface, each of the fields is editable; one can change the times, dates, venues, participants, etc.  One can also edit the field for transportation mode – the system has guessed that since the restaurant is at such a short distance, the user will likely walk. If the transportation mode is edited to "car" or "drive", the travel time is recomputed accordingly:
[image: image5.wmf]
Figure 2.  This is an example of how Commonsense knowledge is used in filling in detail.
The system also infers from its Commonsense knowledge that you have to get there from where you will be just before, and return afterwards. It represents sub-events for leaving from your point of origin, and returning. 

With goal knowledge, instead of learning specific categories of locations or methods of travel, the system represents the goals for each event and the situational factors, and then reconstructs the categories when needed. This allows the user to work at the abstract goal-level instead of dealing with particular categories or plans.

Integrating knowledge to predict goals
In the above scenario, the system exhaustively listed the user’s possible goals for their location. In the future, we envision our system to further eliminate many of these candidates by automatically determining relevant goals using knowledge from other parts of the event.  We hypothesize that we will be able to narrow the possible goal set down by combining partial knowledge that guesses the user’s active goals with knowledge about the relationships between goals (e.g, which goals can be active at the same time).

Currently, the system associates the goals it learns about the user with the name of the event, such as "lunch" or "dinner."  The next step requires learning the relationships between other components of the event (e.g., time of day, attendees, day of week) and the user’s active goals in the event.   In this way, goals will serve as the universal currency between the many components of the model.




Using Goals to organize Plans



Sometimes the high level goals can be changed, and this results in a different type of event (plan) altogether.  Suppose you want to meet with a client to discuss a business deal. 
A tactful personal assistant would recognize that these goals could be accomplished over lunch, dinner, drinks at a bar, a game of tennis, etc.
Again, goals are useful for this capability.  The main difference between exploring plans and exploring restaurants is the level of detail:  categories for constructing goals (e.g., “eat spicy food”) are more specific than those for selecting plans (e.g., “eat”).   In artificial intelligence, producing complete plans from previous solutions to goals is considered a case-based approach to planning.





Augmenting Self-Awareness
If we can build tools to accurately infer a user's goals, we are able to increase the intimacy between the user and the application and develop tools for augmenting the user's self-reflective abilities.  For example, by analyzing how the user's long-term goals have changed over time.  In Event Minder, this could be accomplished by analyzing the user’s upper level goals based on the events in their calendars, and then presenting the user with explanations which high level goals they spent the most time pursuing.  While individuals are not always good at recognizing their goals this sort of feedback can be useful in helping the user's achieve [20] or reorganize their priorities.  

Similar to self-reflection, self-conscious thinking is concerned with comparing how an individual's goals relate the goals of others [11].  This could be achieved by comparing the goals between many users; however the potential benefits of such a tool are questionable.
COLLECTING COMMONSENSE GOALS

We chose to represent our goals in a hierarchical structure, where each goal can have parent goals, children goals and sideways "analogous goals". Other information, such as related objects, locations, and duration can be attached as properties of the goals.  How do we get this knowledge?

Approaches to Collecting Commonsense Knowledge
Knowledge-based systems are those that use knowledge to solve problems for some application.  The particular representation and amount of knowledge is determined by the domain(s) of knowledge that are involved with the given application. Commonsense applications are a kind of knowledge-based system where the knowledge ambitiously seeks to cover the broad range of knowledge that a typical person in a certain cultural typically knows. 
The problem of acquiring a large body of knowledge is particularly difficult for commonsense reasoning applications and is known in the AI community as the knowledge acquisition bottleneck.

Technological advances of the past two decades have enabled ways to address this bottleneck. There are two common approaches: mining the data from text [3], and acquiring the data from Internet users [16,17,18,19]. The text mining approach is difficult for collecting commonsense knowledge, because a lot basic knowledge, like the statement "apples are red", are implicit and not present in the statements people communicate with; they are considered too obvious to mention. When collecting commonsense, we take the second approach: acquiring knowledge from users on the Internet.

Knowledge acquisition from people on the Internet faces the obvious challenge of motivating the contributions [1]. In some special cases, like for the Wikipedia and 43Things.com projects, merely displaying the acquired knowledge itself is enough to motivate contributions. However, for commonsense knowledge collection, the desire to help solve the commonsense reasoning problem is (unfortunately) not enough of an incentive to allure a large number of volunteers.  While contributing commonsense may be less attractive than a community effort to build a knowledge repository, there are a larger group of potential contributors by the very definition of commonsense (knowledge everyone has) and enough people exist to make this method feasible for long term efforts.

An alternative to soliciting knowledge only from volunteers is to motivate a wider audience to contribute by designing an entertaining knowledge collection game. Louis von Ahn and colleagues have pioneered this approach, which serves to exchange entertainment for knowledge [17]. The first game of this type, ESP Game, is a web-based game that entices users to annotate the content of images. At the beginning of each game, users are paired with another anonymous player (or, if there are an odd number of players, they play against a pre-recorded player simulation) and enter words that describe the image. The players receive more points based on the number of labels both players mutually agreed upon. To extend the set of annotated labels the game’s authors introduced a ‘taboo list” of words, which players could not use.   An image’s taboo words came from labels from previous games that used the image.
Design Objectives for the Game

We developed a game, Common Consensus, that has the following characteristics: it 1) provides entertainment to the users and thus motivation to contribute; 2) defines the quality of an answer by the number of consenting answers; and 3) avoids convergence by replenishing seed questions with common answers.  In this section these properties are explained in more detail.
Motivating volunteers to contribute knowledge

Our research group’s prior knowledge acquisition projects [8] have the problem of attrition: contributions from volunteers tend to diminish quickly over time. With Common Consensus, we sought ways to motivate more users to contribute and continue to contribute commonsense knowledge. Although commonsense knowledge providers may be in short supply, Internet gaming is tremendously popular and people spend many hours playing web-based games. Recently, many research groups have attempted to “tap” this human resource by developing knowledge collection games that are attractive to Internet gamers. To motivate users to contribute, we developed a competitive multi-player game where users race against each other to contribute commonsense knowledge. Users have found the scoring and user interaction elements of the game enjoyable, and a small user study suggested that most subjects enjoyed the game and would return to compete.

Automatic knowledge validation by consensus

Commonsense knowledge bases developed by volunteers must anticipate noisy data, which comes in the form of misspellings, incorrect information, and, most commonly, knowledge at varying levels of detail. This granularity problem leads to knowledge that is difficult to reason with reliably. The game structure of Common Consensus inherently provides a data-validation mechanism: the scores for players’ answers are computed by counting the number of other people who contributed the same answer. The more people agree on a specific answer, the more confidence we have that this answer is valid.

Four subjects evaluated the data obtained during the user testing and all of the answers where at least one third of all users had entered were consistently marked as excellent answers for the question. This consensus mechanism can serve as a way to screen data. For example, when users were presented with the question: What are some things you would use to: cook dinner?  their aggregate answers gravitated toward the superordinate and basic categories [10]. The most common answers (by the number of unique users) were: food (7), pots (3), pans (3), meat (3), knife (2), oven (2), microwave (2)... We also collected specific and atypical answers, like garlic press and obscure answers, like cans but they had a low count (in this case, 1). It should be noted that there is a trade-off involved with only using the popular answers: many good uncommon answers are neglected.

Creating questions from answers: a continuous supply of questions

Goals and actions are commonly represented in a hierarchy (or heterarchy, hierarchies with multiple inheritance) and thus a given node can have parents, children, or siblings which are respectively more, less, or equally general.   As we are dealing with natural language as a representation, we conflate the notions of goals and actions and discuss them as more general "events" which are represented by predicates (generally a verb) and its arguments (its objects and an implicit subject).  The linguistics community describes events that reference goals as "accomplishments," but this term is in fact indifferent to whether or not the change produced by the goal is usually desired by people. Examples of such events are "to write an email" or "to see a movie" and statements like these are the fodder from which Common Consensus generates its questions.
The hierarchical nature of events (actions and goals) allows us to ask questions that retrieve parent or children goals. When many users suggest a particular event as an answer (and it is in the infinitive form: to [VP]), that answer is recycled into a new seed question.

If the question is too high level, too low level (i.e., actions  like “grab,” “see” and “turn”) or for whatever other reason a bad question, players are given a way to ‘flag’ these bad questions by clicking on a button during the questioning round. The possibly obscure event statement is then moved to a table where we can review and remove it if necessary.

GAME ARCHITECTURE
The game is structured similarly to the television program FamilyFeud: contestants compete by individually answering a set of questions and then their answers are compared with the audience’s answers to the same questions. Answers are scored by their commonality; an answer receives a score equal to the number of audience members who supplied the same answer to the given question. 

With the intent to acquire knowledge, the organization of this game has a major problem: Where does the initial answer database come from? The questions are scored by how many previous answers they match, but in most cases there were not be previous answers to draw from. This obstacle can be dodged with a variant game, if we presuppose that there are a large number of players at a given time. This way, we can score multiple players’ answers against each other. 

[image: image11.wmf]
Figure 3:  This is the answer box where the user submits answers into a text box. Below the box, all answers are listed, and next to them, the red bars appear and change size to indicate how many other players also have entered that answer.
For each round, a question is generated from a randomly selected event description from a database and its predicate and arguments are embedded into one of six question templates:

1. Why would you want to X?

2. What is something you can do if you wanted to X?

3. What is another goal similar to X?

4. About how long would it take to X?

5. What are some things you would use to X?

6. Where are some places you would X?

The first two questions are designed to accumulate parent and children actions or goals for a given question. Answers to the third kind of question provide orthogonal connections between activities or goals. Certain types of answers to these questions are recognized as candidates for use in future questions.

In the above screenshot (figure 3), users were asked to describe objects related to the goal “watch a movie.” Users are encouraged to supply as many answers as possible. Only unique strings can be entered and users cannot enter the same answer twice. After each answer is entered, it is compared with the other answers to see if another user has entered the same answer. The player receives immediate feedback in the form of a expanding red bar that indicates how many other users have entered the same answer.




















Scoring Answers: Identifying the Most Common Knowledge

After the timer has elapsed, each user receives a score (a sum of the number of unique users who provided the same answer) and all of the answers and scores are displayed (see figure ?). When three players or fewer are playing, answers from prior game-rounds are used as stock answers.
 [image: image13.wmf]
Figure 4:  This screen displays the points a user has earned for that round. Answers are grouped into categories by semantic similarity, and each answer has its own row. Scores are calculated by the number of unique users who have voted for category of answer.

Determining Semantic Similarity in Answers

We took a preemptive measure against user frustration by designing the game so that virtually identical answers would be scored as the same. To this end, we built a program that quickly determines whether two answers are “the same” or not.  Similarity in paraphrasing is difficult for both man and machine to assess [2]. With the primary considerations being speed and performance predictability, we regarded two strings as the same if, after removing stop words and expanding contractions, all words are identical or share a common lineage in WordNet’s inheritance hierarchies [5].

EVALUATION

User Interactions: Was it fun? 

An 11-person user study was conducted to survey whether users enjoyed playing the game and were asked to comment on their overall interaction in the context of an entertaining experience. The users all played each other for 20 to 30 minutes (30 to 45 rounds of questions), and then were directed to complete a user interaction survey with optional comments and feedback.

From the feedback we collected, 10 of the 11 subjects enjoyed playing the game and 8 claimed they would play again. Most users identified the multi-user interaction as the most entertaining aspect of the game. One user suggested that the anxiety produced by the timer could contribute to more spelling mistakes. Overall, we were satisfied with the users’ reactions and in the near future we plan to open the game to a larger audience.

Assessing the quality of the data

After the 11-person study was completed, we had collected 549 unique answers out of a total 800 answers. On average, each round contributed at least 18 answers, or 27 per minute. 

To assess the quality of the 11-person data, we took a random sample of 40 answers and asked four other unique subjects to judge the answers in relation to the questions. In our experience, agreement among the judges is typically high, so a large number of subjects is not needed for this phase of the evaluation. All of the answers that were entered individually by at least 3 users (36.7%) of were ranked as “excellent” answers by all four judges. Unfortunately, user answers only overlapped in a small percentage of the answers, and many of the answers with a small number of votes where were also considered “excellent” by all four judges. Here, a larger-scale user test would significantly reduce this problem, as lower-priority answers would garner more votes. 

31.4% of the answers were contributed by more than one user. After testing the sample, we hypothesized that all answers where at least one-third of the users had agreed upon would be highly ranked by the judges. There were 39 such answers, or 7% of all unique answers, which we asked the same four judges to rank. Consistent with our hypothesis, all 39 of these answers were ranked as “excellent” by the human reviewers. In the public release of the game, we plan to extend the length of the questioning round so that more overlapping answers are accumulated.
RELATED WORK
The most closely related work to Event Minder is Eric Mueller's Commonsense Calendar [12]. It uses the ThoughtTreasure Commonsense knowledge base [13] to do "sanity checking" on details of events in a calendar. For example, if a meal companion is known to be vegetarian, it will issue a warning if the meal is scheduled to take place at a steak house. It does not deal specifically with goal knowledge, event underspecification, or computing alternatives. 

Calendar programs are now ubiquitous in personal and organizational computing environments. The CHI community also has a large body of empirical research exploring how people use (or don't use) calendars. Examples are [6, 17]. Problems such as underspecification, resource conflict, and goal satisfaction have been frequently noted. Some research systems have employed AI techniques such as logical reasoning and learning on event representations [13, 6], but none deal with Commonsense and goals as we do here. 

The most closely related work to Common Consensus is Von Ahn et al.'s game for collecting Commonsense knowledge, Verbosity [18]. As mentioned above, we were inspired by their more general research program, Human Computation, which envisions using multiplayer games for knowledge acquisition. Verbosity uses the structure of the parlor game Taboo to encourage a pair of players to input general Commonsense facts. One problem with Verbosity is that the prohibition of the taboo words, the central constraint of the game, also has the effect of discouraging the most straightforward way of expressing the knowledge, thereby introducing artifacts into the resulting knowledge. The FACTory, a Java applet on www.cyc.com, also adopts a Human Computation approach to checking Cyc's Commonsense knowledge base.

Conclusion
People usually do things for a reason. Conventional calendar programs merely record particulars such as time, place and date; they do not record the goals for which events are intended. But events do not take place in a vacuum. Details such as time and place are chosen in order to satisfy personal goals, as well as the constraints established by external factors such as travel time or others' schedules. 
In this paper, we have presented Event Minder, a calendar that uses a large Commonsense knowledge base, and particular knowledge about goals to fill in default values for underspecified input, and recommend alternative plans for accomplishing goals. We've shown how we can collect knowledge about the relation between goals and specific methods for accomplishing them, using the collaborative game Common Consensus. It's our hope that intelligent calendars of the future can help people organize their lives better, leading to fewer double-bookings, missed appointments, late schedules, and other hazards of busy modern life. 
ACKNOWLEDGMENTS

REFERENCES

1.  Timothy Chklovski and Yolanda Gil. Improving the design of intelligent acquisition interfaces for collecting world knowledge from web contributors. In K-CAP ’05:  Proceedings of the 3rd international conference on Knowledge capture, pages 35-42, New York, NY, USA, 2005. ACM Press.

2.  Bill Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction of large paraphrase corpora: Exploiting massively parallel news sources. COLING 2004, 2004.
3.  Ian Eslick. Searching for commonsense. Master’s thesis, MIT Media Lab, 2006.

4.   Alexander Faaborg and Henry Lieberman. A goal-oriented web browser.  In CHI ’06: Proceedings of the SIGCHI conference on Human Factors in computing systems, pages 751-760, New York, NY, USA, 2006. ACM Press.

5.  Christiane Fellbaum and George Miller, editors.  WordNet.  The MIT Press, 1998.
6.  Melinda T. Gervasio, Michael D. Moffitt, Martha E. Pollack, Joseph M. Taylor, and Tomas E. Uribe. Active Preference Learning for Personalized Calendar Scheduling Assistance, Proceedings of the 2005 International Conference on Intelligent User Interfaces, 2005.
7.   Christine Kincaid and Pierre Dupont.  Electronic Calendars in the Office: An Assessment of User Needs and Current Technology.  In ACM Transactions on Office Information Systems, volume 3, number 1, pages 89-102, 1985. 
8.  Douglas Lenat.  CYC: A large-scale investment in knowledge infrastructure. Communications of the ACM, volume 38, number 11, pages 33-38, 1995.

9.  Henry Lieberman and José Espinosa.  A goal-oriented interface to consumer electronics using planning and commonsense reasoning.  In IUI ’06: Proceedings of the 11th international conference on Intelligent user interfaces, pages 226-233, New York, NY, USA, 2006. ACM Press.
10.  Henry Lieberman, Hugo Liu, Push Singh, and Barbara Barry.  Beating common sense into interactive applications. AI Magazine, 25:63-76, 2004.
11.  Carolyn B. Mervis and Elanor Rosch.  Categorization of natural objects.  Annual Review of Psychology, 32(1):89-115, 1981.
12.  Marvin Minsky. The Emotion Machine.  Simon and Schuster, 2006.
13.  Mitchell, T. M., Caruana, R., Freitag, D., McDermott, J., and Zabowski, D. 1994. Experience with a learning personal assistant. Commun. ACM 37, 7 (Jul. 1994), 80-91. 
14.  Erik T. Mueller.  A calendar with common sense. In IUI ’00: Proceedings of the 5th conference on Intelligent user interfaces, pages 198-201. 2000.

15.  Erik T. Mueller.  Natural language processing with Thought Treasure.  New York: Signform. 1998.  Available: http://www.signiform.com/tt/book/
16.  S. Ratneshwar, Lawrence Barsalou, Cornelia Pechmann, and Melissa Moore. Goal-Derived Categories:  The role of personal and situational goals in category representations. Journal of Consumer Psychology, volume 10, number 3, pages 147-157.  2001.
17.  Stephen D. Richardson, William B. Dolan, and Lucy Vanderwende.  Mindnet: acquiring and structuring semantic information from text.  In Proceedings of the 17th international conference on Computational linguistics, pages 1098-1102, Morristown, NJ, USA, 1998.  Association for Computational Linguistics.

18.  Push Singh.  The public acquisition of commonsense knowledge.  In Proceedings of AAAI Spring Symposium on Acquiring (and using) Linguistic (and World) Knowledge for Information Access. Palo Alto, CA, USA, 2002.
19.  Martin Tomitsch, T. Grechenig, P. Wascher, Personal and private calendar interfaces support private patterns: diaries, relations, emotional expressions, Nordic Conference on Human-Computer Interaction, Oslo, 2006, Pages 410-44.
20.  Mark E. Tubbs and Steven E. Ekeberg.  The role of intentions in work motivation: implications for goal-setting theory and research.  The Academy of Management Review, volume 16, number 1, pages 180-199.  1991.
21.  Luis von Ahn and Laura Dabbish.  Labeling images with a computer game.  In CHI ’04: Proceedings of the SIGCHI conference on Human factors in computing systems, pages 319-326, New York, NY, USA, 2004. ACM Press.

22.  Luis von Ahn, Mihir Kedia, and Manuel Blum.  Verbosity: a game for collecting common sense facts.  In Proceedings of ACM CHI 2006 Conference on Human Factors in Computing Systems, volume 1 of Games, pages 75-78, 2006.

23.  Luis von Ahn, Ruoran Liu, and Manuel Blum.  Peekaboom: a game for locating objects in images. In Proceedings of ACM CHI 2006 Conference on Human Factors in Computing Systems, volume 1 of Games, pages 55-64, 2006.
















� This is knowledge that provides details about particular people, offices, restaurants, etc.





1

