
CSAMOA and ConceptNet: An experimental application of
a model of architecture

Jason B. Alonso
Tangible Media Group
MIT Media Laboratory
20 Ames St E15-354

Cambridge, MA 02139 USA
+1-617-452-5617

jalonso@media.mit.edu

ABSTRACT
The Common Sense Application Model of Architecture
(CSAMOA) was created to organize applications, libraries,
and corpora of common sense reasoning with a concise tax-
onomy and guidelines that encurage sustainable code. In this
paper, I discuss the motivations for selecting ConceptNet for
reimplementation, compromises made in the enforcement of
the architecture, observations on the effectiveness of the ar-
chitecture, the future of this experiment, and plans for ad-
ditional experiments. This is an addendum to the original
CSAMOA short paper submitted to the IUI 2007 Common
Sense workshop.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Theory and Methods.

General terms: Standardization, Theory

Keywords: Common sense, application programming in-
terface, software architecture

INTRODUCTION
The Common Sense Application Model of Architecture
(CSAMOA) was created to organize applications, libraries,
and corpora of common sense reasoning with a concise tax-
onomy and guidelines that encurage sustainable code. I
am in the process of conducting an experiment wherein
the CSAMOA model is tested by rewriting the ConceptNet
database and library to fit this new form. Though the code
port is not complete, I have made enough progress to draw
some useful conclusions.

In this addendum to the original CSAMOA short paper, I
begin by discussing the motivations for choosing Concept-
Net. In the subsequent section I set forth the conditions of
the experiment, and after this is an examination of the com-
ponents that I have adapted to fit into the CSAMOA layer

architecture. Then, I discuss the future directions of this ex-
periment and subsequent experiments before presenting my
conclusions.

MOTIVATIONS
ConceptNet belongs to a family of substantially incompatible
OpenMind Common Sense (OMCS) -derivative representa-
tions colloquially known as the ”X-Nets”. Other represen-
tations include EventNet and LifeNet. It has been advanced
by Smith in [6] that a desirable future direction for the X-
Nets is interoperability, which indicates to me that the X-Nets
should be examined closely to see if the CSAMOA model of
architecture can bring a potential mechanism for interoper-
ability to light. I also became aware of an effort to revise
ConceptNet to add new features, like polarity of assertions,
which was identified as a future direction for ConceptNet in
[6], and the people engaged in this project were accessible to
me. ConceptNet also lacked interchangeable software com-
ponents, despite the changes being developed. With all of
these things considered, ConceptNet appeared to be the opti-
mal choice for testing CSAMOA.

THE FIRST EXPERIMENT
The first experiment on the use of the CSAMOA model
was restricted to ConceptNet and the underlying OpenMind
Common Sense (OMCS) corpus. This limited my ability to
search for interoperability with the other X-Nets, as such a
search would require the close examination of at least two X-
Nets, but this limitation allowed the first experiment to test
CSAMOA for less esoteric benefits. The benefits sought in
this experiment were:

1. a clear separation of dependency relationships among the
common sense software components; and

2. intuitively obvious assignment of any data model or proce-
dure to an appropriate layer.

It must be noted here that, though interchangeability of soft-
ware components may be enabled by CSAMOA, I do not
expect enough alternative structures to be developed in the
course of this experiment to test CSAMOA’s capacity for it.



THE EXPERIMENTAL IMPLEMTNATION OF THE MODEL
In the case where all layers of the model need to be imple-
mented, the model naturally lends itself to a bottom-to-top
construction, starting with the Corpus layer. Encouraged as
such, I began my implementation there and worked toward
the Realm layer. It should be noted that, by itself, Concept-
Net does not complete an application, so I do not expect to
populate the Application layer with any code.

The original ConceptNet code is written in the Python [1]
interpreted programming language. Given personal prefer-
ences and the fact that the ConceptNet redevelopment effort
with which I was cooperating was continuing to use Python,
I opted to keep the chosen language for this experiment the
same. I anticipated the appropriateness of an strong database
abstraction layer, wherein database tables and queries are
generated automatically from naturally-written Python code,
and so I selected the Django web development framework
[2].

At the time of this writing, however, the conversion of the
ConceptNet code to the CSAMOA model was not complete.
I made it through the development of the corpus layer and
much of the representation layer, with some conceptual work
throughout the remainder. The particulars of my progress
and observations follow.

Corpus
In the Corpus layer, I implemented models and control code
to manage the OMCS corpus. Though the code developed
is essentially complete and functioning, it does not include
any knowledge elicitation code as would be required to have
a complete OMCS system [5].

In the original ConceptNet code, an autocorrector for fixing
common typographical errors was included in the code that
parsed sentences. As this operation produces data in the same
form as the original data in the corpus, I determined that au-
tocorrection code should be separated from the parsing code
and assigned entirely to the Corpus layer. This code became
a generalized autoreplace engine, with distinguishable rule-
sets, when I discovered ”swaplists” in the ConceptNet code
with subtle semantics-altering effects deeper in the parsing
code. It should be noted that the ”swaplists” were applied
indiscriminately in the parsing layer, such that it would be
equivalent to put the substitution rules in the Corpus layer.

The models that I created for this layer include the support-
ing elements Language (for keying multilingual dictionaries
and rule sets), AutoreplaceRule (for providing the aforemen-
tioned autoreplace rulesets), and Activity (for representing
the knowledge elicitation method). The layer also includes
the core elements Source (for storing profile data on the
provider of a piece of common sense knowledge) and Sen-
tence (the smallest unit of corpus data).

Representation
The Representation layer, as anticipated, contains the bulk
of the ConceptNet transformation. The models were easy to
construct, with some exceptions that will be discussed.

Parsing/Encoding ConceptNet used a number of parsing
dictionaries for storing word sets like stop words and words

that invert meaning–this was easy to accomodate, but the use
of these dictionaries was so far removed from the publicly-
exposed models of this layer that I was encouraged to place
them into their own ”tools” subcomponent of the Parsing
sublayer.

Models that I created in this sublayer include the defining
models Frame (for storing elicitation frames) and RawPred-
icates (for storing binary predicates extracted from a Sen-
tence).

Reasoning The Reasoning sublayer is dominated by the
reasoning process, and no supporting models, like dictio-
naries, have warrented themselves necessary yet. The algo-
rithms in this sublayer are being redeveloped by Speer [7],
but the work I have seen so far seems to indicate that the
Reasoning sublayer can rely entirely on the models provided
by the Parsing and Presentation sublayers with their respec-
tive tool kits.

Presentation

Realm
Application
FUTURE DIRECTIONS
As the experiment described in this paper is not complete,
I plan on finishing the transformation of ConceptNet into
the CSAMOA model, using GOOSE [4] (the goal-oriented
search engine assistant) or Empathy Buddy [3] (the common-
sense-driven affect-sensing system) for the application layer.

CONCLUSIONS
ACKNOWLEDGEMENTS
I would like to thank Rob Speer and Catherine Havasi for
their understanding as I scrutinized everything, and continue
to do so, while they worked on reviving the ConceptNet code.
I would also like to thank Henry Lieberman, Junia Anacleto,
and Dustin Smith for their insights on the structure and future
of ConceptNet.

REFERENCES
1. Python Software Foundation. Python programming lan-

guage. Python web site, 2006. http://www.python.org.

2. Lawrence Journal-World. Django, the web framework
for perfectionists with deadlines. Django web site, 2006.
http://www.djangoproject.com.

3. Henry Lieberman, Hugo Liu, Push Singh, and Barbara
Barry. Beating common sense into interactive applica-
tions. AI Magazine, 25(4):63–76, 2004.

4. Hugo Liu, Henry Lieberman, and Ted Selker. Goose:
a goal-oriented search engine with commonsense. In
Conference on Adaptive Hypermedia and Adaptive Web-
Based Systems, LNCS 2347, pages 253–263. Springer,
2002.

5. Push Singh. The public acquisition of commonsense
knowledge. In Proceedings of AAAI Spring Symposium:
Acquiring (and Using) Linguistic (and World) Knowl-
edge for Information Access. AAAI, 2002.



6. Dustin Smith. The future of commonsense reasoning.
Presentation, March 2006.

7. Rob Speer. Openmind commons: A new
framework for acquiring common sense
knowledge. M.Eng. thesis proposal, 2006.
http://torg.media.mit.edu/rob/index.php/Research.


