
Managing Ambiguity in Programming
by Finding Unambiguous Examples

Kenneth Arnold Henry Lieberman
MIT Media Lab

{kcarnold, lieber}@media.mit.edu

Abstract
We propose a new way to raise the level of discourse in the
programming process: permit ambiguity, but manage it by
linking it to unambiguous examples. This allows program-
ming environments to work with high-level descriptions that
lack precise semantics, such as natural language descriptions
or conceptual diagrams, without requiring programmers to
formulate their ideas in a formal language first. As an ex-
ample of this idea, we present Zones, a code search and
reuse interface that connects code with ambiguous natural
language annotations about its purpose. The backend, called
ProcedureSpace, induces relationships between these purpose
annotations, static code analysis features, and a variety of nat-
ural language background knowledge. ProcedureSpace can
search for code given purpose descriptions or vice versa, and
can even find code that was never annotated or commented.
Since completed Zones searches become annotations, the
system learns from user interaction. Users in a preliminary
study found that reasoning jointly over natural language and
programming language helped them reuse code.

Categories and Subject Descriptors H.5.2 [Information In-
terfaces and Presentation]: User Interfaces—Natural lan-
guage; D.2.3 [Software Engineering]: Coding Tools and
Techniques

General Terms assisted disambiguation, Blending

Keywords reuse, commonsense, SVD

1. Introduction
The process of authoring a program can be described as going
from ambiguous representations about purpose and approach
(mostly contained in the minds of the programmers) to un-
ambiguous, highly structured representations of instructions

[Copyright notice will appear here once ’preprint’ option is removed.]

(mostly contained in computers). Development environments
provide great assistance for the lowest level of this process:
intelligent completion and refactoring greatly aid the input
and verification of the resulting structured representation, and
debuggers can help programmers determine why the struc-
tured representation behaves differently from their high-level
purpose. Also, modern programming languages have gradu-
ally freed programmers from less relevant concerns and given
them representational tools to guide their middle-level think-
ing. But most of the disambiguation process has remained
the sole responsibility of the programmer.

Since the end products of programming should be as un-
ambiguous as possible, many programming researchers have
been understandably averse to allowing ambiguity even in
high-level specifications. However, we suggest that this aver-
sion may be unhelpful because it tends to force programmers
to prematurely commit to some particular and precise way
of thinking before they can dialogue with computers about
their programs. Instead, we suggest that programming envi-
ronments could permit programmers to describe the desired
program in more natural terms, even if the terms themselves
or the relations between them are ambiguous, then assist the
programmer in the task of concretizing the program into an
unambiguous executable form. We will call the interaction
where a development environment assists a programmer in
translating an ambiguous representation to a more concrete
one assisted disambiguation.

1.1 Assisted Disambiguation Interactions
A development environment capable of assisted disambigua-
tion could help programmers in several ways. First, it could
help them find existing code that they could reuse in their
programs. The programmer might specify the goal of the
immediately desired code, or a subgoal may be inferred from
a higher-level goal and the code written so far. Similar tech-
niques could apply to other artifacts as well. For example, a
goal could map to both to code and to behavioral tests that
partially evaluate whether code accomplishes that purpose.
Each represent part of the concrete specification of what it
means for the code to satisfy the given goal. And insomuch
as failed test cases or other bugs indicate a failure of the con-

1 2010/5/1

crete code to satisfy the ambiguous goal, we can also think
of debugging this way. For instance, we could collect and
analyze (situation, problem, solution) triples to learn what
problems might come up in a certain situation and types of
code changes that tend to fix them. Then we could make
analogies to problem-solving strategies or concrete fixes that
were helpful in similar situations. Finally, the programming
environment could help the programmer document and dis-
tribute the result in a way that permits others to understand
and utilize it.

In this paper, we focus on one initial example of assisted
disambiguation: purpose-directed code reuse. In our interface,
called Zones, programmers can associate a block of code (a
Zone) with a natural language description of its purpose.
By omitting either the purpose or the code, this annotation
interface becomes a search interface, which becomes an an-
notation when the search is complete. The interaction is thus
much like code search, but the search queries can include
abstract characteristics that would not match a keyword in
an identifier or type, and the retrieved code need not be com-
mented. Also unlike a typical code search interaction, Zones
learns how programmers describe purpose by capturing both
successful and unsuccessful search interactions, and simulta-
neously learns what code characteristics are relevant to the
goal and which are implementation details.

1.2 Backend Concerns
To assist in disambiguation, a programming environment
must be able to relate ambiguous descriptions to unambigu-
ous representations. One approach is to try various possible
realizations of the ambiguous description; this approach has
been successful where the ambiguous description straightfor-
wardly defines a constrained space of possible unambiguous
representations. Today’s large software libraries and open-
source code repositories enable a different approach: learning
relationships between ambiguous and unambiguous from ex-
amples. If a repository contains both code fragments and
natural language descriptions of their purpose, the program-
ming environment can learn how characteristics of the code
relate to characteristics of their descriptions.

The backend of the Zones system, called ProcedureSpace,
aims to relate two kinds of incomplete knowledge: purpose de-
scriptions and code fragments. The knowledge about purpose
descriptions is incomplete both because they are ambiguous
to begin with and because the system has a very incomplete
understanding of the natural language itself: the system may
not have sufficient knowledge about a particular word used,
or the words may be combined in an unfamiliar way. And
knowledge about the code is incomplete in that it is generally
not known what parts of the code are relevant to accomplish-
ing the goal and what parts are merely implementation details.
However, associations between code fragments and purpose
descriptions disambiguate each other: ProcedureSpace, in
effect, learns about purpose descriptions from the code they
describe, and learns about code by studying how people de-

chase

(forever
 (pointTowards: "mouse")
 (forward: 10))

forever > pointTowards:
forever > forward:
pointTowards: ~ forward:

follow kind of movement

opposite of lead

natural language
descriptions

background knowledge

code fragments static analysis

Figure 1. A representation of the words “follow” or “chase”
that blends natural language and programming language

scribe its purpose. ProcedureSpace additionally uses semantic
background knowledge about English words and phrases to
help understand the natural language descriptions. The rea-
soning approach of ProcedureSpace is not formal logic but
an application of a new technique called Blending [Havasi
et al. 2009], enabling the easy use of a variety of different
kinds of knowledge, so long as they can be made to overlap.

ProcedureSpace reasons jointly over, and induces relation-
ships between, many different kinds of data: code purpose
descriptions, static characteristics about the code itself, and
natural language background knowledge, both general and
domain-specific. As Figure 1 shows, ProcedureSpace under-
stands words like “follow” and “chase” by relating them to
commonsense background knowledge (such as “follow is a
kind of movement”), examples of code that people have said
causes something to chase something else, and common char-
acteristics of the structure of that code. This paper does not
seek to establish that these kinds of data are necessary and
sufficient for a natural language code reuse system, but rather
to show how these disparate kinds of data can be related by
an automatic process.

1.3 Scratch
While assisted disambiguation is applicable to a broad va-
riety of programming scenarios, we focus in this paper on
novice programmers. Our environment for these experiments
is Scratch, a graphical programming language designed for
use primarily by children and teens, ages 8 to 16 [Resnick
et al. 2003]. Scratch programming language components are
represented by blocks that fit together like puzzle pieces to
form expressions; stacking code blocks vertically causes them
to execute in sequence. Scratch code is mostly comprised of
concrete instructions that cause sprites to move around a
stage, change their appearance, play sounds, or manipulate
a pen, in response to various input including keyboard and
mouse. The language includes control flow, Boolean, and
mathematical statements, as well as sprite- or project-scoped
variables. While the language lacks procedures or functions
in the traditional sense, the event handler design makes con-
current modularity idiomatic and greatly simplifies task coor-
dination. This makes a large amount of code reusable without
significant modification. Though the specific techniques of
this paper are somewhat tailored to the specific representa-

2 2010/5/1

tions of Scratch, the general approach should be adaptable to
other languages as well.

One main reason we chose to use Scratch for these initial
experiments is the ready availability of a large quantity of
potentially reusable code fragments. Scratch projects all have
the same general structure, and project context has a limited
effect on the behavior of individual lines of code, so Scratch
code tends to be a priori more reusable, despite the general
lack of software engineering discipline in the programmer
community. The Scratch website[Monroy-Hernández and
Resnick 2008] hosts over 300,000 projects, many already
reusing code from other projects, all shared under a free
software license. A quality-filtered sample of 6376 projects
was used as the corpus for these experiments. Many of these
projects are simple video games, so that domain will figure
strongly in our examples.

2. Zones
Zones is our system for assisting disambiguation through
purpose-oriented code reuse. A Zone is an active comment
that associates a block of code with a brief natural language
description of its purpose—“What’s this for?” Programmers
can describe the purpose however they think about it; the
description need not be precise, comprehensive, or even
grammatical. There’s one recommendation: by only giving
one line, the Zones UI encourages descriptions to be short.
Figure 2a shows an example where a programmer has used a
Zone to annotate a short section of Scratch code.

Omitting either the purpose or the code turns annotation
into search. You can simply type an English statement of
purpose, then the system searches for code that accomplishes
that purpose (see Figure 2b). Alternatively, you can mark
some code and then search, which means: find what purpose
code like this generally serves (see Figure 2c).

Once an annotation or search is complete, it is added to
the code fragment database, adding a new code fragment or a
new way of explaining an existing one. The next programmer
to look for related code fragments or purposes will benefit
from the added code.

3. ProcedureSpace
How can we find code in a corpus given a natural language
description of what purpose it should accomplish? The chal-
lenges facing this search task include differences in annota-
tion word choice, variations in level of description detail, and
sparsity of relevant annotations. ProcedureSpace, the backend
for the Zones programming interface, takes a novel approach
to this problem. It reasons jointly over code and words (or
phrases) and incorporates additional information about how
both the code and the words that apply to it may be related.
The result is a representation that unifies syntactic knowl-
edge about programs with semantic knowledge about goals.
The ProcedureSpace technique not only improves answers
to traditional code-search questions, but enables new types

of questions, such as: What annotations might apply to this
code? What other code is similar in purpose to this?

ProcedureSpace works with six datasets that connect five
different types of data: English concepts, relations between
them, English purpose descriptions, code, and structural char-
acteristics of that code. Table 3 summarizes these datasets.

3.1 Code Static Analysis
While many advanced techniques have been developed for
static source code analysis, ProcedureSpace uses a deliber-
ately simplified approach, focusing instead on combining
static code analysis with natural language. The result will be
akin to a quick glance at the code, rather than an in-depth
study. The basic goal of the code analysis is similarity detec-
tion: two annotations might be similar if the code fragments
they apply to are similar. For example, many different exam-
ples of code that handles gravity (or “falling”) all include
a movement command conditioned on touching a color in
the sky (or not touching a color on the ground). In other
languages, such features could also include type constraints
(e.g., “returns an integer”) or environmental constraints (e.g.,
“uses synchronization primitives”).

In extracting structural features, ProcedureSpace treats
the code as a simplified syntax tree. For each code fragment,
ProcedureSpace extracts various types of simple structural
features about what kinds of code elements are present and
how they are related:

Presence A particular code element is present somewhere in
the fragment

Child A code element is the direct child of another code
element

Containment A code element is contained within another
code element, either as a parameter or as the body of a
conditional or looping construct

Clump A clump of code elements occur in sequence

Sibling A particular code element is the sibling (ignoring
order) of another code element

Within these types of features, it is not necessary to
enumerate all possible features beforehand. Rather, for each
feature type, an extraction routine generates all the features
of its type that apply to a particular code fragment.

Consider the code fragment in Figure 3, which makes a
sprite chase or follow another sprite. Table 3c shows examples
of the code structural features extracted for the example code.

We then construct a matrix CS that relates code fragments
to the structural features they contain. The rows of CS are
the 14145 distinct code structure features that were extracted;
the columns are the 127473 analyzed code fragments. (The
order of the rows and columns does not matter for this
kind of analysis.) An entry CS(feature, fragment) is 1
if fragment has feature, 0 otherwise. To keep long code
fragments with large numbers of features from having a

3 2010/5/1

(a) A Zone (black rectangle) describes
the purpose of some Scratch code.

(b) Given an goal, the Zone browser shows code that
might fulfill it. Selecting an implementation from the
list on the left shows its code on the right. Red boxes
surround values that vary among otherwise similar code,
highlighting what might need to be changed.

(c) The Zone can suggest
possible annotations for a
code fragment. The pro-
grammer clicks to open the
Zone browser (left), which
suggests possible annota-
tions

Figure 2. Types of interactions with Zones

Rows Columns
Description Kind # Kind # # Items
CS: code structure structural features 14145 code fragments 127473 2721689
AD: annotations purpose phrases 100 code fragments 126 174
AW : annotations as concepts words 143 code fragments 126 429
WC: words in code words 5639 code fragments 86519 208016
DS: domain-specific knowledge words 19 English features 20 24
CNet: ConceptNet words 12974 English features 87844 390816

Table 1. Descriptions and sizes of data going into ProcedureSpace in matrix form

(a) as presented in the
Scratch UI

(FlagHat
(doForever
(pointTowards: ”hero”)
(forward: 1)))

(b) internal S-expression for-
mat

Child doForever > pointTowards_

Containment FlagHat doForever

Containment FlagHat pointTowards_

Sibling forward_ ~ pointTowards_

Clump [forward_ pointTowards_]

Presence pointTowards_

(c) Selected structural features

Figure 3. Example “chase” code fragment, taken from “Enemy AI tutorial: Chase.”

disproportionate effect on the analysis, we normalize all code
fragments to have unit Euclidean norm. Here is the final
matrix CS:

CS = · · ·
Clump [forward_ pointTowards_] 0.27 0.27 · · ·

Presence EventHatMorph 0.11 0 · · ·
...

...
...

. . .

3.2 Annotations
The Zones front-end provides annotations that link code frag-
ments with a statement of purpose. A straightforward process
encodes these annotations as a matrix:AD(purpose, fragment)
counts the number of times that fragment was annotated
with purpose. The matrix was then tf-idf normalized, yield-
ing a final matrix:

AD = · · ·
Purpose mouse control 1.00 0 0 · · ·

Purpose chase 0 1.00 1.00 · · ·
...

...
...

...
. . .

The purposes are actually stored as (Purpose, purpose)
tuples to distinguish the full strings from extracted words,
which they will get mixed with later.

The initial annotations were entered by one of the authors.
In various types of interactions with users, including the user
study, other annotations were contributed.

3.3 Annotation Words
Ideally, every code fragment that a programmer would ever
want would be annotated exactly as he/she would describe
it. But in practice, only a small fraction of code may ever
be annotated, and the annotations rarely match exactly. This
section, discusses two other ways to glean linguistic data for
code fragments.

4 2010/5/1

“Bounce off platform,” “BouncePlatform,” “platform
bounce,” . . . are all different from the point of view of string
equality, but you don’t need much background knowledge
to know that they’re nonetheless highly semantically related.
To help these line up, we extract tokens from each purpose
description using standard natural language processing tech-
niques. We then construct another matrixAW using the same
process that constructed AD, i.e., AW (token, fragment)
counts the number of times that fragment was annotated
with a purpose string that contained token. Since the tokens
apply to the same code as the annotations that contain it, they
will come out similar in the analysis unless they also apply
to very different code. In either case, code that has related
tokens will be pulled together.

The token extraction is done with standard natural lan-
guage processing techniques: word splitting, case normal-
ization, automatic spelling correction, lemmatization, and
stopword removal. Each word of the result is treated as a
token, but any two-word subphrase that also appears in the
background knowledge sources (described below) is also
included.

AW = · · ·
mouse 0.58 0.58 0.58 0 0 · · ·
chase 0 0 0 0.71 0.71 · · ·

...
...

...
...

...
...

. . .

3.4 Identifiers
Next, ProcedureSpace also relates words to the code frag-
ments in which they occur, much like how a traditional search
engine indexes a corpus of documents. Specifically, we ex-
tract natural language tokens from identifiers in the code
fragments—names of variables and events that the program-
mer defined—to create a matrix WC. Tokens are extracted
using the same procedure as in the previous section, includ-
ing splitting underscore joined and camelCased strings. An
element WC(token, fragment) counts the number of oc-
currences of token in fragment.

Here is a representative sample, again tf-idf normalized:

WC = · · ·
score 0.35 0 · · ·

follow 0 7.93 · · ·
...

...
...

. . .

3.5 Background Knowledge
When people choose entirely different words to describe their
goals (and in user studies we found they often do), most
search systems would be left with no relevant results. But
ProcedureSpace incorporates background knowledge about
how words relate.

One kind of knowledge is knowledge specific to the target
domain. For Scratch, many projects are games, so helpful
domain-specific knowledge includes facts such as “arrow
keys are used for moving” and “moving changes position.”
Such knowledge would enable us to relate an annotation
about “arrow keys” with an annotation about “position,” for
example. The matrix DS encodes a small, manually entered
knowledgebase about simple games.

Another kind of knowledge is general world knowledge,
such as “balls can bounce” and “stories have a beginning.”
Without such knowledge, the system may be entirely un-
aware that an annotation of “bounce” may be relevant to find
code for “moving the ball.” ConceptNet [Speer et al. 2008]
provides a large database of broad intuitive world knowl-
edge, expressed in a semantic network representation (e.g.,
ball\CapableOf/bounce). Rarely is a single ConceptNet re-
lation a critical link in connecting two concepts; rather, the
broad patterns in ConceptNet, such as which features typ-
ically apply to things that people desire or can do, help to
structure the space of English concepts.

3.5.1 Matrix Encoding
Both ConceptNet and the domain-specific knowledge base
are expressed as triples: concept1\relation/concept2. To
form a matrix out of these triple representations, we use
the approach of AnalogySpace [Speer et al. 2008]: for each
triple, increment both (concept1, \relation/concept2)
and (concept2, concept1\relation/) The columns of
this matrix are called features. The double-encoding means
that arrow keys\UsedFor/moving, for example, contributes
knowledge about both “arrow keys” and “move.” For Con-
ceptNet, connections that the community rated more highly
are given greater weight; for the domain-specific knowledge,
all entries are weighted equally as 1.0.

3.6 Blending
To reason jointly across these many different kinds of data,
ProcedureSpace uses the Blending technique of [Havasi et al.
2009], which applies the dimensionality reduction methods
of AnalogySpace to matrices of data that express relations of
different kinds by taking advantage of the overlap between
them. To apply the Blending technique to a set of matrices
Di, line up the labels (filling in zeros for missing entries) and
add the matrices together:

A =
∑
i

αi MapLabels(Di)

where αi is a weighting factor, set manually in these exper-
iments. Then compute the Singular Value Decomposition
(SVD), truncating to k singular values:

A ≈ UkΣkV
T
k

The matrices Uk and Vk represent each row and column of A
as a vector giving its position along the k axes that represent

5 2010/5/1

ConceptNet

WC (Words in Code)

CS (Code Structure)

AD (Annotations)
AW (Annotations as Concepts)

E
n

g
lis

h
co

n
ce

p
ts

co
d

e
st

ru
ct

u
re

s

E
n

gl
is

h
co

n
ce

p
ts

(i
n
 C

o
n

ce
p
tN

et
 b

u
t

n
o

t
co

d
e)

code fragments

AW (Annotations
as Concepts)

DS (Domain Specific)

English features

E
n

gl
is

h
p

u
rp

os
e

d
es

cr
ip

ti
on

s

Figure 4. Coverage image for the ProcedureSpace matrix

the highest-variance dimensions of the data. The entries along
the diagonal of Σ specify how important each axis is.

An important parameter for the Blending technique is
the layout of the data matrices, since that determines which
elements overlap and thus how they can be related. Procedure-
Space uses a novel layout, called the transposed bridge blend
layout. CS relates code fragments to code structural fea-
tures, while background knowledge relates English concepts
to English features. The two domains would be entirely dis-
connected, except that the annotations link code fragments
to English concepts. Figure 4 shows where each entry in the
actual ProcedureSpace matrix comes from. Effectively, the
purpose annotations bridge the structural features derived
from static analysis with the natural language background
knowledge in ConceptNet.

3.7 Goal-Oriented Search
Once we have used blending to construct ProcedureSpace, the
search tasks required to power the Zones interface become
straightforward vector operations. Each entity is a vector
in the k-dimensional vector space: the U matrix gives the
position of each English word, purpose phrase, code feature;
the V matrix locates code fragments and English features.
Since that all entities are in the same vector space, search
operations can be expressed as finding vectors with high inner
products. To find the vector ~p of a query string composed of
English words wi, you simply sum the corresponding vectors:

~p =

n∑
i=0

U [wi, :]

where the : notation indicates a slice of an entire row. Then
to find how well that description may apply to a particular
code fragment, you take the dot product of ~p and that code

(a) “gravity” (b) “follow player”

Figure 5. Sample search results

fragment’s vector (given by its row in V). In general, the
weights for all code fragments are given by V ~p, considering
only rows of V that correspond to code fragments. The
code fragments with the highest values are returned as the
annotation search results, after filtering to remove code
fragments that differ only in the values of constants.

Likewise, to find possible annotations for a code fragment,
you extract its structural features fi, form a vector ~q =∑n

i=0 U [fi, :], and find the words or annotations whose
vectors have the highest dot product with ~q. Or, to find
which part of a given project performs a certain function,
you compare the ProcedureSpace vector for the purpose
description with the code fragments in that project.

3.8 Search Results
Users of our system searched for a variety of goals and
expressed them in a variety of ways. Figure 5 shows selected
results for some queries that users performed. The first search,
“gravity,” returns a code fragment that was annotated “gravity,”
illustrating that the indirect reasoning through code structure
and natural language background knowledge rarely disturbs
exact matches. For “follow player,” neither of the two results
were exact annotation matches. The example code from
Figure 3 was annotated “follow”, but the first result is one that
matches both those code features and the word “follow.” The
second match is very interesting because it inexactly matches
at least two different kinds of data. The only common code
structure is the presence of pointTowards:, which evidently
ProcedureSpace found to be associated with following. But
many code fragments contain pointTowards:; evidently
this one was chosen because it also contained the word
chase. Using a combination of common annotation data
and background knowledge, ProcedureSpace related “follow”
(the query word) and “chase,” and used this relationship to
find a code fragment that is very different than what was
annotated but nonetheless relevant.

4. User Experience
“Searching by goal is a really different way of programming,”
said one participant in our preliminary user study. All partici-
pants in our two-task user study successfully used the Zones
interface to find code that they could use in their project, and
annotated both new and existing code in a variety of ways. We

6 2010/5/1

were surprised by the number of different ways that people
learned from their interactions with Zones.

The study was designed to address the question: Does
the Zones interface (both concept and implementation) help
programmers make and use connections between natural
language and programming language? First, participants
were familiarized with interacting with the Zones interface
by annotating code and adding functionality to an example
project. All participants were able to successfully use the
Zones interface to annotate code.

The second part investigated how participants described
behaviors that they observed by interacting, and evaluated
whether they could (and would want to) use Zones searches
to find code that performed those behaviors.

All participants were able to successfully imitate at least
one behavior with the help of reused code from Zones.
Finally, all participants left Zone searches as new annotations,
validating our search-as-annotation paradigm.

Though participants reused some code exactly, much more
frequently the code fragments would guide their thinking
or point out Scratch functionality that they could use. One
participant saw a glide (timed movement) command in a
search result, and exclaimed: “Oh, it could be gliding. . . I
forgot [about] the glide function.”

We were surprised by the number of different ways that
people learned from their interactions with Zones. In one
episode, a novice programmer corrected a flaw in his under-
standing of code while studying the search results for the
annotation he was about to give it. A more experienced par-
ticipant reported that the Zones interface forced her to think
from a higher-level perspective. Frequently, participants ap-
preciated learning something from seeing another person’s
code, even if their goals were different or their understand-
ing incomplete. And after the study, most participants took
extra time to talk about how interesting the system and the
underlying idea was to them.

5. Related Work
5.1 Code Search Systems
Code search systems can be distinguished by how program-
mers can query them. [Reiss 2009] includes a good survey of
code search techniques, including formal specifications, type
systems, design patterns, keywords, ontologies, tagging, and
test cases. However, these code search systems have limited
ability to reason about purposes that can be accomplished
in a variety of ways, and their understanding of natural lan-
guage is limited at best. ProcedureSpace uses annotations
to reason about purposes and leverages both general and
domain-specific natural language background knowledge.

A task switch away from development to even a good
search engine can be distracting. [Fry 1997] and [Ye 2001]
introduce the paradigm of reuse within development, linking
code search into the IDE based on both comment keywords

and function signatures. Many systems are now integrated; a
state-of-the-art example is Blueprint [Brandt et al. 2009].

Search-oriented systems like CodeBroker and Blueprint
only directly benefit consumers of reusable software; users
still have to publish their completed code manually. Zones
makes it natural to share adapted or newly written code.

5.2 Programming in Natural Language
Natural language has often been seen as desirable as a high-
level specification or programming language because it is
a natural medium for communicating goals and ideas with
a human collaborator. Various attempts have been made to
interpret natural language as computer instructions directly,
from COBOL to SQL to several modern attempts, includ-
ing Pegasus [Knöll and Mezini 2006]. However, since pro-
grams must execute unambiguously, many previous attempts
at natural language programming have required the use of
unnaturally precise wording. Natural language representa-
tions of program present many challenges, but we think that
managing ambiguity is a core challenge that has not yet re-
ceived sufficient attention. Several projects have informed our
thinking in this regard. Keyword Programming [Little and
Miller 2007] matches keywords to commands and types in
a function library. It is a useful tool for managing ambiguity
on a low level: when a programmer know what keywords
should appear in a line of code but not exactly how code is
formed using these keywords, the Keyword Programming
system can use search and type chaining techniques to dis-
ambiguate the keyword representation of that line of code.
However, the programmer’s thinking must still be precise
enough to use keywords. Metafor [Liu and Lieberman 2005]
and its successor MOOIDE [Lieberman and Ahmad 2010]
use sentence structure and mixed-initiative discourse to under-
stand compound descriptions. MOOIDE further showed that
general background world knowledge helps to understand
natural language input. ProcedureSpace opens the possibility
for these natural-language programming systems to scale by
learning both statically from a corpus of code and dynami-
cally through the Zones user interface. While Zones currently
does not use natural language dialog, it could be very helpful,
especially as we explore assisted disambiguation interactions
that are longer than a single step.

5.3 Formal Specifications
There has been a lot of work in software engineering on the
idea of formal specifications of code [Diller 1990; Hierons
et al. 2009]. This body of work shares with us the idea
of having some representation of the purpose of code at
a higher, declarative level, that is independent from the
code itself. It also has the ambition to provide algorithmic
help to the programmer in assuring that the code meets the
specification, or at least drawing the programmer’s attention
to discrepencies between the two representations. But formal
specifications are expressed in a mathematical language that
most programmers find difficult to write. Such languages are

7 2010/5/1

also entirely unsuitable for beginning programmers, which
are our target user community here.

Our aim is not to assure the code does what the specifi-
cations say, but to give the programmer access to a body of
alternative implementations of the specifications, and also
the novel capability of reasoning backward from the code
to specifications. By allowing programmers to express what
may indeed be informal specfications in natural language,
we hope to improve the accessibility of specifications as a
programming methodology.

Logical reasoning systems used by formal specification
tools have the advantage that they provide mathematical as-
surance of the validity of implementations. The downside
is that their reasoning is not applicable to many practical
programming problems. The Commonsense inference used
by our system is good at making plausible inferences effi-
ciently across a wide variety of programming situations, but
it provides no guarantee of correctness.

6. Conclusion
Some think that programming is a constant war whose
goal is to banish ambiguity from computer interaction. We
think that ambiguity, especially of natural language, plays
a vital role in the programming process, so programming
environments should help programmers work with it. Our
suggested interaction paradigm, assisted disambiguation,
could help programmers to better understand their intent
for a program and to manage the relationship between their
intent and the more precise representations necessary for
the computer to realize their intentions. Representing intent
in natural language helps programmers avoid premature
commitment to low-level decisions about procedures and
representation. Our aim is to call a truce between natural
language and programming languages.

We illustrate our suggestions with a prototype purpose-
oriented code reuse system. Its frontend, called Zones, demon-
strates an integrated interface for connecting natural language
with Scratch code fragments to make comments that help pro-
grammers find and share code. The ProcedureSpace backend
demonstrates important concepts in how to relate ambigu-
ous and unambiguous representations as it reasons jointly
over static code analysis, Zones annotations, and background
knowledge to find relationships between code and the words
people use to describe what it does.

Marvin Minsky said, “If you understand something in
only one way, you don’t understand it at all”. We believe
that understanding programming both by natural language
descriptions and by programming language code, we can
come closer to really understanding what we want computers
to do.

Acknowledgments
We thank Andrés Monroy-Hernández and Rita Chen for pro-
viding the parsed Scratch projects, Rob Speer and Catherine

Havasi for helping with the Blending technique, and all our
user study participants for their valuable input.

References
J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer.

Example-centric programming: Integrating web search into the
development environment. Technical report, CSTR-2009-01,
2009.

A. Diller. Z: An Introduction to Formal Methods. John Wiley &
Sons, Inc., New York, NY, USA, 1990. ISBN 047192489X.

C. Fry. Programming on an already full brain. Com-
mun. ACM, 40(4):55–64, 1997. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/248448.248459.

C. Havasi, R. Speer, J. Pustejovsky, and H. Lieberman. Digital Intu-
ition: Applying common sense using dimensionality reduction.
IEEE Intelligent Systems, July 2009.

R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Der-
rick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause,
G. Lüttgen, A. J. H. Simons, S. Vilkomir, M. R. Woodward,
and H. Zedan. Using formal specifications to support testing.
ACM Comput. Surv., 41(2):1–76, 2009. ISSN 0360-0300. doi:
http://doi.acm.org/10.1145/1459352.1459354.

R. Knöll and M. Mezini. Pegasus: first steps toward a naturalistic
programming language. In OOPSLA ’06: Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, pages 542–559, New
York, NY, USA, 2006. ACM. ISBN 1-59593-491-X. doi:
http://doi.acm.org/10.1145/1176617.1176628.

H. Lieberman and M. Ahmad. Knowing what you’re talking about:
Natural language programming of a multi-player online game.
In M. Dontcheva, T. Lau, A. Cypher, and J. Nichols, editors,
No Code Required: Giving Users Tools to Transform the Web.
Morgan Kaufmann, 2010.

G. Little and R. C. Miller. Keyword programming in Java. In ASE
’07: Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pages 84–93,
New York, NY, USA, 2007. ACM. ISBN 978-1-59593-882-4.
doi: http://doi.acm.org/10.1145/1321631.1321646.

H. Liu and H. Lieberman. Programmatic semantics for natural
language interfaces. In CHI ’05: CHI ’05 extended abstracts
on Human factors in computing systems, pages 1597–1600,
New York, NY, USA, 2005. ACM. ISBN 1-59593-002-7. doi:
http://doi.acm.org/10.1145/1056808.1056975.

A. Monroy-Hernández and M. Resnick. Empowering
kids to create and share programmable media. inter-
actions, 15(2):50–53, 2008. ISSN 1072-5520. doi:
http://doi.acm.org/10.1145/1340961.1340974.

S. P. Reiss. Semantics-based code search. In ICSE ’09: Pro-
ceedings of the 2009 IEEE 31st International Conference on
Software Engineering, pages 243–253, Washington, DC, USA,
2009. IEEE Computer Society. ISBN 978-1-4244-3453-4. doi:
http://dx.doi.org/10.1109/ICSE.2009.5070525.

M. Resnick, Y. Kafai, and J. Maeda. A networked, media-rich
programming environment to enhance technological fluency at
after-school centers in economically-disadvantaged communities.
Proposal to National Science Foundation, 2003.

8 2010/5/1

R. Speer, C. Havasi, and H. Lieberman. AnalogySpace: Reducing
the dimensionality of common sense knowledge. Proceedings of
AAAI 2008, October 2008.

Y. Ye. Supporting Component-Based Software Development with
Active Component Repository Systems. PhD thesis, University of
Colorado, 2001.

9 2010/5/1

