
How to Wreck a Nice Beach You Sing Calm Incense

Henry Lieberman, Alexander Faaborg, Waseem Daher, José Espinosa
MIT Media Laboratory
20 Ames St., Bldg E15

Cambridge, MA 02139 USA
lieber@media.mit.edu, faaborg@media.mit.edu, wdaher@mit.edu, jhe@media.mit.edu

ABSTRACT
A principal problem in speech recognition is distinguishing
between words and phrases that sound similar but have
different meanings. Speech recognition programs produce a
list of weighted candidate hypotheses for a given audio
segment, and choose the "best" candidate. If the choice is
incorrect, the user must invoke a correction interface that
displays a list of the hypotheses and choose the desired one.
The correction interface is time-consuming, and accounts
for much of the frustration of today's dictation systems.
Conventional dictation systems prioritize hypotheses based
on language models derived from statistical techniques
such as n-grams and Hidden Markov Models.
We propose a supplementary method for ordering
hypotheses based on Commonsense Knowledge. We filter
acoustical and word-frequency hypotheses by testing their
plausibility with a semantic network derived from 700,000
statements about everyday life. This often filters out
possibilities that "don't make sense" from the user's
viewpoint, and leads to improved recognition. Reducing the
hypothesis space in this way also makes possible
streamlined correction interfaces that improve the overall
throughput of dictation systems.

Author Keywords
Predictive Interfaces, Open Mind Common Sense, Speech
Recognition.

ACM Classification Keywords
H.5.2 User Interfaces: input strategies.
I.2.7 Natural Language Processing: Speech recognition and
synthesis

INTRODUCTION
Errors in text generated by speech recognition are usually
easy for people to spot because they don’t make sense.
Even a well trained speech recognition system will
occasionally produce a nonsensical (but phonetically
similar) word or phrase. For instance, the phrases

“recognize speech using common sense” and “wreck a nice
beach you sing calm incense” while phonetically similar,
are contextually very different. Because of this, acoustic
analysis alone is not enough to accurately recognize
speech. Speech recognition systems must also take into
account the context of what the user is saying. Previous
approaches to this problem have relied only on statistical
techniques, calculating the probability of words appearing
in a particular order.
We propose a new solution, using Commonsense
Knowledge to understand the context of what a user is
saying. A speech recognition system augmented with
Commonsense Knowledge can spot its own nonsensical
errors, and proactively correct them. Previously this
approach has been successfully applied to similar problem
of predictive text entry [12].
We have found that by filtering out hypotheses that don’t
make sense, we can improve overall recognition accuracy,
and improve error correction user interfaces.

Previous Work
Previous approaches, surveyed by Jelinek, have used
statistical language models, based on such techniques as
Hidden Markov Models, and n-grams [1,2,3]. These
models calculate the probability of each word in a
vocabulary appearing next, based on the previous sequence
of words. Kuhn adapted these models to weigh recently
spoken words higher, improving accuracy [4]. He found
that a recently spoken word was more likely to appear then
either its overall frequency in the language or a Markov
Model would suggest. Even with the best possible
language models, these methods are limited by their ability
to represent language statistically. In contrast, we propose
using Commonsense Knowledge to solve the context
problem with semantics in addition to statistics.

Open Mind: Teaching Computers the Stuff we All Know
Since the fall of 2000 the MIT Media Lab has been
collecting commonsense facts from the general public
through a Web site called Open Mind [5,6]. At the time of
this writing, the Open Mind Common Sense Project has
collected over 700,000 facts from over 14,000 participants.
These facts are submitted by users as natural language
statements of the form “tennis is a sport” and “playing
tennis requires a tennis racket.” While Open Mind does
not contain a complete set of all the common sense facts

found in the world, its knowledge base is sufficiently large
enough to be useful in real world applications.
Using natural language processing, the Open Mind
knowledge base was mined to create ConceptNet [7], a
large-scale semantic network currently containing over
300,000 nodes. ConceptNet consists of machine-readable
logical predicates of the form: [IsA “tennis” “sport”] and
[EventForGoalEvent “play tennis” “have racket”].
ConceptNet is similar to WordNet [8] in that it is a large
semantic network of concepts, however ConceptNet
contains everyday knowledge about the world, while
WordNet follows a more formal and taxonomic structure.
For instance, WordNet would identify a dog as a type of
canine, which is a type of carnivore, which is a kind of
placental mammal. ConceptNet identifies a dog as a type
of pet [7].
ConceptNet allows software applications to understand the
relationships between concepts in thousands of domains.
And this domain knowledge can be leveraged by speech
recognition engines to understand that “I bought my dog in
a pet shop” makes more sense then the phonetically similar
phrase “I bought my dog in a sweatshop.”

Re-Ranking the Candidate Hypotheses List
Our implementation accesses the Microsoft Speech Engine
using the Microsoft Speech SDK 5.1. The application
retrieves the Microsoft Speech engine’s hypotheses for
each speech utterance, and re-ranks the list based on the
semantic context of what the user has previously said, using
ConceptNet. Hypotheses that appear in the concepts
context are moved toward the top of the list.
For instance, if the user says “my bike has a squeaky
brake.” The Microsoft Speech Engine often predicts the
final word to be “break,” (as in “to break something”).
However, by using ConceptNet to understand the context
of bike (which includes concepts like: tire, seat, wheel,
pedal, chain… and brake), our application is able to
correctly guess that the user meant the physical “brake”.
This is shown in Figure 1.

Figure 1: Re-Ranking the Candidate Hypotheses List

This example disambiguates between two words that are
phonetically identical, (“break” and “brake”), but the
approach also works well for disambiguating words that are
phonetically similar (like “earned” and “learned”).

EVALUATION
In a preliminary test, 3 subjects completed a 286-word
dictation task. Their error correction interface contained a
list of alternative hypotheses, and an “undo” button, which
allowed them to dictate a phrase again. Each subject
trained the speech recognition engine before running the
experiment. After one initial training session, subjects
were allowed to familiarize themselves with the error
correction user interface. All subjects dictated the same
text. We logged the ranking of alternative hypotheses for
each speech utterance, the number of times the subject
clicked the “undo” button, and the dictation time. After the
subjects completed the dictation task, we analyzed their
error logs to see if the augmented speech engine would
have prevented the mistakes from occurring. We analyzed
the error logs instead of directly testing our augmented
speech recognition engine to control for the variability of
acoustic input. We found that using Commonsense
Reasoning to re-rank the candidate hypotheses would have
prevented 17% of the errors from occurring, which would
have reduced overall dictation time by 7.5%.
Additionally, we found that when subjects used the error
correction interface, if the correct hypothesis appeared
toward the bottom of the list they would often click the
“undo” button and say the phrase again instead of reading
the entire list. Because of this, we have found the
augmented speech engine to be more efficient. Even if the
first hypothesis is still incorrect, re-ranking the candidate
hypotheses improves the error correction interface.
Commonsense Reasoning helps speech recognition engines
make better mistakes.

DISCUSSION
Previous techniques have focused on low-order word n-
grams, where the probability of a word appearing is based
on the n-1 words preceding it. The first difference between
our approach and n-grams is the corpus being used. In our
case the corpus consists of Commonsense Knowledge.
While it is certainly possible to use an n-grams approach on
a training corpus of Commonsense Knowledge, there are
also many differences in how these two approaches
function. The n-grams approach is a statistical technique
based on frequency of adjacent words. Because n is
usually 2 or 3 (referred to as bigrams and trigrams), this
approach cannot take into account the context of what the
user is saying beyond a three word horizon. To take into
account more context, n would need to be increased to a
larger number like 10. However, this results in intractable
memory requirements. Given a training corpus containing
m words, the n-grams approach where n equals 10 would
require storing a lookup table with (in the worst case) m10
entries. The n-gram approach is usually trained on a corpus
where m is in the millions. Commonsense Reasoning is
able to escape these intractable memory requirements
because (1) our training corpus is smaller, and (2) our
parser dose more natural language processing. To look at
an example, consider determining the last word in this
sentence: “buy me a ticket to the movie, I’ll meet you at the

(thée әtәr)”. The Commonsense Reasoning approach
notices the words ticket and movie, and uses ConceptNet to
look up the context of these two words (which returns list
of about 20 words), it then concludes “theater” is the best
guess. An n-grams approach would need to look up every
other instance of this sentence before it could form its list
of candidate hypotheses.
In addition to being more efficient, processing speech
based on semantics may also be closer to how the human
brain completes the task. Acero, Wang and Wang note that
“Shortly after a toddler is taught that “dove” is a bird, she
has no problem in using the word dove properly in many
contexts that she hasn’t heard before; yet training n-gram
models require seeing all those n-grams before” [10]. The
n-gram model, unlike semantics, does not generalize.

Improving Speech Recognition User Interfaces
Current speech recognition error correction interfaces
require the user to read a list of candidate hypotheses and
then make corrections by saying “pick n” (where n is the
number of the correct word). The error correction interface
for IBM’s ViaVoice [11] is shown in Figure 2. Reading
this list of hypotheses is time intensive, and slows down the
rate at which users can dictate text.

Figure 2: IBM ViaVoice’s Error Correction Interface

By using Commonsense Reasoning to order this list, the
correct hypothesis is more likely to appear in the first
several options. This allows the user to simply say “oops”
and the incorrect word is replaced by the next hypothesis.
Since the user’s attention does not have to shift to the error
correction window, they will not have to perform a visual
search of the candidate hypotheses. This increases the
overall rate at which users can dictate text, and streamlines
the interface.

CONCLUSION
By using ConceptNet, a vast semantic network of
Commonsense Knowledge, we are able to reduce the
number of nonsensical errors produced by speech
recognition engines. This increases overall accuracy, and

can be used to streamline speech recognition error
correction interfaces, saving user’s time.

ACKNOWLEDGMENTS
The authors would like to thank Push Singh and Hugo Liu
for their helpful feedback and for breaking new ground
with Open Mind Common Sense and ConceptNet.

REFERENCES
1. Jelinek, F., Mercer, R.L., Bahl, L.R. A Maximum

Likelihood Approach to Continuous Speech
Recognition. IEEE Journal of Pattern Analysis and
Machine Intelligence (1983); and Readings in Speech
Recognition, A. Waibel, K.F. Lee, (eds.) pages 308-
319. Morgan Kaufmann Publishers, San Mateo, CA.
(1990).

2. Jelinek, F. The Development of an Experimental
Discrete Dictation Recognizer. Proc. IEEE, Vol. 73, No.
11, pages 1616-1624. (1985).

3. Jelinek, F. Training and Search Models for Speech
Recognition. Voice Communication between Humans
and Machines. Roe, D. Wilpon, J. (eds.) Pages 199-214.
Washington D.C.: National Academy Press. (1994).

4. Kuhn, R. Speech Recognition and the Frequency of
Recently Used Words: a Modified Markov Model for
Natural Language. Proceedings of the 12th conference
on Computational linguistics - Volume 1. pages 348-
350. Budapest, Hungry. (1988)

5. Singh, P. The Open Mind Common Sense project.
KurzweilAI.net:
http://www.kurzweilai.net/meme/frame.html?main=/arti
cles/art0371.html (2002)

6. Singh, P. The Public Acquisition of Commonsense
Knowledge. Proc. 2002 AAAI Spring Symposium on
Acquiring (and Using) Linguistic (and World)
Knowledge for Information Access, 47-52.

7. Liu, H. and Singh, P. ConceptNet: A Practical
Commonsense Reasoning Toolkit. BT Technology
Journal. Kluwer. (2004)

8. Fellbaum, C. WordNet: An Electronic Lexical
Database. MIT Press, Cambridge, MA, USA, (1998)

9. Microsoft Speech SDK 5.1 for Windows Applications:
http://www.microsoft.com/speech/download/sdk51/

10. Acero, A., Wang, Y., and Wang, K. A Semantically
Structured Language Model, in Special Workshop in
Maui (SWIM), Jan 2004

11. IBM ViaVoice: http://www.scansoft.com/viavoice
12. Stocky, T. Faaborg, A. Lieberman, H. A Commonsense

Approach to Predictive Text Entry, Conference on
Human Factors in Computing Systems CHI2004,
Vienna, Austria. (2004)

