
End-User Debugging for Electronic Commerce

Henry Lieberman and Earl Wagner
MIT Media Lab

20 Ames St
Cambridge, MA 02139 USA

{lieber, ewagner}@media.mit.edu

ABSTRACT
One of the biggest unaddressed challenges for the digital
economy is what to do when electronic transactions go
wrong. Currently, consumers are frustrated by interminable
phone menus and long delays to problem resolution.
Companies are frustrated by the high cost of providing
quality customer service.
We believe that many simple problems, such as mistyped
numbers or lost orders, could be easily diagnosed if users
were supplied with end-user debugging tools, analogous to
tools for software debugging. These tools can show the
history of actions and data, and provide assistance for
keeping track of and testing hypotheses.
We present Woodstein, a software agent that tracks user
interaction with e-commerce Web sites in a browser, and
relates the browsing events to a high-level model of
complex, multi-step processes such as purchases or account
transfers. Woodstein explains action steps and data in an
understandable form, visualizes action history, and aids in
exploration of possible hypotheses for the causes of errors.

THE PROBLEM:
E-COMMERCE WHEN THINGS GO WRONG

"Your call is important to us…
Please enter your 15-digit card number, your PIN...
if you're calling from a touch-tone phone, please press 6 for
customer service now,
… Customer service. This is Marie speaking, can I have your
card number?"

Electronic commerce is great – you log onto a Web site,
type in what you want to a search engine, fill out a simple
form on the Web, give your credit card number, and Fedex
brings you the stuff the next day. Simple, painless,
efficient, effective.
Except when it doesn't work. People inevitably mistype
numbers, misunderstand directions, or just click on the
wrong buttons. Vendors lose orders, confuse names,
computer systems crash. Then what?
More often than not, customers have to pick up the phone.
And they probably reach a phone tree where they're forced

to navigate through interminable menus, a tedious process
that might or might not give the right choice of problem to
be solved. It might give another phone number to be dialed.
It might ask for card numbers or transaction numbers that
aren’t readily at hand, and have to looked up offline. If
someone in customer service is successfully reached, that
person (often a low-paid worker in a high-pressure call
center) may specify tedious processes to be performed.
They may not be empowered to actually understand or fix
the problem themselves. Customers find themselves
bounced endlessly from one support person to another. All
of us have had these kinds of experiences.
Customer service problems are incredibly frustrating. Not
only do they cause frustration about the immediate
transaction, they also poison the relationship between
customers and vendors. Customers feel like they are being
deflected, that they are not being listened to, and that
vendors do not care about their time or about their
relationships. This casts a pall over future potential
relationships.
Nobody expects technology to be perfect, and people are
tolerant of mistakes and occasional failures, but what
drives people crazy is when they get "stuck" – left with no
obvious way to systematically go from having a problem to
understanding what is causing the problem and how to
resolve it.
But it isn't all the fault of the vendors. The problem is
difficult to fix simply by companies spending more money
on call centers, since human time, even if low paid, is
expensive. Many companies claim that, as soon as a
customer picks up the phone to call about a problem, they
have already lost money on that customer's relationship.
This problem is now becoming a major obstacle to further
adoption of e-commerce itself. Many people who now
choose brick-and-mortar shopping over e-commerce do so
simply to "have a face to talk to" in case of problems.
Again, the impact of the problem-resolution experience has
a disproportionate effect on the trust relationship between a
customer and vendor, and nowhere is the trust issue more
important than in electronic commerce.

A PROPOSED SOLUTION: E-COMMERCE DEBUGGING
Our proposed solution is provide the user with E-
Commerce Debugging Tools, that enable consumers to
solve many simple problems themselves from their
computers. The E-Commerce Debugger is analogous to a
programming language debugger used in software
development. It allows the user to investigate the causes of
an error by examining processes and data systematically at
varying levels of detail until the problem is discovered.
Debugging is detective work – generating hypotheses, and
testing them by a process of elimination. In the software
development area, we have developed some novel
interactive tools, described below, for supporting the
investigation involved in debugging.
Of course, software debuggers are used by expert
programmers and have interfaces designed to be used by
expert users. For e-commerce debugging tools to be
effective, they have to have user interfaces that are
designed for use by non-expert users, with simple
interfaces and ample explanation and visualization
facilities. While we don't expect e-commerce users to
understand software debuggers like experts do, we believe
that most people have enough ordinary common-sense
reasoning about cause-and-effect relationships to be able to
use the kinds of tools we propose.
An expert programmer is confident that no matter where a
bug might be, systematic investigation will almost always
find the problem if a fine enough level of detail is
examined. That gives them confidence in using the
technology. We hope to instill that level of confidence in
consumers who participate in e-commerce transactions. We
also intend, where the software tools prove inadequate, to
provide semi-automatic services that facilitate human-to-
human communication to resolve problems.
In the design of the interfaces, we employ ideas from our
experience in the intelligent software agent area, where
context and learning [8] can be used to automatically infer
what information is necessary, automatically find it when
available, and put relevant choices at the user's fingertips,
streamlining the user interface.
In the past, it would have been impossible to provide
practical e-commerce debugging tools because the raw
material that such tools would need – information about
transactions, user identification, vendor specifications,
payments, etc. would have been on paper. Now, since
much of it is accessible via user accounts on Web sites, it
has become practical to capture that information via Web
browsers, and to provide debugging facilities that operate
through the browsers.

A BROADER CONTEXT:
END USER-DEBUGGING TOOLS
We actually see this work in the context of a broader goal
of developing end-user debugging tools for all sorts of

computer interactions, not just for electronic commerce
transactions. Much lost time and frustration is experienced
by computer users dealing with the intricacies of installing
software, system maintenance, and problem solving with
specific applications. Why can't the computer itself know
what it is doing and help us solve the problems we are
having with it?
Why can't we ask a computer in any situation, "What are
you doing right now?", "Why are you doing that?" , "What
does this error message mean?", and other questions that
you might reasonably ask a knowledgeable human
assistant? If something goes wrong, why can't we trace the
problem back through the steps that led up to it? Why can't
we formulate hypotheses about what might have been
wrong, and test them until we get to the answer?
Many of the cognitive processes involved in diagnosis and
repair of electronic commerce situations have analogies in
many kinds of general system interaction as well. So we
think our results will generalize to many other areas of
computer interaction.
But electronic commerce is a good place to start, because
the transactions themselves are procedurally very simple,
compared to the operation of an operating system or
specialized application. People understand the basic
concepts of financial transactions, and since everyone
participates in such transactions, interfaces to deal with
them will find a wide audience.
The economic value of improving the situation is
enormous, and the business community has not so far
tackled the problem in a comprehensive way. Because
many actions involve multiple parties, such as an online
purchase involving the vendor, the consumer’s credit card
company and the shipping service, consumers need help
from tools that operate on their behalf, rather than on
behalf any particular vendor.
Further, we think the experience gained in end-user
debugging could also be fed back into debugging tools for
professional software developers. Since debugging
accounts for approximately half of all software
development costs, the potential economic payback is
enormous here, too. Because development of debugging
tools has so far been limited to expert professionals, we
believe that insufficient attention has been paid to the
usability of such tools, and we believe our usability
experience could benefit these situations as well.

THE STATE OF THE ART IN CUSTOMER SERVICE
In the business world, technology is being actively
deployed to improve customer service, but in fairly
conventional ways. Many transactions that used to require
phone conversations are now being conducted in electronic
mail. E-mail has advantages and disadvantages relative to
phone interactions. Sometimes it can be faster, sometimes
slower. E-mail facilitates tracking and forwarding requests

and retrieving past histories. However, e-mail often does
not permit real-time response to problems.

Figure 1: Viewing Credit Card Transactions

Customer support people are now supported by various
kinds of databases, loosely termed Customer Relationship
Management, or CRM [2]. CRM databases keep customer
information and allow customer support personnel to
readily access customer information. Interfaces are fairly
conventional database search engines.
There are also various ways of organizing problems and
solutions in databases. Frequently asked question (FAQ)
lists and problem databases are often posted on Web sites
and customers can look up answers themselves, as well as
support people. Again, access is via fairly conventional
search engines. More advanced are systems that organize
problems and solutions into discrimination nets such as
Answer Garden [1]. With one of these systems, the
customer is led down a series of questions that eventually
identify the possible source of a problem. This is often
effective, but depends on fully categorizing in advance the
possible problems and solutions. More advanced
techniques, using artificial intelligence techniques such as
case-based reasoning [13] have been tried in research
contexts, but are not widespread.

 All of these solutions are, of course, limited to a single
vendor's server systems. Consumers encounter problems
with multiple vendors and the only common feature may be
the consumer him or herself. We are developing client-side
agents that can have a global view of the situation.

A DEBUGGING SESSION WITH WOODSTEIN
Suppose that a month ago a user bought a book from a
small business on the web, Kung Fu Nation, for the first
time, then forgot about it. In looking at the credit card
statement for the previous month, the user notices that
there's a charge for the purchase, even though the book
hasn't arrived. The screen for the statement is shown in
Figure 1.

Some sophisticated software systems provide remote
diagnostics, so that a program on a vendor's machine can
look for particular problems on a customer's machine and
fixes can be automatically loaded. But this approach also
requires that problems are identified and solutions are
prepared in advance. Without Support from Tools, Debugging is Difficult
No present solution allows end-users to analyze the steps of
procedures while they are currently engaged in them and
investigate each step and data item independently as we
describe.

How can we understand why the book did not arrive? With
current technology, there are several possible ways to
investigate the situation, but all of them involve
considerable work. The user may have saved the purchase
confirmation to disk or printed it out. These would be
accessible if the user is organized but it's more likely that
the record of the purchase is lost. If the user remembers the
site, and his username and password for the site, then he
could log in to see a record of the purchase. However, even
these details are likely to be forgotten, and records of them
lost. Finally, the user could call the credit card issuer to
find out more about the charge and the merchant, but this
will almost certainly involve a spending a long time on the
phone.

INTRODUCING WOODSTEIN:
RELATING BROWSING TO PROCESS DESCRIPTIONS
Woodstein is a software agent that visualizes actions
performed by the user by interacting with web pages and
helps in debugging these actions. Woodstein uses a client-
side proxy to observe the interaction that the user has with
a sequence of Web pages, and tries to match the pattern of
interaction to process descriptions that describe complex,
multi-step actions such as purchases and account transfers.
Woodstein then provides explanation of the user's actions
in terms of the instantiated process descriptions. Woodstein
also permits inspection of relevant data items within a Web
page so that the user can understand the role of each item
in the overall history. The next section presents a typical
scenario of a problem in a consumer purchase.

History of Online Actions
Woodstein greatly simplifies this problem. It allows the
user to easily retrieve and inspect all aspects of this
purchase, including the original order, the processing of the
order and the delivery, without requiring explicit save and
load of records of each interaction. It is able to support the

user in this way because it automatically matches each Web
page to process descriptions of typical Web actions.
Process descriptions are analogous to program code:
Actions performed by buttons on Web pages are like
functions, and the data that the user fills out in forms are
analogous to arguments to these functions. It allows the
user to "debug" the action by examining the sequence of
steps taken by the web site, related steps taken at other web
sites, and the data affected by these actions. It then makes
these traces accessible whenever their data appears in pages
seen by the user.

Inspecting Data in Web Pages
As the user created an account and made the purchase,
Woodstein recorded the pages that the user interacted with,
and all of the data he or she entered. Even more
importantly, it makes its records easily accessible. In
monitoring pages as they are sent from the web server to
the user's browser, it automatically recognizes data related
to user actions. In this example, it recognized that a
purchase was taking place, the amount of the charge, the
date, the vendor and other information shown in the
transaction history.
Ordinarily, the user simply interacts with a page by
browsing or performing actions. Sometimes, however, the
user would like to ask about data shown in the page and
find out more about it including its history and data related

to it. In this case, the user would like to inspect the
purchase procedure that corresponds to the transaction
shown on the page. To allow that, Woodstein supports a
mode in which the user can inspect the page by clicking on
a watermark, the pyramid topped by an eye in the lower
right of the screen, added as part of the annotation. To find
out about the purchase, the user clicks on the watermark.
The first click opens Woodstein's action inspector which
shows the current action.

Figure 2: Inspecting Credit Card Transactions with Woodstein

Woodstein indicates that it recognizes that the user is
currently viewing his or her credit card's transaction
history. The second click on the watermark shows the data
that Woodstein recognized in the current page, as shown in
figure 2. Every recognized item is converted to a button
that may be clicked to see Woodstein's record for the data.
In this case, the user clicks on the price, $22.95, and
Woodstein’s inspector window updates, as shown in figure
3.

Woodstein shows its record of the purchase price in the
data inspector. It gives the value for the price variable and
the data structure for the transaction that the price is a part
of. In this case, the user wants to interact with the
transaction itself. A click on the transaction loads its record
in the data inspector. The history of the transaction is
accessed with another click. In the action inspector,

Woodstein replaces its record of the current action with its
record of the actions that the transaction was involved in,
as shown in figure 4.

In debugging this purchase, the user inspects the progress
of the action clicks on the triangle beside the purchase
description. This loads summaries of the steps of the
purchase. The last item indicates that the book still hasn't
arrived, because it reads "delivering" instead of

"delivered".

Figure 4: Inspecting Transaction

Figure 3: Inspecting Transaction Amount

User-Centered Explanations of Actions
Woodstein tries to explain actions in a form that will be
understandable to the user. Although the internal
representation of the action is like a function call, we
generate an English-like description that instantiates the
function call with the particular values that appear in this
instance. Woodstein supports debugging actions by
allowing the user to examine the steps that don't "look
right", or which have incorrect descriptions.

volved in, as shown in figure 4. Even though the user never
loaded the tracking page for the purchase, Woodstein
knows how to retrieve the tracking page because it's aware
of the structure of the action and because it was able to
identify the tracking number.. Clicking on this step loads
the tracking page, showing that the item still hasn't been
delivered, as shown in figure 5.

Support for Generating and Testing Hypotheses
Woodstein allows the user to develop hypotheses about
what went wrong, and analyze the record of the action to
determine what actually happened and where the error
occurred. In this particular scenario, the user may have
entered data incorrectly, or the vendor may have had a
problem in processing the order, or there may have been a
problem with the delivery. Without Woodstein, examining
these different possibilities would be annoying in the
simplest case and impossible in the most complex. Though
not all information is available, Woodstein goes a long way
in helping keep track of information about the user's
actions on the web.

Figure 5: Tracking page

Figure 6: Shopping cart showing shipping method

Although the status of the delivery is now known, the user
would like to know why the delivery is taking so long.
Another click on the first step of the purchase action loads
the original steps that initiated the purchase. Clicking on
the step in which the shipping type is set loads Woodstein's
saved copy of the page, as shown in figure 6. The user
instantly sees that the "extra-slow" shipping option with
Zeno's Delivery Service had been selected, explaining why
the delivery is taking such a long time.
The end result is that the system can automate many of the
tasks of looking up details of each transaction on myriad
Web sites and correlating transactions across accounts,
which otherwise would have to be performed manually.
While there may be problems that can’t be handled in this
manner, we believe that a wide range of problems are
amenable to this kind of solution, and it will result in much
faster problem resolution and more satisfied customers and
vendors.

TOOLS FOR MANAGING BUSINESS RELATIONSHIPS
We intend to make the user's transaction data useful in
other ways, besides directly explaining to the user how a
transaction has proceeded. We call these tools Business
Relationship Management, by analogy with Customer
Relationship Management. They could be viewed as a

component of the debugging system, but they are also
useful in their own right.

This data can also be put to use whenever the user is
required to provide information about a transaction. For
instance, if a user has to fill out a form on a web page
requesting help or more information, our system will
automatically identify and retrieve the relevant data and
enter it as the default values in the form for the user. Not
only will this ensure that the data is correct and consistent
with the rest of the transaction information, the user is
spared the burden of having to look up this information and
enter it manually. Simple facilities in Web browsers
currently help you fill out forms by making available the
last entries you typed, or matching to a pre-stored form,
but by tracking transactions we can provide more context-
sensitive prompts and completions.
As businesses increasingly require consumers to begin
interactions through the structured format of web pages, we
expect that users will benefit from tools that can act as a
guide in these interactions. By keeping track of the user's
information and making it available at relevant times and
locations, we intend to minimize the inconvenience they
face.

TOOLS FOR CUSTOMER SUPPORT PEOPLE
Sometimes, it won't be possible to completely solve a
problem from the user's perspective alone, because the
answer might depend on details of the process or data that
are internal to the vendor and that the user does not have
access to. In this case, he or she must resort to
communicating with a customer support person, via e-mail
or phone.
But similar tools may be made available to the customer
support person, so that that person can employ a similar
debugging strategy. The user's agent could communicate
automatically to the support person's agent, which could
instantly access the details of the problem, and see the
investigation the user has done thus far. Valuable phone
support time would not be wasted reciting account numbers
and retelling the story to different personnel in the case that
more than one support person needs to be involved. The
support person's interface could be far more detailed and
specialized to the industry and to the company than the
general public would be willing to tolerate. Typically, the
user does not want to need to know the details of the
company's internal process, but such knowledge might be
essential to solving the problem. The customer support
person could again benefit by breaking down the problem
into steps, verifying each independently, tracking the
history of individual data items, and so on.

DEBUGGING IN SOFTWARE DEVELOPMENT
Debugging is the dirty little secret of computer science.
Despite the fact that studies of programmers show that half

of the costs of software development are consumed in
debugging activities, there is precious little work in
computer science that explicitly seeks to make the
debugging process easier and more effective. Tools
available in today's commercial programming
environments are essentially unchanged from those that
appeared in programming environments thirty years ago:
function trace, breakpoints, line-by-line stepping.
Some of our past work has been aimed at understanding the
cognitive processes involved in debugging and building
explicit environments that provide operations that directly
answer the questions that people need to know to debug a
running program [5]. In contrast to the roles of current
tools, debugging from the perspective of the programmer
consists of the following cognitive processes:
_ Visualization: What's happening? How do I get an

overall feel for what's going on?
_ Localization: Where is the problem? What specific

step or piece of data is responsible?
_ Instrumentation: Trace or "audit" the history of a

particular event or piece of data.
_ Repair: What are the consequences of a proposed fix?

We think this breakdown between current tools and the
parts of debugging described above is largely a user
interface problem [4]. We will use many of the principles
that we have learned in constructing debugging
environments for software when developing our e-
commerce debugging environments, while taking into
account the essential differences between the e-commerce
domain and the programming domain.
ZStep [6] is one of a series of debuggers we have built that
aim to support these cognitive processes, especially
visualization and localization. ZStep is a reversible
debugger – it records every step of the execution of a
program and lets you run the program forward and
backwards.

THE ZSTEP REVERSIBLE SOFTWARE DEBUGGING
ENVIRONMENT
Some of ZStep's innovations include:
_ An animated view of program execution, using the

code editor
_ A window that displays values which follows the

stepper's focus
_ An incrementally-generated complete history of

program execution and output
_ Controls to run the program in forward and reverse

directions
_ Incremental control of the level of detail displayed
_ One-click access from graphical objects to the code

that drew them

_ One-click access from expressions in the code to their
values and graphical output

Many analogues of ZStep's features appear in Woodstein,
for example,
_ Animated views of execution of e-commerce actions
_ Display of action data correlated with focus in the

action history
_ Incrementally-generated history of action execution
_ Controls to run the action history in forward and

reverse directions
_ Incremental control of the level of detail displayed
_ One-click access from action values to the action

history that produced them
_ One-click access from action history to the

corresponding action data
Again, we stress that, although we are inspired by
approaches for software debugging, we are very conscious
that we are developing tools for non-expert users, and pay
very close attention to usability and accessibility for the
general public.

EVALUATION
There are two ways in which we would like to evaluate
Woodstein. First, an important question about Woodstein is
how successful we will be in recognizing that an
interaction with specific Web pages matches Woodstein's
task models, in cases where human judgment would
recognize a match. Further, can we match specific data
items within these pages to the arguments required by these
models?
To test this, we examined how successful Woodstein is in
recognizing data items in pages corresponding to user
action data it is already aware of. In preliminary tests with
a selection of typical Web pages, it recognized 62% of the
data items. We found that data items in an idiosyncratic
format, such as account numbers, and phone numbers and
addresses were most successfully recognized, while details
such as quantities were not. While this score does not show
high overall reliability for the recognition, it did result in
usable models for many of our test scenarios, and left the
user no worse off than standard browsers in the case that
transactions had to be debugged. To improve the
recognition, we also intend to incorporate a user training
facility that will allow it to easily recognize many of the
missed cases after a small amount of training. For more
details on the evaluation, see the companion paper [10].
A more comprehensive study would test Woodstein's entire
debugging interface with users against more conventional
tools for representative debugging tasks. We are currently
collaborating with customer service departments at two of
our sponsors, Mastercard and Intel, collecting typical
debugging scenarios. [Note to reviewers: We hope to have
some results from tests available by press time.]

RELATED WORK
No existing system that we are aware of directly attacks the
problem of end user debugging of electronic commerce
transactions or Web interactions. We have talked above
about antecedents of this work in software debugging and
in customer relationship management. We are also working
with Mark Klein [3] of the MIT Sloan School to bring to
bear existing work on business process descriptions and on
characterizing exceptions in business processes.
A companion paper [10] presents the tracking interface and
process visualization in more depth, and provides more
details concerning the evaluation.
The closest work to this in interface style and spirit is
Collagen [11]. Collagen tracks user activities in a desktop
application (for example, an airline reservation system) and
matches these activities to plan recognition and discourse
models. Collagen is like Woodstein in that the agent is
capable of recognizing commonly occuring high-level
goals by the concrete steps that the user is carrying out.
Collagen is more proactive, and the agent is represented as
a social actor in the interface and can take action directly
when authorized by the user. Such an approach might also
be possible for Woodstein. Woodstein provides
visualization and history browsing facilities that Collagen
does not, and Woodstein is explicitly focused on the
debugging task, while Collagen is more conversational, and
intended for normal operation rather than errors. However,
a synthesis of the two approaches might be fruitful.

REFERENCES
1. Ackermann, M. and D. MacDonald, Answer Garden 2;

Merging Organizational Memory with Collaborative
Help, ACM Conference on Computer-Supported
Collaborative Work, 1996.

2. Dyche, J., The CRM Handbook: A Business Guide to
Customer Relationship Management, Addison-Wesley,
Reading, MA, 2001.

3. Klein, M., A Knowledge-Based Approach to Handling
Exceptions in Workflow Systems. Journal of Computer-

Supported Collaborative Work. Special Issue on
Adaptive Workflow Systems. Vol 9, No 3/4, August
2000

4. Lieberman, H., Introduction and Guest Editor, Special
Issue on The Debugging Scandal, Communications of
the ACM, April 1997.

5. Lieberman, H., Ungar, D., Fry, C. Debugging and the
Experience of Immediacy, Communications of the
ACM, April 1997.

6. Lieberman, H., Fry, C. ZStep 95: A Reversible,
Animated, Source Code Stepper, in Software
Visualization: Programming as a Multimedia
Experience, John Stasko, John Domingue, Marc Brown,
and Blaine Price, eds., MIT Press, Cambridge, MA,
1997.

7. Lieberman, H., Integrating User Interface Agents with
Conventional Applications, Knowledge Based Systems
Journal, Vol. 11, No. 1, 1998, pp. 15-24.

8. Lieberman, H., Selker, T. Out of Context: Computer
Systems that Learn About, and Adapt to, Context, IBM
Systems Journal, Vol 39, Nos 3&4, pp.617-631, 2000.

9. Lieberman, H. and Fry, C. Will Software Ever Work?,
Communications of the ACM, March 2001.

10. Lieberman, H. and E. Wagner, Doing Stuff on the Web:
Tracking the Structure of Browsing Actions, submitted
to CHI 2003.

11. Rich, C., and Sidner, C. 1998. COLLAGEN: A
Collaboration Manager for Software Interface Agents.
User Modeling and User. Adapted Interaction 8(3-4):
315-350.

12. Riloff, E. and W. Lehnert, Information Extraction as a
Basis for High-Precision Text Classification ACM
Transactions on Information Systems, Vol 12. No. 3,
pp. 296-333, 1994.

13. Watson, I., Applying Case Based Reasoning:
Techniques for Enterprise Systems, Morgan Kaufmann,
San Francisco, 1997.

	ABSTRACT
	THE PROBLEM:
	E-COMMERCE WHEN THINGS GO WRONG
	"Your call is important to us…
	Please enter your 15-digit card number, your PIN...
	if you're calling from a touch-tone phone, please press 6 for customer service now,
	… Customer service. This is Marie speaking, can I�
	Electronic commerce is great – you log onto a Web
	Except when it doesn't work. People inevitably mistype numbers, misunderstand directions, or just click on the wrong buttons. Vendors lose orders, confuse names, computer systems crash. Then what?
	More often than not, customers have to pick up the phone. And they probably reach a phone tree where they're forced to navigate through interminable menus, a tedious process that might or might not give the right choice of problem to be solved. It might
	A PROPOSED SOLUTION: E-COMMERCE DEBUGGING
	Our proposed solution is provide the user with E-Commerce Debugging Tools, that enable consumers to solve many simple problems themselves from their computers. The E-Commerce Debugger is analogous to a programming language debugger used in software devel
	Debugging is detective work – generating hypothes
	Of course, software debuggers are used by expert programmers and have interfaces designed to be used by expert users. For e-commerce debugging tools to be effective, they have to have user interfaces that are designed for use by non-expert users, with si
	An expert programmer is confident that no matter where a bug might be, systematic investigation will almost always find the problem if a fine enough level of detail is examined. That gives them confidence in using the technology. We hope to instill that
	In the design of the interfaces, we employ ideas from our experience in the intelligent software agent area, where context and learning [8] can be used to automatically infer what information is necessary, automatically find it when available, and put re
	In the past, it would have been impossible to pro
	A BROADER CONTEXT:
	END USER-DEBUGGING TOOLS
	We actually see this work in the context of a broader goal of developing end-user debugging tools for all sorts of computer interactions, not just for electronic commerce transactions. Much lost time and frustration is experienced by computer users deali
	Why can't we ask a computer in any situation, "What are you doing right now?", "Why are you doing that?" , "What does this error message mean?", and other questions that you might reasonably ask a knowledgeable human assistant? If something goes wrong, w
	Many of the cognitive processes involved in diagnosis and repair of electronic commerce situations have analogies in many kinds of general system interaction as well. So we think our results will generalize to many other areas of computer interaction.
	But electronic commerce is a good place to start, because the transactions themselves are procedurally very simple, compared to the operation of an operating system or specialized application. People understand the basic concepts of financial transaction
	The economic value of improving the situation is
	Further, we think the experience gained in end-user debugging could also be fed back into debugging tools for professional software developers. Since debugging accounts for approximately half of all software development costs, the potential economic payb
	THE STATE OF THE ART IN CUSTOMER SERVICE
	In the business world, technology is being actively deployed to improve customer service, but in fairly conventional ways. Many transactions that used to require phone conversations are now being conducted in electronic mail. E-mail has advantages and d
	Customer support people are now supported by various kinds of databases, loosely termed Customer Relationship Management, or CRM [2]. CRM databases keep customer information and allow customer support personnel to readily access customer information. Int
	There are also various ways of organizing problems and solutions in databases. Frequently asked question (FAQ) lists and problem databases are often posted on Web sites and customers can look up answers themselves, as well as support people. Again, acc
	All of these solutions are, of course, limited to a single vendor's server systems. Consumers encounter problems with multiple vendors and the only common feature may be the consumer him or herself. We are developing client-side agents that can have a gl
	Some sophisticated software systems provide remote diagnostics, so that a program on a vendor's machine can look for particular problems on a customer's machine and fixes can be automatically loaded. But this approach also requires that problems are iden
	No present solution allows end-users to analyze the steps of procedures while they are currently engaged in them and investigate each step and data item independently as we describe.
	INTRODUCING WOODSTEIN:
	RELATING BROWSING TO PROCESS DESCRIPTIONS
	A DEBUGGING SESSION WITH WOODSTEIN
	Suppose that a month ago a user bought a book from a small business on the web, Kung Fu Nation, for the first time, then forgot about it. In looking at the credit card statement for the previous month, the user notices that there's a charge for the purch
	Without Support from Tools, Debugging is Difficult

	How can we understand why the book did not arrive? With current technology, there are several possible ways to investigate the situation, but all of them involve considerable work. The user may have saved the purchase confirmation to disk or printed it o
	History of Online Actions

	Woodstein greatly simplifies this problem. It allows the user to easily retrieve and inspect all aspects of this purchase, including the original order, the processing of the order and the delivery, without requiring explicit save and load of records of
	Inspecting Data in Web Pages

	As the user created an account and made the purchase, Woodstein recorded the pages that the user interacted with, and all of the data he or she entered. Even more importantly, it makes its records easily accessible. In monitoring pages as they are sent f
	Ordinarily, the user simply interacts with a page by browsing or performing actions. Sometimes, however, the user would like to ask about data shown in the page and find out more about it including its history and data related to it. In this case, the us
	Woodstein indicates that it recognizes that the user is currently viewing his or her credit card's transaction history. The second click on the watermark shows the data that Woodstein recognized in the current page, as shown in figure 2. Every recognized
	User-Centered Explanations of Actions

	Woodstein tries to explain actions in a form that will be understandable to the user. Although the internal representation of the action is like a function call, we generate an English-like description that instantiates the function call with the particu
	Support for Generating and Testing Hypotheses

	volved in, as shown in figure 4. Even though the user never loaded the tracking page for the purchase, Woodstein knows how to retrieve the tracking page because it's aware of the structure of the action and because it was able to identify the tracking nu
	Although the status of the delivery is now known, the user would like to know why the delivery is taking so long. Another click on the first step of the purchase action loads the original steps that initiated the purchase. Clicking on the step in which t
	The end result is that the system can automate many of the tasks of looking up details of each transaction on myriad Web sites and correlating transactions across accounts, which otherwise would have to be performed manually. While there may be problems
	TOOLS FOR MANAGING BUSINESS RELATIONSHIPS
	This data can also be put to use whenever the user is required to provide information about a transaction. For instance, if a user has to fill out a form on a web page requesting help or more information, our system will automatically identify and retrie
	As businesses increasingly require consumers to begin interactions through the structured format of web pages, we expect that users will benefit from tools that can act as a guide in these interactions. By keeping track of the user's information and maki
	TOOLS FOR CUSTOMER SUPPORT PEOPLE
	Sometimes, it won't be possible to completely solve a problem from the user's perspective alone, because the answer might depend on details of the process or data that are internal to the vendor and that the user does not have access to. In this case, h
	But similar tools may be made available to the customer support person, so that that person can employ a similar debugging strategy. The user's agent could communicate automatically to the support person's agent, which could instantly access the details
	DEBUGGING IN SOFTWARE DEVELOPMENT
	Debugging is the dirty little secret of computer science. Despite the fact that studies of programmers show that half of the costs of software development are consumed in debugging activities, there is precious little work in computer science that explic
	We think this breakdown between current tools and the parts of debugging described above is largely a user interface problem [4]. We will use many of the principles that we have learned in constructing debugging environments for software when developing
	THE ZSTEP REVERSIBLE SOFTWARE DEBUGGING ENVIRONMENT
	Some of ZStep's innovations include:
	Many analogues of ZStep's features appear in Woodstein, for example,
	EVALUATION
	There are two ways in which we would like to evaluate Woodstein. First, an important question about Woodstein is how successful we will be in recognizing that an interaction with specific Web pages matches Woodstein's task models, in cases where human ju
	To test this, we examined how successful Woodstein is in recognizing data items in pages corresponding to user action data it is already aware of. In preliminary tests with a selection of typical Web pages, it recognized 62% of the data items. We found t
	RELATED WORK
	REFERENCES

