
Understanding and Debugging System Configuration

Henry Lieberman
MIT Media Laboratory

20 Ames St
Cambridge MA 02139
lieber@media.mit.edu

Earl J. Wagner
Northwestern Computer Science

1890 Maple St, 3rd Floor
Evanston IL 60201

ewagner@cs.northwestern.edu

INTRODUCTION
It is a daily challenge for system operators to keep track of
the changes made to a system. In fact, recent investigation
has found that system operators often have incorrect men-
tal models of the systems they work with[2]. Managing a
system well becomes increasingly difficult when other peo-
ple or worse, automated scripts or agents, are also chang-
ing a system’s configuration. Yet much of the potential of
Autonomic Computing lies in automating many of the steps
of reconfiguration that operators perform, both to increase
performance and responsiveness to change, and also to en-
sure that those changes are performed predictably[1]. Even
farther out is the possibility of systems reconfiguring them-
selves in response to changes in their environments.

Operators now use scripts to manage the configurations of
systems but, without extreme discipline, changes to one com-
ponent may cause unexpected interactions with other com-
ponents. As with software in general, local changes can have
global effects. Now, when an operator observes something
unusual in a system log, he must get help from documenta-
tion, his notes and memory, or other people including other
operators, to identify which configuration change may have
produced it. Little attention, however, has focused on pre-
senting, at a high-level, the history of changes made to a
system, by whom, and with what goals, in order to explicitly
support the identification of causes of errors.

Recent work has found that improved tools for visualizing
a system’s configuration would decrease the time required
by operators to diagnose and repair failures[3]. It articulated
the need for fundamental advances in tools to help operators
understand system configuration and component dependen-
cies. Those working in software development can see prob-
lems similar to the ones that they often face.

The problem of operator understanding is exacerbated by the
very agency proposed within Autonomic Computing. User
interfaces for autonomic systems might seem like an oxy-
moron – If the computer is so good at self-regulation, why
would the user need to interact with it at all? One answer is
that user intervention will take place primarily when things
go wrong. No matter how autonomic a system is, unantici-
pated situations will occur that require advice and direction
from a human. The computer cannot automatically divine
the operator’s expectations and intentions for the behavior of
the system, and often its “intelligent” behavior or recovery
may create even more problems. The user interface issues
for tools then become:

Explanation How can the system explain to the user what
is happening in terms that the user can understand and
appreciate? How can the system provide visualizations of
system operation that give the user an overall feel for what
is happening?

Localization How can the user understand which parts of
the system are responsible for desirable or undesirable be-
havior and might need to be changed?

Instrumentation How can the user monitor behavior and
history of particular parts of the system?

Repair How can the user determine what needs to be changed
and the consequences of proposed changes?

Our approach is to treat these problems by analogy with soft-
ware debugging. We provide tools for explanation, visual-
ization, localization, instrumentation and repair of high-level
processes instead of low-level program code. More gener-
ally, the situation of an operator trying to understand the sys-
tem’s configuration is parallel to that of a software developer
trying to understand a large software project. Both individ-
uals must understand the current system state in terms of its
most recent execution, as well as the history of its modifica-
tions.

We will present an agent we’ve developed called Woodstein
that supports users in understanding the relationship between
a system’s current state and its history. Though just a pro-
totype, Woodstein records the actions taken by the user and
other entities. By matching these records to action models,
it tracks the current status of an action and whether it has
been successfully completed. A user can debug a failure by
working back from the output to the original inputs that may
have played a role.

REFERENCES
1. IBM Corporation. Autonomic computing manifesto,

2002.

2. Dennis G. Hrebec and Michael Stiber. A survey of
system administrator mental models and situation
awareness. InACM SIGCPR, San Diego, April 2001.

3. David Oppenheimer, Archana Ganapathi, and David A.
Patterson. Why do internet services fail, and what can be
done about it? In4th USENIX Symposium on Internet
Technologies and Systems (USITS ’03), 2003.


