
Of Types and Prototypes: 
The Treaty of Orlando 

WHEREAS among the purported benefits of object oriented technology are flexibility and 
dynamicism, the vast majority of existing object oriented languages have type hierarchies which require 
conformance to strictly hierarchical ideals and impose penalties on innovation; 

WHEREAS these issues have a brief but intense history of discussion and debate: [Lieberman 861 
was a reaction to these problems of traditional models, proposing an alternative object sharing 
mechanism based on the idea of delegation - or forwarding of messages - to replace the traditional 
implicit inheritance mechanisms, and suggesting that modeling shared behavior through objects 
representing prototypes could replace the traditional model of abstract classes; [Ungar 871 reacted to 
the complications engendered by traditional class and inheritance mechanisms by proposing a 
mechanism also based on prototypes, which model did not propose explicit delegation, but which also 
shared - through “dynamic inheritance” - the essential characteristics of allowing dynamic sharing 
patterns and attaching idiosyncratic behavior to individual objects, resulting in a drastic simplification 
of the Smalltalk object model, using the PARENT link to more flexibly serve for the more complex 
class/subclass/instance protocol; [Stein 871 attempted a rapprochement between the delegation and 
inheritance views by noticing that the class/subclass relationship already captured delegation, if a shift 
was made to a class-only representation rather than Lieberman’s instance-only representation; and in 
unifying classes and instances, extended the class-instance relationship to allow idiosyncratic 
“instances,” providing individual object behavior and more dynamic sharing patterns than traditional 
inheritance models; 

WHEREAS these, our proposals, have helped to elucidate the following three independent 
dimensions along which this sharing mechanism - which some call delegation and others inheritance, 
but which is in any case fundamental to object oriented systems - can be examined, namely: FIRST, 
whether STATIC or DYNAMIC: When does the system require that the patterns of sharing be fixed? 
Static systems require determining the sharing patterns by the time an object is created, while dynamic 
systems permit determination of sharing patterns during runtime, when an object actually receives a 
message. SECOND, whether IMPLICIT or EXPLICIT: Does the system have an operation that allows 
a programmer to explicitly direct the patterns of sharing between objects, or does the system do this 
automatically and uniformly? Explicit delegation (or inheritance) allows the ability to delegate only a 
single method, rather than “anything that can’t be handled locally.” and THIRD. whether PER 
OBJECT or PER GROUP: Is behavior specified for an entire group of objects at once, as it is with 
traditional classes or types, or can idiosyncratic behavior be attached to an individual object? 
Conversely, can behavior be specified/guaranteed for a group? 

and WHEREAS there exist a spectrum of programming situations ranging from large production 
programs where efficiency and reliability are the primary criteria, and which change relatively slowly, 
to exploratory research programming, which demands flexibility and rapid response to change: 

RESOLVED, that different programming situations call for different combinations of these features: 
for more exploratory, experimental programming environments, it may be desirable to allow the 
flexibility of dynamic, explicit, per object sharing; while for large, relatively routine software 
production, restriction to the complimentary set of choices - strictly static, implicit, and 
group-oriented - may be more appropriate; 

October 1987 OOPSLA ‘87 Addendum to the Proceedings 43 



RESOLVED, that a second, and separate, fundamental mechanism can be distinguished: the 
class-instance, or generator, relationship, in which one object (the “class”) determines the type of the 
objects it generates, and that although this relationship has always in the past been associated with 
static, implicit, per group systems, these restrictions are neither necessary nor inherently desirable, and 
it is time to free the class-instance relationship from its traditional subservience and consider it as a 
separate and equal partner in the building of object oriented systems; 

RESOLVED, that as systems follow a natural evolution from dynamic and disorganized to static and 
more highly optimized, the object representation should also have a natural evolutionary path; and 
that the development environment should itself provide more flexible representations, together with 
tools - ideally automatic - for adding those structures (of class, of hierarchy, and of collection, for 
example) as the design (or portions thereof) stabilizes; 

and RESOLVED, that this agreement shall henceforth be known as the TREATY OF ORLANDO. 

Henry Lieberman 
Massachusetts Institute of Technology 

Lynn Andrea Stein 
Brown University 

David Ungar 
Stanford University 

6 October 1987 
Orlando, Florida, USA 

[Lieberman 861 Lieberman, H., Using Prototypical Objects to Implement Shared Behavior in 
Object Oriented Systems, OOPSLA’86, October 1986. 

[Stein 871 

[Ungar 871 

Stein, L. A., Delegation Is Inheritance, OOPSLA’87, October 1987. 

Ungar, D. and Smith B., Self: The Power of Simplicity, OOPSLA’87, October 
1987. 

44 OOPSLA ‘87 Addendum to the Proceedings October 1987 




