Chapter 3

A Shared View of Sharing:
The Treaty of Orlando

Lynn Andrea Stein

Henry Lieberman

David Ungar

Introduction

For the past few years, researchers have been debating the relative merits of object-oriented
languages with classes and inheritance as opposed to those with prototypes and delega-
tion. It has become clear that the object-oriented programming language design space is
not a dichotomy. Instead, we have identified two fundamental mechanisms—templates and
empathy—and several different independent degrees of freedom for each. Templates cre-
ate new objects in their own image, providing guarantees about the similarity of group
members. Empathy allows an object to act as if it were some other object, thus providing
sharing of state and behavior. The Smalltalk-80™ language,! Actors, Lieberman’s DEL-

EGATION system, SELF, and HYBRID each take differing stands on the forms of templates

1Smalltalk-80T™ is a trademark of ParcPlace Systems. In this chapter, the term “Smalltalk” will be used

to refer to the Smalltalk-80™ programming language.

and empathy.

Some varieties of template and empathy mechanisms are appropriate for building well-
understood programs that must be extremely reliable, while others are better suited for
the rapid prototyping of solutions to difficult problems. The differences between languages
designed for each of these application domains can be recast as the differences between
support for anticipated ws. unanticipated sharing. One can even ascribe the ascent of
object-oriented programming to its strong support for extension instead of modification.
However, there are still many kinds of extension that remain difficult. The decomposition
of an object-oriented language into template and empathy mechanisms, and the degree of
support for extension provided by the forms of these mechanisms comprise a solid framework

for studying language design.

We begin this chapter with the text of our “Treaty,” in which we outline the basis for our
consensus. In section 3.2, we discuss the differences between anticipated and unanticipated
sharing. Section 3.3 defines more formally the fundamental terms and concepts we have
identified. Several languages representing different paradigms are examined as examples of
these mechanisms in section 3.4. Finally, section 3.5 describes the larger issues of software
evolution which underly the issues raised here; in this context, our conclusions can be seen

as a partial solution to the more general problems of sharing.

3.1. THE TREATY 3

3.1 The Treaty

Mechanisms for sharing knowledge and behavior between objects are among the most useful
and also the most hotly debated features of object-oriented languages. The three authors of
this chapter have previously published papers in which new sharing mechanisms for object-
oriented languages were prominently featured. We met on the occasion of OOPSLA ’87, in
Orlando, Florida, and discovered through discussion that we shared a common outlook that
both clarifies the reasons for design choices made in previous languages, and also points the

way toward future research in this area. We call this consensus the Treaty of Orlando.?

WV uErEaS the intent of object-oriented programming is to provide a natural and straight-
forward way to describe real-world concepts, allowing the flexibility of expression necessary
to capture the variable nature of the world being modeled, and the dynamic ability to

represent changing situations; and

WHEREAS a fundamental part of the naturalness of expression provided by object-oriented
programming is the ability to share data, code, and definition, and to this end all object-
oriented languages provide some way to define a new object in terms of an existing one,
borrowing implementation as well as behavioral description from the previously defined
object; and

WherEas many object-oriented languages—beginning with Simula-67, and including Smalltalk,

Flavors, and Loops—have implemented this sharing through classes, which allow one group

2The original treaty text appears in [Power and Weiss, 1988].

of objects to be defined in terms of another, and also provide guarantees about group

members, or instances; and

WHEREAS these mechanisms—class, subclass, and instance—impose a rigid type hierar-
chy, needlessly restricting the flexibility of object-oriented systems, and in particular do
not easily permit dynamic control over the patterns of sharing between objects; which dy-
namic control is particularly necessary in experimental programming situations, where the

evolution of software can be expected to proceed rapidly; and

WHEREAS the signatories to this treaty have independently proposed seemingly disparate

solutions to this problem, to wit:

[Lieberman, 1986] proposed that traditional inheritance be replaced by delegation, which is
the idea that sharing between objects can be accomplished through the forwarding of
messages, allowing one object to decide at runtime to forward a message to another,
more capable object, and giving this new object the ability to answer this message
on the first (delegating) object’s behalf; in this scheme, prototypical objects—the
“typical elephant,” for example—replace abstract classes—e.g. the class elephant—as

the repository for shared information;

[Ungar and Smith, 1987] also proposed a prototype-based approach, using a drastic sim-
plification of the Smalltalk model in which a single type of parent link replaces the
more complex class/subclass/instance protocol; while this approach does not propose

explicit delegation, through “dynamic inheritance” it shares the essential character-

3.1. THE TREATY 5

istics of allowing dynamic sharing patterns and idiosyncratic behavior of individual

objects;

[Stein, 1987] attempted a rapprochement between the delegation and inheritance views,
pointing out that the class/subclass relationship is essentially this “delegation,” or
“dynamic inheritance,” and that these new styles of sharing simply make a shift in
representation, using what were previously considered “classes” to represent real-world
entities rather than abstract groups; this approach gives a different way of providing
idiosyncratic behavior and dynamic sharing, through extensions to the class-instance

relationship;

WhErEas the signatories to this treaty now recognize that their seemingly divergent
approaches share a common underlying view on the issues of sharing in object-oriented

systems, we now declare:

RESOLVED, that we recognize two fundamental mechanisms that sharing mechanisms for
object-oriented languages must implement, and that can be used for analyzing and compar-
ing the plethora of linguistic mechanisms for sharing provided by different object-oriented
languages: The first is empathy, the ability of one object to share the behavior of another
object without explicit redefinition; and the second is the ability to create a new object
based on a template, a “cookie-cutter” which guarantees, at least in part, characteristics of

the newly created object.

RESOLVED, that most significant differences between sharing mechanisms can be analyzed

as making design choices that differ along the following three independent dimensions, to

wit:

First, whether STATIC or DYNAMIC: When does the system require that the patterns of
sharing be fixed? Static systems require determining the sharing patterns by the time
an object is created, while dynamic systems permit determination of sharing patterns

when an object actually receives a message; and

Second, whether IMPLICIT or EXPLICIT: Does the system have an operation that allows
a programmer to explicitly direct the patterns of sharing between objects, or does the

system do this automatically and uniformly? and

Third, whether PER OBJECT or PER GROUP: Is behavior specified for an entire group of
objects at once, as it is with traditional classes or types, or can idiosyncratic behavior
be attached to an individual object? Conversely, can behavior be specified /guaranteed

for a group?

RESOLVED, that no definitive answer as to what set of these choices is best can be reached.
Rather, that different programming situations call for different combinations of these fea-
tures: for more exploratory, experimental programming environments, it may be desirable
to allow the flexibility of dynamic, explicit, per object sharing; while for large, relatively
routine software production, restricting to the complimentary set of choices—strictly static,

implicit, and group-oriented—may be more appropriate.

3.2. ANTICIPATED VS. UNANTICIPATED SHARING 7

RESOLVED, that as systems follow a natural evolution from dynamic and disorganized
to static and more highly optimized, the object representation should also have a natural
evolutionary path; and that the development environment should itself provide more flex-
ible representations, together with tools—ideally automatic—for adding those structures
(of class, of hierarchy, and of collection, for example) as the design (or portions thereof)

stabilizes.

and RESOLVED, that this agreement shall henceforth be known as the Treary or Oriaxno.

3.2 Anticipated vs. Unanticipated Sharing

In this chapter, we distinguish between two kinds of sharing that arise in object-oriented
systems; or rather, two kinds of motivations for introducing sharing into an object-oriented
system. The distinction between these is an important determiner of preference among
object-oriented language mechanisms. One is anticipated sharing. During the conceptual
phase of system design, before actual coding starts, a designer can often foresee common-
alities between different parts of the system, leading to a desire to share procedures and
data between those similar parts. This is best accomplished by language mechanisms which
provide a means for the designer to write down the anticipated structure to be shared by
other components. In traditional Simula-like object-oriented languages, classes serve as the
mechanism for encoding anticipated sharing of behavior, which may be utilized by a perhaps

unanticipated number of instances.

In contrast, unanticipated sharing is less well served by traditional inheritance mech-
anisms. Unanticipated sharing arises when a designer would like to introduce new behavior
into an object system that does not already provide for it, and may not have been foreseen
when the original system was programmed. The designer may notice that new behavior can
be accomplished, in part, by making use of already-existing components, though procedures
and data may have to be added or amended as well. Thus, a sharing relationship arises
among components that are used in common for both their original, anticipated purposes,
and their new, unanticipated purposes. Obviously, since the new behavior has not been
anticipated, being forced to state the sharing relationships in advance puts a restriction
on the kinds of new behavior that can be introduced without modifying the previous sys-
tem. The traditional class-subclass-instance mechanism requires textually distinguishing,
in a static way, between those elements intended as common behavior, namely classes, and

those expected to be idiosyncratic, the instances.

Supporting unanticipated sharing is important since software evolution often follows
unpredictable paths. A language mechanism supports unanticipated sharing best if new
behavior can be introduced simply by explaining to the system what the differences are
between the desired new behavior and the existing old behavior. Delegation, or dynamic
inheritance, accomplishes this by allowing new objects to re-use the behavior of existing

ones without requiring prior specification of this relationship.

The examples in [Lieberman, 1986] stress the advantages of delegation in situations

where reasonable behavioral extensions to a system are unlikely to be anticipated in the

3.2. ANTICIPATED VS. UNANTICIPATED SHARING 9

Figure 3.1: A dribble stream records interaction on a previously implemented terminal

stream.

original design of a system. It is reasonable to want to define a “dribble stream” to record
interaction on previously implemented I/0 input-output streams, but it is unreasonable
to require that the implementors of the original I/0 streams have prepared in advance
for the existence of dribble streams. On the other hand, it is reasonable to expect that
a designer who first implements a stream to an interactive terminal build it upon some
object representing the abstract notion of “an I/0 stream”, anticipating that there will
eventually be some other types of streams, such as disk or network streams. It would
be silly to implement a disk stream by delegating to a terminal stream for common
operations simply because the terminal stream happened to have been implemented first.

This illustrates the difference between anticipated and unanticipated sharing. It is primarily

10

an issue of software evolution and design aesthetics, and only indirectly a language issue.
The main result of [Stein, 1987] can be rephrased in these terms: because a subclass is
defined by stating the differences, in both procedures and data, between it and its superclass,
the relation between subclass and superclass is better suited toward unanticipated sharing
than the class-instance relation, which limits the differences between an instance and its

class to the values of its variables.

3.3 Basic Mechanisms

The arguments over what is fundamental in object oriented programming have existed for
as long as the field. Which features—classes, prototypes, inheritance, delegation, message
passing, encapsulation, abstraction—are at the heart of object oriented programming, and
how these things relate to one another, are not issues that will soon be resolved. Rather
than try to settle this debate, we present here two mechanisms which are used in most object
oriented languages: empathy and templates. We claim that they are fundamental in that
they cannot be defined in terms of one another, and that most object oriented languages
can be described largely in terms of the ways in which they combine these mechanisms.

The first of these mechanisms underlies both inheritance and delegation. In all lan-
guages accepted as object oriented there is some way in which one object can “borrow” an
attribute—variable or method—from another. We propose to use the term empathy for
this behavior:

We say that object A empathizes with object B for message M if A doesn’t have its

3.3. BASIC MECHANISMS 11

Figure 3.2: The pen at (100,200) empathizes with the pen at (50,200) for its Y variable,

and for the Draw method.

own protocol for responding to M, but instead responds to M as though it were borrowing
B’s response protocol. A borrows just the response protocol, but not the rest of B. That
is, any time B’s response protocol requires a message to be sent to SELF (or a variable to
be looked up), it is sent to A, not to B; otherwise, A and B respond in the same way. For
example, in Fig. 3.2, the pen at (100,200) empathizes with the pen at (50,200) for its Y

variable, and for the Draw method.?

*Formally, we say that object A empathizes with object B for M when the following holds: If B’s behavior
in response to M can be expressed as a function (B, M)—that is, B’s method for M can be expressed as
a function that takes SELF as an argument along with M—then .A’s response to M can be expressed using
the same function 9 as (A, M)—A’s behavior is derived by using A wherever B would have used itself.

The symmetry in this behavioral definition of empathy may seem counterintuitive, but such symmetry is

12

All incarnations of inheritance and delegation include empathy; they differ as to when
and how the relationships are determined. Empathy may be explicit: “Execute thisObject:thisRoutine
in my environment,” as in the ability of CommonLoops to specialize method lookup. It may
be by default: “Anything I can’t handle locally, look up in myParent (and execute in my
environment) with SELF = me,” as in Smalltalk, SELF, and ctt. 1t may be dynamic or
static, per object or per group. These language choices are responsible for much of the

variety of existing object oriented paradigms.

Inheritance, as found in Simula and Smalltalk, is the preprogrammed determination
of default delegation paths, by group. It requires the generation of uniform groups of
objects. It separates the delegatable (traditionally, methods only) from the non-delegatable
(traditionally, the instance variables). The delegatable part is stored in the class; the non-

delegatable is necessarily allocated independently for each instance.

But it is perhaps the interaction of delegation with the second fundamental mechanism,
that of templates, which determines the most interesting and controversial distinctions
between types of object-oriented languages. A template is a kind of “cookie cutter” for
objects: it contains all the method and variable definitions, parent pointers, etc., needed to
define a new object of the same type. If the object may not gain or lose attributes once it

is defined, we call the template strict.

inherent in any behavioral definition. All a behavioral definition can do is say that the behaviors of two
objects are similar according to some criterion; you can’t tell “who did the implementing” unless you look

into the code of the implementation.

3.3. BASIC MECHANISMS 13

In many languages, after the template is copied, or “instantiated,” changes to this new
object may be permissible, weakening the guarantee of uniform behavior by group. These
variations on strict templates are discussed below. In addition, there are languages without
templates; however, in these languages, such as Lieberman’s DELEGATION, the system

provides no inherent concept of “group,” or “kind,” of object.

In some languages, such as SELF and Actra, the template is itself an object. In others,
it is embedded in another, generator object, usually called a class. A class is an object of
one type which contains a template for objects of another type. Thus, class elephant is
an object of type Class, but contains a template for objects of type Elephant. The objects

cut from the template embedded in a class are known as its instances.

Traditionally, this class-instance relationship is strict: a strict (instance) template
lists exactly those attributes that each object cut from that template must define, and
no cookie-cut object can define attributes other than those in the template. Because the
template is strict, each object cut from it will have a local copy of each attribute; these
attributes cannot be redefined or removed; therefore they will never be delegated. A class

thus guarantees the uniformity and independence of its “cookie-cut” instances.

However, this relationship can be relaxed in several ways. For example, a minimal
template is a cookie cutter in the same sense, but once created, cookie-cut objects can
define other attributes as well. An extended instance—one generated by a minimal template,
then added to—does not, a priori, have a template for its type. Its descendants cannot be

strict instances, since there is no template for their type. On the other hand, the extended

14

Determination of Empathy Template Mechanisms
Language when how for what how
Actors runtime explicit | per object none
DELEGATION runtime both per object none
SELF runtime implicit* | per object || templates | nonstrict
Simula compile time implicit | per group classes strict
Smalltalk object creation time | implicit | per group classes strict
HvBRID runtime both both any nonstrict

Table 3.1: Various languages and their attributes.

instance can be promoted, transforming it into a class, of type Class but with a template

for its original type. This class may then have instances.

Other relaxations in template enforcement create a variety of non-strict templates. In
languages where templates are themselves objects, templates are often entirely non-strict.
That is, an object may be created from a template, but subsequently go on to add or delete

attributes, transforming it from a copy of its template into a new type of object, asin SELF.

3.4 Some Case Studies

In this section, we describe several languages which exemplify three of the language paradigms

we have identified. The first paradigm is the least constrained; Actors and DELEGATION

3.4. SOME CASE STUDIES 15

are almost purely dynamic empathy systems which support the maximally flexible set of
choices. SELF adds to this the concept of template, making grouping of objects possible.
However, SELF does not have classes, and remains a fully dynamic and flexible language.
The third paradigm is the “classical” style of object-oriented programming found in Simula
and Smalltalk. While traditionally this paradigm has been used in a rigid and inflexible
manner, we describe one language—HVYBRID—which maintains the structure of a class-based
system while allowing much of the flexibility of the previous two paradigms. A summary of

language features is given in Table 3.

3.4.1 Actors and Lieberman’s DELEGATION

The actor systems of Hewitt and his colleagues at MIT represent the most extreme orienta-
tion towards dynamic and flexible control. The basic actor model provides only for active
objects and parallel message passing [Agha, 1987] and so mandates no particular sharing
mechanism. However, actual actor implementations [Lieberman, 1987] have found it most
natural to use delegation as the sharing mechanism, since the actor philosophy encour-
ages using patterns of message passing to express what in other languages would require
special-purpose mechanisms [Hewitt, 1984].

Along the three dimensions of our treaty, actor systems can be classified as dynamic,
explicit, and per-object. Sharing mechanisms in actors are dynamic, since message pass-
ing is a run-time operation, invoked without prior declaration. Delegation requires explicit

designation of the recipient. Delegation is accomplished through a special message-passing

16

protocol that includes the client (the equivalent of the SELF variable in Smalltalk-like lan-
guages) as part of the message. Since actor systems have no notion of type, sharing must be
specified on a per-object basis. There are no templates, class or instantiation mechanisms
defined in the kernels of actor languages. Of course, nothing precludes the use of delega-
tion and object creation operations in actor systems to implement templates, or objects

representing classes or sets.

The major conceptual difference between actors and the Simula family of languages
arises in what is considered fundamental. In the traditional Simula-like languages, mecha-
nisms of class, subclass and instantiation are considered fundamental. The behavior of the
message passing operation is explained in terms of them and their influence on variable and
procedure lookup. In actor systems, the message passing operation is considered funda-
mental. Even variable lookup must be explained in terms of sending messages to an object
representing the environment. Thus, sharing mechanisms in actor systems are built on top

of message passing.

DELEGATION is an outgrowth of the actors languages. As such, it has no templates.
Object creation is independent of the parent: a new object is created by making a new
empty object which points to some other object (or doesn’t, as is desired), and then filling
in the details of what that object should contain. Thus, an object with no attributes but a

name could be a child of (and therefore delegate to) an elephant or an employee or a real.

Since there are no “class defining objects,” there are no “classes” or groups of objects of

the same “type.” Every object determines its own, unique “type.” There is thus no distinc-

3.4. SOME CASE STUDIES 17

Figure 3.3: A DELEGATION hierarchy.

tion between creating a new object, and creating a new “type” of object. In DELEGATION,
everything is done on an object-by-object basis. DELEGATION is entirely dynamic; anything
can change at any time. Empathy in DELEGATION can be either hierarchical (implicit) or

explicit. Figure 3.3 shows a DELEGATION hierarchy.

3.4.2 SELF

SELF was designed to aid in exploratory programming by optimizing expressiveness and
malleability. Tt is essentially a template-based language; however, SELF templates are as
much a matter of convention as of language design. New objects are created by cloning an
existing ones; the original object—called a prototype—behaves in much the same way as the

standard template described above. In Fig. 3.4, a new elephant (Fred) has been created

18

Figure 3.4: A SELF hierarchy.

by copying an existing elephant (Clyde). Clyde is thereby functioning as a prototype, or
template.

SELF templates are non-strict, so the objects they create can extend or otherwise modify
their template-defined properties. Some attributes in the child may simply be delegated to
the parent object, while others may be handled locally or delegated elsewhere. The new
object may also have additional attributes not defined for the template, creating a sort of
“extended instance.” New kinds of objects are created by making a new template—cloning
and then modifying an existing object—so that it has the requisite properties. In this way,

a sort of “subclass” behavioral inheritance can be created.® Thus, one can take an elephant

®Tt is worth noting that there is no distinction between the concepts of “extended instance” and “subclass”

in this kind of language, since any extended instance is also a potential template for a new “type” of object.

3.4. SOME CASE STUDIES 19

and add big ears and the ability to fly. This elephant (Dumbo) is unique: there is no exact
template for it.

The patterns of empathy in SELF are determined individually by each object. An
object’s parent slots list the objects it empathizes with. In the example the elephants
empathize with an object holding shared behavior—walking, eating, etc.—for elephants.
Since an object may change the contents of its slots whenever it wishes, the patterns of
empathy can change dynamically. Finally, since the parent attribute is part of a slot, the
patterns of empathy are implicit, in the attributes and contents of an object’s slots, not
explicitly in the code.® SELF’s non-strict objectified templates, and its individual, dynamic,

and implicit patterns of empathy foster exploratory programming.

3.4.3 “Standard Inheritance”, and HYBRID

Standard inheritance, exemplified by Smalltalk and all Simula-based languages, consists
of class objects, which contain templates and therefore can generate instances, and the
instances generated by these classes. New objects are simply cut from the template: every
variable must be allocated individually for each object, while methods are shared through
the template. New class, or generator, objects “inherit” the templates of their superclasses.
This is operationally equivalent to delegating part of the template. These classes may
themselves be instances. In this case, the metaclass contains a template for an object (the

class) which itself contains a template.

A limited form of explicit delegation is allowed but rarely used.

20

Figure 3.5: A Smalltalk hierarchy.

In standard inheritance, all instances of a class fit exactly the template description.
Once created, these objects retain their properties forever: each subclass must delegate to
its specified superclass(es); each instance remains a member of its class for all time. The
objects in Fig. 3.5 reflect this; in order to create Dumbo, the flying elephant, a new

class—with a single instance—had to be created.

HvBRID is a system which allows the traditionally static and strict relationships of
standard inheritance to be dynamic and flexible. There is, after all, no inherent reason why
all these relationships must be strict. A HYBRID template, though embedded in a class,

behaves more like SELF’s templates, allowing objects generated from this class-template

3.4. SOME CASE STUDIES 21

to add or delete attributes. Thus, in Fig. 3.6, the unique flying elephant is just an
extended instance of the class elephant. Of course, if f1ying elephants were common,
HYBRID does not preclude the creation of a new class—in fact, the language will generate
such a class automatically from a prototypical instance. In addition, HYBRID inheritance
is dynamic, allowing runtime changes to the hierarchy, and instances are not distinguished

from classes, allowing them to explicitly delegate—or share—attributes.

Figure 3.6: A HYBRID hierarchy.

22

3.5 Sharing and Software Evolution

The issue of what kind of behavioral extensions to a system can be accomplished without
modifying previously existing code is of central importance. An important principle is that
a conceptually small extension to the behavior of a system of objects should be achievable
with a small extension to the code. The analysis of alternative mechanisms for sharing
should proceed by considering their effects upon the necessity for future modifications of

the code to accomplish behavioral extensions.

There are two kinds of changes that we perform in object systems. One is adding new
code, or extending the system. The other is editing previously existing code, or modifying
the system. These two kinds of changes have very different effects in the programming

environment.

Adding new code to extend a system is good. It preserves the previous state of the
system; at worst one can simply delete the extension to return to a previous state. Editing
code is a much more problematic transformation. It is a destructive operation, both literally
and figuratively. As a side effecting operation, editing code destroys irrecoverably the
previous state of the system, unless careful backup/undo operations are performed. Perhaps
worse is the propensity of editing operations to introduce inconsistencies in a system. Often,
behavioral extensions are accomplished by editing several pieces of code in different places,
and performing these operations manually leaves the possibility that not all the edits will

be performed in a consistent manner.

3.5. SHARING AND SOFTWARE EVOLUTION 23

In fact, one can recast the whole object-oriented enterprise in terms of the exten-
sion/modification dichotomy. The true value of object-oriented techniques as opposed to
conventional programming techniques is not that they can do things the conventional tech-
niques can’t, but that they can often extend behavior by adding new code in cases where
conventional techniques would require editing existing code instead. Objects are good
because they allow new concepts to be added to a system without modifying previously
existing code. Methods are good because they permit adding functionality to a system
without modifying previously existing code. Classes are good because they enable using
the behavior of one object as part of the behavior of another without modifying previously
existing code.

In a conventional language, we might implement a data representation for a geometric
shape as a list of points. A display procedure for this representation might dispatch on the

kind of shape to more specialized procedures as follows:

To DISPLAY a SHAPE:
* If the shape is a TRIANGLE, call DISPLAY-TRIANGLE.

* If the shape is a RECTANGLE, call DISPLAY-RECTANGLE,

* Otherwise, cause an UNRECOGNIZED-SHAPE error.

24

Define A-TRIANGLE to be the list of points (100, 100), (-50 200), (150 -20).

The kind of shape could be recognizing by appending a tag onto the list of points, or
perhaps even by examining the length of the list.

We can now ask the question: What do we have to do to add a new shape to the display
procedure? In the conventional system, this involves destructively editing the code to insert

a new conditional clause:

To DISPLAY a SHAPE:
* If the shape is a TRIANGLE, call DISPLAY-TRIANGLE.

* If the shape is a PENTAGON, call DISPLAY-PENTAGON

* Otherwise...

The editing process leaves open the possibility for inconsistent edits, inadvertent deletion
of old code, mismatch between protocols for using the data representation in the old and
new clauses, etc.

In an object oriented language, by contrast, the representation modularizes the addition
of each new object and message so that adding a new object or method can be done without

any modification of previously existing code.

If I’'m a SHAPE object, and I get a DISPLAY message,

3.5. SHARING AND SOFTWARE EVOLUTION 25

* I respond with an UNRECOGNIZED-SHAPE error.

Define a TRIANGLE to inherit from SHAPE.

If I’'m a TRIANGLE and I get a DISPLAY message,

* I respond with DISPLAY-TRIANGLE.

Define A-TRIANGLE to be an instance of SHAPE

* With vertices (100, 100), (-50 200), (150 -20).

Now, we can extend the system to know about pentagons simply by adding a new

definition which extends the system.

Define a PENTAGON to inherit from SHAPE.

If I’'m a PENTAGON and I get a DISPLAY message,

* I respond with DISPLAY-PENTAGON.

One way of characterizing the themes common to our three original papers is that we
observed that the implementation of unanticipated sharing between objects in Simula-style
inheritance systems often required modification of existing code. We were searching for ways
of implementing unanticipated behavioral extensions without modifying existing code, and

concluded that the solution was to allow more dynamic forms of empathy. At the same time,

26

we wish not to minimize the importance of language mechanisms for traditional, anticipated

sharing and believe future languages must seek a synthesis of the two.

The search for ways to accomplish interesting behavioral extensions of object-oriented
systems by additive extensions to code is far from over. If we can find any situations
where a conceptually simple extension to the behavior of an object system seems to require
gratuitous modification of existing code, it’s the sign of a problem, and we ought to be
looking for a solution. We give an example of one such situation, as a guide for future

research.

Occasions arise when we would like to specialize or extend not just a single object, but
an entire hierarchy at once. No existing object-oriented language provides a mechanism for
this that does not require the modification of previously existing code. Yet conceptually,

we should be able to perform these changes by some sort of additive extension.

Suppose we would like to construct a hierarchy of geometrical objects, such as squares
and triangles, which all respond to methods like DISPLAY. These would all be built on a
common base object named SHAPE, which might contain variables for the common attributes
like a CENTER point and perhaps a BOUNDING-BOX. Objects like TRIANGLE and SQUARE inherit
from SHAPE. If we started out with black-and-white shapes, we could certainly add a COLOR
attribute to SHAPE by simple extension. But this would leave us with the task for reproduc-
ing the entire hierarchy of sub-objects emanating from SHAPE in new, colored versions. In
most present systems, programmers would simply be tempted to add the COLOR attribute

directly to SHAPE rather than creating a new COLORED-SHAPE object. This would automat-

3.5. SHARING AND SOFTWARE EVOLUTION 27

ically extend all the geometric objects to colored versions, but at the cost of a destructive
editing operation. The previous black-and-white version would be lost, and the editing
operation introduces the possibility of errors, such as accidentally sending a color command
while running a previously existing black-and-white program, unless careful attention was
paid to upward compatibility.

Some languages, like the Flavors object-oriented extension to Lisp, have addressed the
issue of sharing of orthogonal features by using the approach of "mixins”, using inheritance
from multiple parents. This approach lets us create new objects possessing previously unan-
ticipated combinations of behavior from previously existing abstractions. In this approach,
a COLOR-MIXIN could be created independent of any shape properties, and a new type of
object declared to inherit from COLOR-MIXIN as well as some specific shape property like
TRIANGLE. However, this approach still involves all the steps of reproducing all elements of
the shape hierarchy in their color versions, or modifications to the code to retroactively mix
in the color feature. Thus the mixin feature does not provide true support for smoothly
implementing an unanticipated changes such as the black-and-white to color transition.

We don’t have, at the moment, a solution to this problem; we state it merely to point

out the direction in which we believe object-oriented systems must evolve.

Summary

We have described two sharing mechanisms, templates and empathy, which hide at the core

of object-oriented programming languages. Templates allow two objects to share a common

28

form. They may be embedded inside classes, or may be objects themselves. They may also
vary in the degree of strictness they impose on system structure. Empathy allows two ob jects
to share common state or behavior. The patterns of empathy may be determined statically
or dynamically, per object or per group, implicitly or explicitly. The decomposition of
object-oriented languages into template and empathy mechanisms can shed light on their

similarities and differences, weaknesses and strengths.

Bibliography

[Agha, 1987] Gul Agha. Actors. MIT Press, Cambridge, Massachusetts, 1987.

[Birtwistle et al., 1973] G. Birtwistle, O. Dahl, B. Myhrtag, and K. Nygaard. Simula Begin.

Auerbach Press, Philadelphia, 1973.

[Bobrow and Stefik, 1981] D. G. Bobrow and M. Stefik. The loops manual. Technical
Report KB-VLSI-81-13, Knowledge Systems Area, Xerox Palo Alto Research Center,

1981.

[Bobrow et al., 1986] D. G. Bobrow, K. Kahn, G. Kiczales, I.. Masinter, M. Stefik, and
F. Zdybel. Commonloops: Merging lisp and object-oriented programming. In ACM

SIGPLAN Notices [SIG, 1986], pages 17-29.

[Hewitt, 1984] Carl Hewitt. Control structures as patterns of passing messages. In Patrick
Winston, editor, Artificial Intelligence: An MIT Perspective. MIT Press, Cambridge,
Massachusetts, 1984.

29

30 BIBLIOGRAPHY

[LaLonde, 1986] Wilf Lal.onde. An exemplar based smalltalk. In Proceedings of the First
ACM Conference on Object-Oriented Programming Systems, Languages, and Applica-

tions, pages 322-330, Portland, Oregon, September 1986.

[Lieberman, 1986] Henry Lieberman. Using prototypical objects to implement shared be-
havior in object-oriented systems. In Proceedings of the First ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages 214-223, Portland,

Oregon, September 1986.

[Lieberman, 1987] Henry Lieberman. Concurent object-oriented programming in Act 1. In
Akinori Yonezawa and Mario Tokoro, editors, Object-Oriented Concurrent Programming.

MIT Press, Cambridge, Massachusetts, 1987.

[Mercado, 1988] Antonio Mercado Jr. Hybrid: Implementing classes with prototypes. Mas-
ter’s Thesis Technical Report No. CS-88-12, Brown University Department of Computer

Science, Providence, Rhode Island, 02912, July 1988.

[Moon, 1986] D. A. Moon. Object-oriented programming with flavors. In ACM SIGPLAN

Notices [SIG, 1986], pages 1-8.

[Power and Weiss, 1988] Leigh Power and Zvi Weiss, editors. Addendum to theProceedings
of the Second ACM Conference on Object-Oriented Programming Systems, Languages,

and Applications, volume 23 of Special edition of SIGPLAN Notices, May 1988.

BIBLIOGRAPHY 31

[SIG, 1986] ACM SIGPLAN Notices Special Edition on Object-Oriented Programming Lan-

guages, volume 21, November 1986.

[Stein, 1987] Lynn Andrea Stein. Delegation is inheritance. In Proceedings of the Second
ACM Conference on Object-Oriented Programming Systems, Languages, and Applica-

tions, pages 138-146, Orlando, Florida, October 1987.

[Stroustrup, 1986] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,

Reading, Massachusetts, 1986.

[Ungar and Smith, 1987] David Ungar and Randall B. Smith. Self: The power of simplicity.
In Proceedings of the Second ACM Conference on Object-Oriented Programming Systems,

Languages, and Applications, pages 227-242, Orlando, Florida, October 1987.

