
The TV Turtle
A Logo Graphics System for Raster Displays

Henry Lieberman
Logo Group

MIT Artificial Intelligence Lab

Until recently, most computer graphics systems have been oriented toward the display of line drawings,
continually refreshing the screen from a display list of vectors. Developments such as plasma panel displays
and rapidly declining memory prices have now made feasible raster graphics systems, which instead associate
some memory with each point on the screen, and display points according to the contents of the memory. This
paper discusses the advantages and limitations of such systems. Raster systems permit operations which are
not feasible on vector displays, such as reading directly from the screen as well as writing it, and manipulating
two dimensional areas as well as vectors. Conceptual differences between programming for raster and vector
systems are illustrated with a description of the author's TV Turtle, a graphics system for raster scan video
display terminals. This system is imbedded in Logo, a Lisp-like interactive programming language designed for
use by kids, and is based on Logo's turtle geometry approach to graphics. Logo provides powerful ideas for using
graphics which are easy for kids to learn, yet generalize naturally when advanced capabilities such as
primitives for animation and color are added to the system.

 1. Drawing with turtles

The fundamental concept of the Logo approach to computer graphics is the turtle. A turtle is an imaginary
creature which lives on the display screen. It has a position on the screen and a heading, the direction in which
the turtle is facing. The turtle also has a pen which can be either up or down. The commands FORWARD and
BACK change the turtle's position, moving it along the direction of the heading. If the pen is down when the
turtle moves, a line is drawn between the old and new positions. LEFT and RIGHT change the heading. (See
Figure 1).

This scheme is generally much more convenient for interactive graphics than the conventional approach using
absolute cartesian coordinates, and its mathematical implications lead naturally toward a new view of
geometry called turtle geometry. The Logo graphics philosophy and turtle geometry are discussed in detail in
[1], [2], and [3]. The turtle is normally represented visually on the screen by a triangle shaped cursor pointing in
the direction of the heading, although any picture can be substituted for this purpose. Any number of turtles can
be created, each with its own local state.

These basic turtle commands are common to a variety of Logo systems for creating pictures using several
different types of devices. In addition to the raster system, there are graphics systems which operate using
vector display list displays, such as the DEC 340 and GT40 [5]. Another version uses character-only display
terminals, where the turtle is constrained to move about a rectangular grid of characters [6]. The same turtle
commands can also be used to control a robot turtle, which draws pictures on the floor with a felt tip pen [4].

 2. Vectors versus video

Raster graphics systems such as the TV Turtle represent a significant departure from the vector display list
approach which has characterized most previous graphics systems. Since the primitive capabilities of raster
systems differ from those offered by vector display list systems, raster systems encourage a new outlook on
graphics, and strongly influence the style of graphics programming.

One aspect of this is illustrated by an analogy with the contrast between compilers and interpreters for general
purpose programming languages. The primary component of most vector display list systems is a display list
compiler which compiles graphics commands into a display list, a set of instructions for a display processor.
Raster systems eliminate the display list, making the display list compiler unnecessary. As a result, raster
systems take on more of the flavor of an interpreter. The advantages in generality, simplicity, and ease of
interaction offered by interpreters are especially important for systems like Logo, which are designed for use by
beginners and are highly interactive. Although the extra conceptual complexity imposed by a compilation
process can be minimized by a clever compiler when programs are simple, it becomes troublesome when an
attempt is made to include more sophisticated capabilities.

The display list compiler found in most present graphics systems is necessary because the processor controlling
the displays in such systems has primitive instructions which display visible objects such as vectors
momentarily. In order for a picture to remain on the screen, the processor must repeatedly execute a loop
containing the instructions to draw the picture, refreshing the screen when the image fades. The user would
normally like to have commands which cause objects drawn to stay on the screen rather than flash and
disappear. This is accomplished by having graphics commands operate by instructing a display list compiler to
compile the user's requests into the instructions understood by the display processor. The global display list
representing the picture is then edited to insert the compiled instructions into the refresh loop. This refresh
loop is a separate process running in parallel with the user's program. The display list compiler usually must
have the ability to compile incrementally, so that when the picture is changed it is not necessary to recompile
all of it. The repertoire of visible objects available in the instruction set of most display processors typically
includes vectors, points, and text. In addition, many display processors have the capability to call subroutines,
so that a sequence of display instructions may be used from many places in the display list. Vector display list
systems and display list compilers are discussed in detail in [7].

In raster systems like the TV Turtle, all graphics commands cause changes to the display screen directly by
modifying the memory associated with each point on the screen. Hardware independently refreshes the screen
from the contents of the memory, so the software need not concern itself with maintaining a separate process to
refresh the screen. The primitive operation in a raster graphics system is to display a visible object which
persists on the screen until it is explicitly erased or modified. Since changes are made directly to the displayed
visual images, there is no need for a hidden data structure like a display list, and no need for a display list
compiler. The visible effect of a command occurs immediately as the command is interpreted.

Interpretive systems only require a naive user to understand the semantics of the source language. Compilers
tend to force the user to explicitly consider the semantics of the target language, and the process of translating
programs from one language into the other. Thus, graphics systems based on display list compilers may require
the user to know about the display processor's instructions and think of commands in terms of how they compile
into display lists. With compilers, the user must also understand the effects of declarations as well as
imperative commands; for example, declarations to a graphics compiler to "open" or "close" a display list [7].
Compiler systems are much less flexible than interpreters in interactive debugging. Examining compiled
representations such as display lists is usually little help in debugging, and problems may arise because of
discrepancies between source and compiled versions of a program. The compilation process frequently loses
important information about the original program The user must tolerate the delay of compile time, during
which untended changes to the program become effective. Local changes to a program often necessitate
extensive recompilation. As raster systems interpret rather than compile graphics commands, they are able to
avoid many of these problems associated with compilers.

Raster systems also permit a greater degree of flexibility in the choice of data structures used to represent
pictures. Graphics systems of the vector display list type provide a very strong inducement for the user to
conceptualize pictures as consisting solely of sets of lines. In many such systems, if the description of the picture

is very complex in terms of the vector representation, the display will start to flicker objectionably, as the
display processor will not be able to interpret all the instructions rapidly enough to refresh the screen. Curved
lines are approximated by many short vectors and tend to require large display lists. Very few vector type
systems can display a sufficient number of vectors to make shading areas feasible. The raster system, however,
is not limited by the complexity of the picture. It will not flicker, even if the picture consists of a large number
of vectors, text, points, curves, or filled in areas. Raster graphics encourages experimentation with a greater
variety of representations for visual information. Pictures can be represented as sets of points, vectors, run
length codes, procedures, or other alternatives.

 3. Erasing pictures

In raster graphics systems, points, vectors and other visible objects can be erased just as easily as they are
drawn, by turning off bits in the screen memory instead of turning them on. We can supply the turtle with an
eraser in addition to a pen. When the eraser is down, points along the turtle's path are erased, just as they are
drawn when the turtle passes over them with the pen down. Alternatively, this can be thought of as drawing in
the same color "ink" as the backgrounds causing previously drawn pictures to disappear. (See Figure 2.)

In vector display list systems, erasing a picture is accomplished by deleting the instructions which draw it from
the refresh loop of the display processor. This is in many respects less flexible, as the structure of an object to be
deleted must correspond exactly to an object drawn. The decision to enable erasing an object must be made when
the display list is compiled, whereas in raster systems this decision can be made at any time during the
execution of a program. It is generally not possible in display list systems to erase only part of a vector or vector
subroutine previously displayed.

One problem with using the turtle's eraser to remove pictures from the screen is that it often does not behave as
expected for pictures that are considered to overlap on the screen. When considering two dimensional pictures as
representations of three dimensional objects, an opaque object prevents objects behind it from being seen by an
observer. If the opaque object is removed, obscured objects which were behind it reappear. Thus, it is expected
that drawing an object and erasing it will leave a picture undisturbed. The semantics of the erase command
desired, then, is to erase an object, but restore whatever was visible behind it before the object was drawn. In
vector display list systems, instructions for displaying two intersecting vectors will result in displaying the
intersection point twice during the refresh cycle, so that removing one of the vectors will not cause the
intersection point to go away, as it will be displayed by the instruction for the remaining vector. In the TV
Turtle, if intersecting lines are drawn with the pen down, and one line is erased by backing over it with the
eraser down, the point of intersection will be turned off as well. When a picture is drawn over another, the
obscured picture is not saved, and so is not restored when another picture passing through the same points is
erased.

One mechanism for solving this problem is to explicitly save a portion of the old picture before drawing a new
picture over it, so that the old picture can be restored when the new picture is erased. This complicates
programs which do frequent display and erasing of overlapping pictures. More elaborate hardware could
provide a "two-and-a-half dimensional" feature, in a system with several bits per point, where each bit is
assigned a plane and hardware determines the visibility of each point according to its plane [8].

In addition to the pen and the eraser, the turtle is also equipped with an exclusive OR (XOR) mode. In this
mode, the turtle complements the state of points as it passes over them, turning on points which were previously
off and turning off points which were on. This mode is often useful with simple overlapping pictures, where
display of the intersecting area is not critical, but it is important to avoid disturbing a background picture
while some other picture is drawn and then erased. Using XOR mode, a picture can be drawn and subsequently
erased using the same procedure, transparent to any previously existing picture. It is also very useful when a
particular picture should remain distinctly visible, even against backgrounds of heavily shaded pictures. For
these reasons, XOR mode is used to display the triangle cursor which marks the state of the turtle on the screen.

 4. Reading the screen

Another important conceptual extension permitted by raster graphics is that the screen remembers what is
drawn upon it; it is possible to read from the screen as well as write on it. Individual points on the screen can be
tested to see if they are on or off. This allows programs to perceive what is on the screen as well as modify it. A
version of the FORWARD command can easily be defined which will stop if it the turtle hits any displayed
"obstacles" in its path. A "seeing eye turtle" can report evidence of visible objects in the direction of the turtle's
heading. The turtle can be programmed to find its way out of mazes or navigate around obstacles. The shading
facility also depends in an essential way upon being able to read the screen to search for the boundaries of a
region.

In almost every vector display list system, it is impossible to examine a display list after it is created to
determine what is on the screen. Display lists are usually made accessible only from machine language, and
require knowing the format of the display processor instruction set. Even if this information were available,
figuring out whether a particular point on the screen was on would be a lengthy computation, as it would
involve examining all the display lists existing in the system. Programs which need to know what has been
drawn must instead maintain some auxiliary data structure to record changes to the screen, and modify that
structure whenever a display command is issued. Instead of using display lists as the primary data structure for
pictures, in raster systems the user deals directly with the screen memory, and can think of sensing and
displaying points as simply reading or writing the screen.

 5. Words and pictures

All interaction with the system involving text, such as command input, program editing, and error messages
occurs on the same display screen used for graphics. This has the advantage of concentrating the attention of
the user on a single screen, rather than dividing it between a graphic display and text terminal. An auxiliary
processor is employed to speed up the drawing of text on the screen during normal character input and output.
One can, however, use the graphics commands to display text as well, perhaps to print using a different font
than the system's default. For convenience, a split screen mode is normally used in which the top area of the
screen is reserved for graphic output, and the bottom for typein and typeout. The sizes of the text and graphics
sections are easily adjustable so that, for example, the text area can be expanded while editing the text of a
program, or the graphics area enlarged while watching pictures being drawn. Text and graphics can interact
flexibly, and the user can print labels or captions on pictures, or draw pictures to accompany text. Printed copy of
both text and graphics is available.

 6. Shading areas

Raster style graphics systems enable the user to think about areas as picture components as well as just lines and
points. This allows the user to fully exploit the two dimensional nature of the display screen. In the TV Turtle,
primitives are provided for constructing, naming and manipulating areas.

The concept of the turtle's pen which draws lines is readily generalized to that of a brush which sweeps out
areas. An arbitrary picture may be designated as the turtle's brush, and that picture is swept across the path
along which the turtle moves. This permits the turtle to draw or erase lines of any thickness, as well as lines
normally one point wide. In conjunction with input from a device such as a mouse or tablet, the brush can be used
for painting regions freehand.

For programs, however, the brush mode is not completely satisfactory. Programs for constructing filled in areas
with even simple geometric shapes quickly become complicated. To allow easy creation of shaded regions, the
system provides a SHADE command. A closed curve is drawn with the pen down, outlining the region to be
filled in, and the turtle is placed at any interior point of the region before issuing the command. The system
then scans the screen to find the boundaries of the region and fills it. The area to be shaded may be of any shape
or size. An argument can be given to SHADE to specify a shading pattern, which tells the turtle how to fill the
area. The default shading pattern, SOLID, turns on every point in the region. The system also provides a set of
predefined shading patterns, which are sufficient for typical uses of this feature, like distinguishing between a
few neighboring regions. These perform functions such as filling areas with horizontal or vertical lines. The
user also has the option of using any saved picture as a pattern, in which case the region is filled with that
picture, repeating it "wallpaper" style if necessary. Alternatively, the user can supply a function to decide how
to shade the area. (See Figure 3.)

In the color version of the system described below the shading facility is especially useful in filling areas with
different colors.

 7. Animation

For real time animation, it is important that the user be able to create, display, erase and transform pictures
rapidly enough to give the appearance of motion. Neither the vector display list nor raster graphics systems
are usually fast enough to make it feasible to draw each frame from scratch, dynamically computing the
transformations of the picture from one frame to the next. In vector display list systems, the limitation is
usually not the speed of the display processor, but the speed of the display list compiler. Instead, movies are
usually made by drawing frames or key components of frames, and saving them in some lower level form which
is faster to redisplay, erase, and move than re-executing the original procedure that drew the picture. In the
case of vector displays, this low level representation for pictures is a display list.

In the TV Turtle system, the principal data structure used for this purpose is called a window. A window is an
array of points representing the picture in a rectangular area on the screen. It can be thought of as a
"photograph" of that part of the screen within a given rectangular "viewfinder". Once created, a window can
be displayed or erased at any location on the screen. (See Figure 4.)

Redisplay of a window is implemented simply by transferring the contents of the window array into the screen
memory, which is a very fast operation. Transformations such as rotation, reflection, and scaling of windows
are currently not provided as primitives, but may be programmed by the user or a systems programmer. Showing
a movie by displaying pictures saved in windows is usually much faster than executing procedures to draw each
picture. Windows also provide a means of clipping pictures, as any portion of the picture outside the
rectangular area will be excluded from the window.

The speed of displaying windows depends only upon how much area the picture occupies. It is totally
insensitive to the complexity of a picture within a region, unlike display lists. The window representation is
therefore ideal for animation in which most changes happen within small areas of the screen, but must happen
very fast. An example is a game like space war, where objects that move, appear and disappear (ships and
torpedoes) might be complex pictures, but are small relative to the size of the screen, and need to be changed
rapidly. Windows may tend to be somewhat space consuming for some applications. This problem could be
reduced by converting to a run length encoding scheme, at the cost of increasing the amount of time necessary to
redisplay a window. It is also possible to construct other types of low level representation for pictures,
optimized for pictures with particular known characteristics.

A disadvantage of the window commands as they currently exist is that the area saved in a window must be
specified as a rectangular area. This may make it inappropriate for saving pictures with irregularly shaped
boundaries. Saving the enclosing rectangular area may save in the window portions of some other unwanted
picture adjacent to it, or at least waste space saving empty area. Overlapping pictures are also a source of
difficulty, making it difficult to assign separate names to the output of two procedures if the pictures they draw
can overlap on the screen. Erasing a window also erases the picture "behind" it, a problem also encountered
when using the eraser mode of the turtle, as discussed above. As with the eraser mode, this problem can be
alleviated to some extent by using XOR mode, or explicitly saving and restoring pictures. Rotation and scaling
transformations are more difficult to apply to pictures using the window representation than is the case with
vector display lists.

In Logo implementations for vector displays such as those described in [4] and [5] the basic picture saving
capability is provided by the SNAP command. This command saves a picture (usually the entire screen) as a
display list subroutine. A snap can subsequently be redisplayed anywhere on the screen by inserting a call to
that subroutine into the current display list. Removing the call erases the picture saved in the snap from the
screen. The implementation described in [5] provides such capabilities as copying snaps, editing them by
appending instructions to the subroutine, and restricting the scope of the picture saved in a snap to the display
list output by a particular piece of source code.

A problem with saving pictures as display list subroutines using the SNAP command is that the relationship
between pictures visible on the screen and pictures saved in snaps is not always clear. This is especially true
when multiple copies of snaps may exist, when snaps can be edited, and when there is extensive overlapping of
pictures. There is no way to restrict the extent of a snap to a particular area on the screen. Windows, however,
have the property that what you see is what you get. Everything visible within the specified area will be
included in the window, regardless of what caused it to appear, including vectors, text, points, shaded areas,
and other displayed windows. Windows allow selecting a particular region of the screen to be saved, whereas
snaps allow selectivity with respect to the time at which the picture was drawn. Another problem with snaps
is that they cannot be examined in any reasonable way, and must remain somewhat mysterious to a naive user.
The internal structure of a window, however, is simply an array of points, and can easily be examined and
modified by the user or by programs.

 8. Color

In addition to the black and white system, another version of the TV Turtle displays full color pictures on an
Advent projection television screen. The color version understands most of the same commands as the black and
white version, with additional extensions for creating and manipulating colors. The system supplies a set of
colors initially, but the user may define new colors using the MAKECOLOR command, which creates a new color
from a specified mix of the primary colors red, green, and blue. The turtle's pen has a pen color, and all
drawings done by the turtle appear on the screen in the currently selected pen color. The system also keeps track
of the color of the background against which pictures are drawn. Pictures are erased by redrawing them with
the eraser down, using this background color, called the eraser color. CLEARSCREEN fills the screen with the
eraser color, thereby erasing everything on the screen.

The screen memory for the color system uses several bits to describe the state of each point. These bits address
an array called the palette, which holds a set of currently available colors. A point may be displayed in any
color which is a member of this set. The colors chosen for the palette may be changed at any time. Thus, any
number of colors may be defined, but the number of colors actually visible on the screen at any particular time is
limited by the capacity of the palette. Whenever a PENCOLOR command is issued, the palette is searched to
find the new pen color. If it is present, that color is selected. If not, the new color is inserted into the next
available space in the palette. CLEARSCREEN deletes all the colors from the palette except for the current
pen and eraser colors. Thus, the user need think only in terms of symbolically named colors rather than
numerical indices into the palette, and will only get an error if the limit on the number of different colors in use
simultaneously is exceeded. The palette can, however, be explicitly accessed if desired.

It is very easy to change the color to which a particular number representing the state of a point corresponds,
simply by modifying the palette. This has the visual effect of simultaneously changing all points on the screen
in that color. A REPLACECOLOR primitive is supplied, which given two colors, changes all pictures on the

screen in one color to another. This operation is much faster than achieving the same effect by redrawing the
picture in another color. Using this, it is easy to program psychedelic effects by rapidly changing colors
randomly in a multicolored picture. It is also possible to exploit this feature for animation, so that a picture
could be made to appear or disappear very quickly by using REPLACECOLOR to change it from the background
color to some contrasting color and back again.

 9. Implementation

The TV Turtle is a package of functions written in the MacLisp dialect of Lisp for the PDP10 [9]. It can be used
either directly from Lisp or from our Lisp implementation of Logo [5]. A similar graphics system is currently
being implemented for the PDPII/45 in assembly language. Both the black and white and the color displays are
compatible with standard broadcast television, allowing the use of standard TV monitors or videotape
equipment. Resolution is approximately 575 points horizontally by 454 points vertically. The black and white
system has one bit per point (no gray levels). The color system has four bits per point, allowing up to sixteen
different colors to appear on the screen at once. Hardware for the black and white system was designed by Tom
Knight, for the color system by Ron Lebel.

 Acknowledgments

The author would like to thank Hal Abelson, Ken Kahn, and Ira Goldstein for conversations which helped to
crystallite the ideas presented here, and for suggestions which were very helpful in debugging this paper.
 Bibliography

[1] Seymour Papert
 A Computer Laboratory for Elementary Schools
Logo memo 1, MIT Artificial Intelligence Lab, October 1971

[2] Seymour Papert
 Teaching Children to be Mathematicians Vs. Teaching About Mathematics
Logo memo 4, MIT Artificial Intelligence Lab, July 1971

[3] Howard Austin
 The Logo Primer
Logo working paper 19, MIT Artificial Intelligence Lab, January 1973

[4] Hal Abelson, Nat Goodman, Lee Rudolph
 PDPII Logo Manual
Logo memo 7, MIT Artificial Intelligence Lab, August 1974

[5] Ira Goldstein, Henry Lieberman, Harry Bochner, Mark Miller
 LLogo: An Implementation of Logo in Lisp
Logo memo 11, MIT Artificial Intelligence Lab, March 1975

[6] Ira Goldstein
 Germland
Logo working paper 7, MIT Artificial Intelligence Lab, February 1973

[7] William Newman, Robert Sproull
 Principles of Interactive Computer Graphics
McGraw Hill, 1974

[8] Nicholas Negroponte
 Raster Scan Approaches To Computer Graphics
MIT Architecture Machine Group memo

[9] David A. Moon
 MacLisp Reference Manual
MIT Project MAC memo, December 1975

