

Steptorials:
Mixed-Initiative Learning

of High-Functionality Applications
Henry Lieberman

MIT Media Lab
Cambridge, MA, USA
lieber@media.mit.edu

Elizabeth Rosenzweig
Bentley University

Waltham, MA, USA
erosenzweig@bentley.edu

Christopher Fry
MIT Media Lab

Cambridge, MA, USA
cfry@media.mit.edu

ABSTRACT

How can a new user learn an unfamiliar application,
especially if it is a high-functionality (hi-fun) application,
like Photoshop, Excel, or programming language IDE?
Many applications provide introductory videos, illustrative
examples, and documentation on individual operations.
Tests show, however, that novice users are likely to ignore
the provided help, and try to learn by exploring the
application first. In a hi-fun application, though, the user
may lack understanding of the basic concepts of an
application's operation, even though they were likely
explained in the (ignored) documentation.

This paper introduces steptorials ("stepper tutorials"), a
new interaction strategy for learning hi-fun applications. A
steptorial aims to teach the user how to work through a
simple, but nontrivial, example of using the application.
Steptorials are unique because they allow varying the
autonomy of the user at every step.

A steptorial has a control structure of a reversible
programming language stepper. The user may choose, at
any time, to be shown how to do a step, be guided through
it, use the application interface without constraint, or to
return to a previous step. It reduces the risk in either trying
new operations yourself, or conversely, the risk of ceding
control to the computer. It introduces a new paradigm of
mixed-initiative learning of application interfaces.

Author Keywords
Steptorials; tutorials; help; documentation; program
stepper;

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

HI-FUN VS. LO-FUN APPLICATIONS

As the range of tasks that people want to do with computers
expands, and the capability of software grows, we are faced
with the development of hi-fun interfaces. We are not
going to give a precise definition of hi-functionality
interfaces here. Roughly, we mean those that provide large
command sets, long menus, large or numerous icon bars,
many data types, and complex patterns of use. Low-
functionality (lo-fun) interfaces are much simpler, acting on
just a few kinds of data, and providing reasonably small
command sets, where the name and effect of each command
are expected to be immediately apparent to the user.

Apple’s Preview is an example of a relatively lo-fun
application for images; it can, for example, print, crop, and
rotate images, but it has relatively few operations (about 9
top-level operations, 7 menus of 5-15 items, few subsidiary
dialogs). Adobe’s Photoshop is a hi-fun image application
(25 top level operations (+ modifier keys on many), 4
palettes of 2-3 tabs each, 8 menus of 10 to >25 items, many
subsidiary dialogs). It has many different image types, and
the total number of operations reaches into the thousands. It
has a number of abstract concepts that it is necessary to
learn, such as layers. It is user customizable, can record and
play macros, has numerous plug-ins, etc.

The paper proceeds with a discussion of the problem of
learning hi-fun interfaces, with identification of the ability
to dynamically vary the autonomy of the user as a key. We
then present steptorials, a new interaction strategy that
allows this variation, and show steptorials implemented in
the decision-support system Justify. We then report
usability testing.

IUI'14, February 24 - 27 2014, Haifa, Israel
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-2184-6/14/02…$15.00.
http://dx.doi.org/10.1145/2557500.2557543

THE CHALLENGE OF LEARNING HI-FUN
APPLICATIONS

Applications that become popular tend to grow into hi-fun
interfaces over time as users desire more features and
companies continually try to improve their products.

The most successful, like Photoshop or Microsoft Excel,
become languages and programming environments in their
own right. They become as powerful (and as difficult to
learn for new users) as interactive development
environments for programming languages.

The UI for hi-fun applications is typically designed for the
expert, habitual user. It aims to make all the operations that
the expert user would want to use easily accessible. But
then the new user doesn’t know where to start. And users
who try to learn an interface by sequential exploration get
confused because they are tempted to try many things for
which they won’t have use until much later, if at all.

THE PARADOX OF HELP
Developers of hi-fun interfaces are well aware that novice
users may have trouble learning them. So they provide help,
in a variety of forms. Applications may be introduced to
new users with an introductory video, which shows an
example of a typical use of the application. Tutorials may
be presented, which guide the users step-by-step. The
tutorials may take the form of a set of screenshots, with
explanations of each one, or, more recently, various kinds
of interactive tutorials may allow the user a more
participatory role. Within the application itself, help may be
provided with a help menu with index and search on
particular topics. You may be able to point to a particular
interface element and receive so-called “tooltips” by
hovering the pointing device at that location. There are a
wide variety of ways of offering help, and some complex
applications essentially offer them all.

So why do users still have trouble? We know that people
learn in both top-down and bottom-up ways [12] and for
that reason some users may need to learn by exploring.
User studies [9] reinforce this concept, but surprisingly,
show that the majority of users are persistent in trying to
use an application without first seeking help. This is
especially true for novice users, and for complex
applications, precisely the situation in which help would
provide the most benefit. So what's wrong, and what do we
do about it?

AUTONOMY, CONTEXT, RISK, AND STYLE IN
LEARNING INTERFACES

We would like to focus on four major issues that affect
whether users will be able to make effective use of help:
autonomy, context, risk, and cognitive style.

Different forms of help provide different levels of
autonomy to the user. At one extreme, watching a video
affords the user no autonomy at all-they can only sit there,
eat popcorn, and watch. If they get tired or bored, they can
stop the video but that's all. Similarly, reading a manual is
also passive. The reluctance to give up control is a principal
reason why users are reluctant to view prepared material
before attempting to use an interface.

At the other extreme, forms of help that are embedded in
the application's interface provide the most autonomy. The
user is free to use any part of the application they wish, and
call up the help at any time and place they want. This is fine
if the subject of the help is localized to a particular interface
element, but is often unhelpful when the user has to
consider patterns of use that might stretch across several
operations or several interface elements. Between these
extremes, interactive tutorials provide an intermediate level
of autonomy, and are often preferable for that reason.

But it is hard to choose an appropriate level of autonomy
that is right for all situations. Most people learn best by
doing, that is, when they have a maximal level of
autonomy. But novice users may get lost if left on their
own, and it may be necessary to cede some autonomy to a
more knowledgeable teacher for effective learning. Users
may be more or less expert, or more or less confident in
various aspects of an interface. The problem with
traditional forms of help is that you have to choose a fixed
level of autonomy at the start.

The second problem is context. Watching a video, reading a
manual, or looking at help that appears in pop-up windows,
all take you out of the context of using the actual
application. In-place help, such as tool tips, and some forms
of interactive tutorials, such as stencils [5], are much better
at preserving relevant contexts of use. However, providing
in-place help might be constrained by screen real estate or
the disadvantage of obscuring portions of the interface.

The third problem is risk. When users cede autonomy to the
computer, they take the risk that it will not be rewarded.
The video may go too fast to get an effective understanding
or too slow, boring the user. When the user launches a
tutorial, they are often not sure how much time they are
committing. The well has been poisoned by marketing-hype
videos, or poorly written documentation, making users
reluctant to turn to documentation for help. Much
documentation and help is written in technical jargon.

The last problem we would like to consider is that of
cognitive style. Users vary enormously in their preferred
style of learning. Some people are top-down learners. They
like to understand things conceptually before embarking on
practical procedures. Others are bottom-up learners. They
need to start exploring and doing first. Conventional help
doesn't provide enough flexibility for learners of different
cognitive styles.

VARIABLE AUTONOMY IN USER HELP
The solution we propose in this paper is to allow the user to
vary the autonomy level at every step in the interaction. At
every step of the way, users can choose whether they would
like to sit back and have the computer present something
automatically, whether they would like to do it themselves,
or whether they choose some point in between, leading to a
mixed-initiative interaction.

Not having to choose a fixed level of autonomy in advance
means that interactions can be tailored to the level of
expertise of the individual user for that particular part of the
application, supporting different cognitive styles.
Depending on the situation at the moment, the user can
choose help either in or out of context.

Finally, having a variable level of autonomy reduces the
risk, since the user can always go back and choose a
different level of autonomy without any penalty.

LEARNING GOALS
The goal for introducing a hi-fun application should be to
get a new user “up to speed” in the time they would
plausibly allocate for a session with a new program; say 20
minutes to an hour at most. They should be able to gain the
skills to complete a simple example that seems realistic to
them. To motivate them to continue learning, they need to
experience the “magic” of having the system be able to do
something for them that they would have found difficult or
impossible to do by paper-and-pencil, or other manual
means.

After successful completion of the introductory example,
they should also be able to understand what the paths are to
learn more about the interface. It’s usually not possible for
them to learn any significant portion of an entire hi-fun
interface in an introductory session, but they should get a
sense that there is a world of functionality at their fingertips
just waiting to be discovered.

INTRODUCING STEPTORIALS
This paper introduces the idea of a steptorial (“stepper
tutorial”). A steptorial is a kind of interactive tutorial based
on the control structure of a reversible programming
language stepper.

The idea is that the interface steps necessary to complete
the introductory example are like a “program” (described
by English sentences and/or interaction with the application
rather than programming language code). The steptorial
allows the user to step through the example, as a
programmer steps through code. The steptorial is
completely reversible, inspired by the control structure of
the program stepper ZStep [6]. In extending the stepper
metaphor beyond its origins in program debugging, we are
enabling learning by end-user debugging [7] of application
use-cases.

THE CONTROL STRUCTURE OF A STEPTORIAL
The control structure of a steptorial follows the control
structure of a program stepper. Steppers traditionally
display the code for a program, with a program counter
indicating the expression that is just about to be executed.

The user has the choice of Stepping Over the current
expression, which executes it, returns the result, and moves
the program counter forward to point to the next expression.
The user also has the choice of Stepping Into the current
expression, which dives down into the details of evaluating
the expression, which, recursively, are stepped. The Step
Over/Step Into choice represents a mechanism for control
over the level of detail. In debugging, this prevents the
programmer from getting drowned in detail while
preserving the ability to see any particular detail if the need
arises.

The fully reversible ZStep debugger [6] introduced the
insight that it’s often hard to make the choice about whether
or not you want to see detail of an expression until after you
see its result. If you choose not to see detail, and it turns out
an error did in fact occur in execution, you can back up the
stepper, and only then go through the detail of what may
have caused it. Though there have been several reversible
stepper implementations, none of today’s most popular
programming language IDEs come with a reversible stepper
as standard equipment.

We aim to bring the same kind of flexibility to choices
about how much autonomy and risk the user wants to take
while following an introductory tutorial. The steps of a
steptorial are represented in English sentences rather than
the program code found in a stepper. Both represent, in
some sense “instructions”.

At each step of the tutorial, the user is given choices that
vary in autonomy, from “have the computer do it” to "let
me do it myself". Since the steptorial is reversible, the user
can always back up and make a different decision. A good
learning strategy for top-down learners is often to passively
watch a step at first, then increase autonomy by trying it
themselves. For bottom-up learners, they might want to try
a step first, then retreat to more guided modes if they run
into problems.

AUTHORING STEPTORIALS
At the moment, steptorials are hand-authored for each
example. Each example is described as a set of steps, each
roughly representing a user interaction which satisfies a
single goal. The step is represented to the user by an
English sentence describing the goal. Each step describes
the interface operations necessary to accomplish it. Steps
may have substeps, each of which corresponds to a subgoal.
Justify has an interpreter for running a steptorial from the
list-based representation that contains the steptorial
description as above.

Future work will consider the possibility of generating
steptorials automatically or semi-automatically from
program demonstrations or from user-supplied examples.

STEPTORIALS IN JUSTIFY
The remainder of this paper will present a steptorial for the
decision-support application Justify [4]. Justify is a hi-fun
application that helps manage structured online discussions
about important issues. Justify has a total of 4808 interface
operations, making it comparable to Photoshop (whose
documentation index contains 4032 entries, almost all of
which describe a particular tool or interaction).

Justify is organized around threaded discussions composed
of points (like posts in an online forum). Each point
represents a single idea, fact, or opinion. Points have a rich
ontology of types, which represent the role of that point in
the argument, such as pro or con. Each point also has an
assessment, the result of applying a rule (based on the type
of point) that is intended to compute a summary or possible
decision for that point, taking into account the points below
it.

Like a spreadsheet, creating, deleting, or changing points
propagates changes automatically to other points that
depend on it. Justify is actually a language for representing
arguments, and the interface is really an interactive
development environment (IDE) for that language [4],
which is what makes it hi-fun.

CHOICES IN THE JUSTIFY STEPTORIAL
The Justify steptorial window (Figure 1) provides, as we
mentioned earlier, the standard stepper controls: Forward
and back one step or to the beginning or end (arrows along
left side), and the “Dive In” icon, which steps into the
current step, revealing its details. For each step, we provide
three choices (along bottom): Show Me How to Do It,
Guide Me Through It, and Let Me Do It Myself. The purple
right-pointing arrow is the “program counter” indicating the
current step.

If the user chooses Show Me How to Do It, it runs a
predefined video that corresponds to the current step. If the
user does Step Over (down arrow) on that step, it runs the
entire step to completion. If the step happens to have
substeps, videos for all of the substeps are concatenated and
run continuously.

If the user instead chooses Dive In for that step, the
substeps for that step are opened up, and the first substep is
indicated. In this way, the user may choose any of the three
presentation options for each substep independently. When
all the substeps for the main step are finished, control
returns up to the previous level, following the control
structure of a standard stepper.

Future versions of the steptorial will replace the video
segments with execution of the procedure in the actual

application itself (in its own window and affecting its own
internal data structures). This requires the application to be
externally scriptable. Reversing the stepper will fully
restore application state.

Guide Me Through It launches a stencil based interactive
tour [5]. Stencils “gray out” all interface elements except
the one with which the user is expected to interact at that
particular step. Stencils permit interaction in the proper
application context, and direct the user’s attention to avoid
distraction. Again, the level of detail seen is determined by
the Step Over/Step Into distinction. If we step into a
substep, we play only that part of the stencil tour that is
relevant to that substep.

Stencil tours can vary in the level of interaction they permit
the user. Allowing the user more autonomy in operating the
interface means that the application has to check to make
sure the user isn't getting “off track”.

Finally, there's Let Me Do It Myself. This allows the user
pretty much unconstrained use of the application, with the
understanding that they will try to accomplish the goal
represented by that particular step themselves. The stepper
controls are replaced by two options: I Did It, and Oops!,

Figure 1. A steptorial (lower right pane) in the decision

support system Justify.

Figure 2. A stencil guided tour. Most of the interface is
“grayed out”, except for the particular element that the
tour wants the user to interact with at that step.

indicating, respectively, the user declaring success or
failure of the goal.

If the application is scriptable and recordable, it may be
able to determine for itself whether the user accomplished
the goal, rather than wait for the user to click I Did It. This
may obviate the need for the user to explicitly mark the end
of the interaction.

Oops! simply returns to the previous application state, so
there’s little risk for the user in at least attempting to
perform the task themselves. There’s also potential, as in
Intelligent Tutoring Systems, for an intelligent program to
try to diagnose what may have gone wrong with the user’s
attempt, and try to provide more targeted help.

EVALUATION
First, we ran a usability test on the Justify system itself.
This study had 6 participants, over an hour each, and
focused on the introductory experience. Justify provided
help in a variety of conventional forms: video, side-panel
help, and tool tip help on interface elements. Though this
study is not the subject of this paper, we uncovered
problems typical of introducing hi-fun interfaces to new
users: disorientation, distraction, and unwillingness to
consult the provided help. This motivated the introduction
of steptorials.

We then ran two kinds of formative evaluation on Justify
steptorials. The first was a Heuristic Review [8] performed
by two experienced User Experience (UX) professionals.
We also performed a walkthrough with a single novice user,
experienced with Microsoft Office and other complex
applications, but not a programmer. We were most
interested in the question of whether a steptorial would
support the preferred learning style of the user, regardless
of whether it was top-down or bottom-up.

Heuristic review
The two UX reviewers represented two contrasting learning
styles: one preferred a learning style that starts with
exploration; the other preferred to read or view explanatory
material before exploration. Both found that the Steptorial
interaction allowed them to learn about the interface using
their preferred style. Each felt that they were more
“engaged” with the interface than with conventional help
systems, and that the interface provided more “motivation
for pushing through complexities in the interface”.

User walkthrough
The novice user walkthrough, (and user testing of new help
paradigms in general) provides some interesting challenges.
Most users’ experience with conventional help is so
discouraging, that if we merely offer a steptorial as an
alternative to traditional forms of documentation, we run
the risk that they will ignore steptorials in the same way
they've been shown to decline other forms of help.

This test was not designed to see if users could pick up the
concept of a steptorial from scratch and spontaneously
choose it over conventional help. Therefore, the session
started out with an introduction to the steptorial
methodology, and we verified that the participant
understood the operation of the steptorial window. We were
interested to see whether the participant could achieve a
better understanding of Justify than was possible with
conventional help methods.

Participant A. was able to learn the steptorial methodology
easily after the initial presentation. She then embarked on
learning Justify. The task was to encode a simple argument,
with one yes-or-no question, one reason in favor, one
reason opposed, and a reply to refute one of the first two
reasons presented.

There were some problems with orientation and context. A.
had some trouble distinguishing real-world or problem-
focused concepts from interface concepts. For example, a
question refers both to a (real-world) topic the user wishes
to discuss using Justify, and a technical concept in the
Justify interface that the steptorial is trying to teach you
how to create. A. sometimes got confused about what
constituted a “step”. After introducing the question, the
intent of the steptorial was to make three sequential entries,
each professing an opinion for or against the question. But
A. at first interpreted them as three different options from
which she should select just one. Writing steptorials is an
art, just like writing other kinds of documentation, and care
is needed to keep terminology straight.

Because of the “low-fidelity” of the prototype (all modes
were not fully implemented), A. sometimes got out of sync
between the various modes. Running a video looks almost
identical to actions in the interface, but when you return to
the interface, the effects of the actions aren’t there!
Similarly, we were unable in the current implementation to
keep the stencil guided tour in perfect sync with the stepper
navigation. We hope to correct that in future when we are
able to fully script the application.

Before the test, we had asked participant A. about how she
normally approached learning new applications. She said
that she preferred to “dive right in” rather than preparing by
reading manuals or watching videos. However, we
observed that during the test, whenever she was presented
with a choice between watching the video, guided tour, and
unconstrained application use, she chose to watch the video
first. But it also shows that, even though a user might have
a preferred overall strategy, they may choose in the moment
to adopt a different strategy for a specific situation. This
confirms our hypothesis that it is valuable to offer varying
autonomy alternatives at every step.

At the end, A. demonstrated that she was able to operate the
interface to enter her own example with little or no help,
analogous to the example she was shown. We take this as a
positive result, especially as the previous tests had shown

that users who did not follow tutorials had trouble with
similar problems.

RELATED WORK
The most closely related work is Chi et. al’s MixT, [2]
which provided the user a choice between static
(screenshot+text) tutorials and video tutorials. In both
cases, the tutorials were presented linearly, rather than with
the structure of the task hierarchy, as here, and there is no
reversibility.

We employ Kelleher and Pausch’s stencil [5] technique as
an intermediary between fully scripted and fully flexible
options for the user. Selker’s Coach [10] system pioneered
the use of user-generated examples and mixed-initiative
tutorials in teaching rather than predefined tutorial material.
We see opportunity in incorporating more user-generated
examples and input into steptorials.

Carroll and Rosson [1] and Fischer [3] have long advocated
for users taking an active role in learning interfaces. We
have been inspired by their user-centered design principles,
relevance to user goals over techno-centrism, and advocacy
of learning by doing.

We see this work in the tradition of Intelligent Tutoring
Systems [11] and many opportunities arise for trying to
better understand user behavior and provide personalized
help. VanLehn [13] surveys contemporary ITS’es and
compares with human instruction. Wiedenbeck and Zila
[14] systematically tested guided vs. exploratory
approaches.

CONCLUSION
Hi-functionality applications are here to stay. If we’re going
to enable new users to be productive quickly, we need
better ways of introducing users to them. They need to be
able to quickly succeed at small, but nontrivial and relevant
examples that best show off the use of the application, to
motivate them to continue learning and using it. But we
can’t teach them everything at once.

This paper introduced the steptorial, a new paradigm for
mixed-initiative learning of complex applications. It allows
users to choose at any moment, between passively watching
a demonstration of that step, trying it themselves without
help, or via one or more mixed-initiative learning modes.
Whether you prefer a top-down learning style, or a bottom-
up learning style, we’ll get you on the road to success.

ACKNOWLEDGMENTS

We would like to acknowledge Dani Nordin and Heather
Wright Karlson for their help with the usability evaluation.

REFERENCES
1. Carroll, J., Rosson, M. B., The Paradox of the Active

User, in Intefacing Thought: Cognitive Aspects of
Human-Computer Interaction, MIT Press, 1987.

2. Chi, P., Ahn, S., Ren, A., Dontcheva, M., Li, W.,
Hartmann, B., MixT: Automatic Generation of Step-by-
Step Mixed Media Tutorials, ACM User Interface
Software Technology (UIST), 2012.

3. Fischer, G., Lemke, A. C., & Schwab, T. (1985)
Knowledge-Based Help Systems in L. Borman, & B.
Curtis (Eds.), CHI 1985, pp. 161-167.

4. Fry, C., Lieberman, H., Decision-Making Should Be
More Like Programming, Int’l Symposium on End-User
Development, Copenhagen, June 2013.

5. Kelleher, C. and Pausch, R., Stencil Based Tutorials:
Design and Evaluation, CHI 2005,pp 541-550

6. Lieberman, H. and Fry, C., ZStep 95: A Reversible,
Animated, Source Code Stepper, in Software
Visualization, John Stasko, John Domingue, Marc
Brown, and Blaine Price, eds., MIT Press, 1997.

7. Lieberman, H., and Wagner, E., End-User Debugging
for Electronic Commerce, Int’l Conference on
Intelligent User Interfaces, 2003.

8. Nielson, J, Technology Transfer of Heuristic Evaluation
and Usability Inspection, IFIP INTERACT'95
International Conference on Human-Computer
Interaction, Lillehammer, Norway, 1995.

9. Pashler, H, McDaniel, M, Rohrer, D, Bjork, R.,
Learning styles: Concepts and Evidence, Psychological
Science in the Public Interest, 9, pp 105-119, 2008.

10. Selker, T., Coach: A Teaching Agent that Learns,
Communications of the ACM, July 1999, Vol.37 No.7,
pp. 92-99.

11. Sleeman, D. and Brown, J.S., Intelligent Tutoring
Systems, Academic Press, 1982.

12. Sun, R., Zhang, Xi, Top-down versus bottom-up
learning in cognitive skill acquisition, Cognitive Systems
Research Vol. 5, pp. 63-89, 2004.

13. Van Lehn, K., The Relative Effectiveness of Human
Tutoring, Intelligent Tutoring Systems, and Other
Tutoring Systems, Educational Psychologist 46(4), 197-
221.

14. Wiedenbeck, S. & Zila, P. L. Hands-on practice in
learning to use software: a comparison of exercise,
exploration, and combined formats, ACM Transactions
on Computer-Human Interaction, Vol. 4., No. 2, pp.
169-196, 1997.

