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Abstract 
Photos annotated with textual keywords can be thought of as resembling documents, and querying for photos by keywords is akin 
to the information retrieval done by search engines. A common approach to making IR more robust involves query expansion 
using a thesaurus or other lexical resource. The chief limitation is that keyword expansions tend to operate on a word level, and 
expanded keywords are generally lexically motivated rather than conceptually motivated.  In our photo domain, we propose a 
mechanism for robust retrieval by expanding the concepts depicted in the photos, thus going beyond lexical-based expansion.  
Because photos often depict places, situations and events in everyday life, concepts depicted in photos such as place, event, and 
activity can be expanded based on our “common sense” notions of how concepts relate to each other in the real world.  For 
example, given the concept “surfer” and our common sense knowledge that surfers can be found at the beach, we might provide 
the additional concepts: “beach”, “waves”, “ocean”, and “surfboard”.  This paper presents a mechanism for robust photo retrieval 
by expanding annotations using a world semantic resource.  The resource is automatically constructed from a large-scale freely 
available corpus of commonsense knowledge.  We discuss the challenges of building a semantic resource from a noisy corpus 
and applying the resource appropriately to the task. 

 

1. Introduction 

1.1. 

1.2. 

 
The task described in this paper is the robust retrieval 

of annotated photos by a keyword query.  By “annotated 
photos,” we mean a photo accompanied by some metadata 
about the photo, such as keywords and phrases describing 
people, things, places, and activities depicted in the photo.   
By “robust retrieval,” we mean that photos should be 
retrievable not just by the explicit keywords in the 
annotation, but also by other implicit keywords 
conceptually related to the event depicted in the photo. 

  In the retrieval sense, annotated photos behave 
similarly to documents because both contain text, which 
can be exploited by conventional IR techniques.  In fact, 
the common query enrichment techniques such as 
thesaurus-based keyword expansion developed for 
document retrieval may be applied to the photo retrieval 
domain without modification. 

However, keyword expansion using thesauri is limited 
in its usefulness because keywords expanded by their 
synonyms can still only retrieve documents directly 
related to the original keyword.  Furthermore, naïve 
synonym expansion may actually contribute more noise to 
the query and negate what little benefit keyword 
expansion may add to the query, namely, if keywords 
cannot have their word sense disambiguated, then 
synonyms for all the word senses of a particular word may 
be used in the expansion, and this has the potential to 
retrieve many irrelevant documents. 

Relevant Work 
Attempting to overcome the limited usefulness of 

keyword expansion by synonyms, various researchers 
have tried to use slightly more sophisticated resources for 
query expansion.  These include dictionary-like resources 
such as lexical semantic relations (Voorhees, 1994), and 
keyword co-occurrence statistics (Peat and Willet, 1991; 
Lin, 1998), as well as resources generated dynamically 
through relevance feedback, like global document analysis 

(Xu and Croft, 1996), and collaborative concept-based 
expansion (Klink, 2001). 

Although some of these approaches are promising, 
they share some of the same problems as naïve synonym 
expansion.  Dictionary-like resources such as WordNet 
(Fellbaum, 1998) and co-occurrence frequencies, although 
more sophisticated that just synonyms, still operate mostly 
on the word-level and suggest expansions that are 
lexically motivated rather than conceptually motivated.  In 
the case of WordNet, lexical items are related through a 
very limited set of nymic relations.  Relevance feedback, 
though somewhat more successful than dictionary 
approaches, requires additional iterations of user action 
and we cannot consider it fully automated retrieval, which 
makes it an inappropriate candidate for our task. 

Photos vs. Documents 
With regard to our domain of photo retrieval, we make 

a key observation about the difference between photos and 
documents, and we exploit this difference to make photo 
retrieval more robust. We make the observation that 
photos taken by an ordinary person has more structure and 
is more predictable than the average document on the 
web, even though that structure may not be immediately 
evident.  The contents of a typical document such as a 
web page are hard to predict, because there are too many 
types and genres of web pages and the content does not 
predictably follow a stereotyped structure.  However, with 
typical photos, such as one found in your photo album, 
there is more predictable structure.  That is, the intended 
subject of photos often includes people and things in 
common social situations.  Many of these situations 
depicted, such as weddings, vacations, sporting events, 
sightseeing, etc. are common to human experience, and 
therefore have a high level of predictability. 

Take for example, a picture annotated with the 
keyword “bride”.  Even without looking at the photo, a 
person may be able to successfully guess who else is in 
the photo, and what situation is being depicted.  Common 



sense would lead a person to reason that brides are usually 
found at weddings, that people found around her may be 
the groom, the father of the bride, bridesmaids, that 
weddings may take place in a chapel or church, that there 
may be a wedding cake, walking down the aisle, and a 
wedding reception.  Of course, common sense cannot be 
used to predict the structure of specialty photos such as 
artistic or highly specialized photos; this paper only 
considers photos in the realm of consumer photography. 

1.2.1. 

1.3. 

2. 

A Caveat 
Before we proceed, it is important to point out that any 

semantic resource that attempts to encapsulate common 
knowledge about the everyday world is going to be 
somewhat culturally specific.  The previous example of 
brides, churches and weddings illustrates an important 
point: knowledge that is obvious and common to one 
group of people (in this case, middle-class USA) may not 
be so obvious or common to other groups.  With that in 
mind, we go on to define the properties of this semantic 
resource. 

World Semantics  
Knowledge about the spatial, temporal, and social 

relations of the everyday world is part of commonsense 
knowledge.  We also call this world semantics, referring 
to the meaning of everyday concepts and how these 
concepts relate to each other in the world.  

The mechanism we propose for robust photo retrieval 
uses a world semantic resource in order to expand 
concepts in existing photo annotations with concepts that 
are, inter alia, spatially, temporally, and socially related.  
More specifically, we automatically constructed our 
resource from a corpus of English sentences about 
commonsense by first extracting predicate argument 
structures, and then compiling those structures into a 
Concept Node Graph, where the nodes are commonsense 
concepts, and the weighted edges represent commonsense 
relations.  The graph is structured much like MindNet 
(Richardson et al., 1998).  Performing concept expansion 
using the graph is modeled as spreading activation (Salton 
and Buckley, 1988). The relevance of a concept is 
measured as the semantic proximity between nodes on the 
graph, and is affected by the strength of the links between 
nodes. 

This paper is structured as follows:  First, we discuss 
the source and nature of the corpus of commonsense 
knowledge used by our mechanism.  Second, a discussion 
follows regarding how our world semantic resource was 
automatically constructed from the corpus.  Third, we 
show the spreading activation strategy for robust photo 
retrieval, and give heuristics for coping with the noise and 
ambiguity of the knowledge.  The paper concludes with a 
discussion of the larger system to which this mechanism 
belongs, potential application of this type of resource in 
other domains, and plans for future work. 

OMCS: A Corpus of Common Sense 
The source of the world semantic knowledge used by 

our mechanism is the Open Mind Common Sense 
Knowledge Base (OMCS) (Singh, 2002) - an endeavor at 
the MIT Media Laboratory that aims to allow a web-
community of teachers to collaboratively build a database 
of “common sense” knowledge.  

It is hard to define what actually constitutes common 
sense, but in general, one can think of it as knowledge 
about the everyday world that most people within some 
population consider to be “obvious.” As stated earlier, 
common sense is somewhat culturally specific.  Although 
many thousands of people from around the world 
collaboratively contribute to Open Mind Common Sense, 
the majority of the knowledge in the corpus reflects the 
cultural bias of middle-class USA.  In the future, it may 
make sense to tag knowledge by their cultural 
specification. 

OMCS contains over 400,000 semi-structured English 
sentences about commonsense, organized into an ontology 
of commonsense relations such as the following: 

 
• A is a B 
• You are likely to find A in/at B 
• A is used for B 

 
By semi-structured English, we mean that many of the 

sentences loosely follow one of 20 or so sentence patterns 
in the ontology.  However, the words and phrases 
represented by A and B (see above) are not restricted. 
Some examples of sentences in the knowledge base are: 

 
• Something you find in (a restaurant) is (a waiter) 
• The last thing you do when (getting ready for bed) 

is (turning off the lights) 
• While (acting in a play) you might (forget your 

lines) 
 
The parentheses above denote the part of the sentence 

pattern that is unrestricted. While English sentence 
patterns has the advantage of making knowledge easy to 
gather from ordinary people, there are also problems 
associated with this.  The major limitations of OMCS are 
four-fold.  First, there is ambiguity resulting from the lack 
of disambiguated word senses, and from the inherent 
nature of natural languages.  Second, many of the 
sentences are unusable because they may be too complex 
to fully parse with current parser technology. Third, 
because there is currently no truth maintenance 
mechanism or filtering strategy for the knowledge 
gathered (and such a mechanism is completely nontrivial 
to build), some of the knowledge may be anomalous, i.e. 
not common sense, or may plainly contradict other 
knowledge in the corpus.  Fourth, in the acquisition 
process, there is no mechanism to ensure a broad coverage 
over many different topics and concepts, so some concepts 
may be more developed than others.   

The Open Mind Commonsense Knowledge Base is 
often compared with its more famous counterpart, the 
CYC Knowledge Base (Lenat, 1998).  CYC contains over 
1,000,000 hand-entered rules that constitute “common 
sense”.  Unlike OMCS, CYC represents knowledge using 
formal logic, and ambiguity is minimized.  In fact, it does 
not share any of the limitations mentioned for OMCS.  Of 
course, the tradeoff is that whereas a community of non-
experts contributes to OMCS, CYC needs to be somewhat 
carefully engineered.  Unfortunately, the CYC corpus is 
not publicly available at this time, whereas OMCS is 
freely available and downloadable via the website 
(www.openmind.org/commonsense). 

Even though OMCS is a more noisy and ambiguous 
corpus, we find that it is still suitable to our task.  By 



normalizing the concepts, we can filter out some possibly 
unusable knowledge (Section 3.2). The impact of 
ambiguity and noise can be minimized using heuristics 
(Section 4.1). Even with these precautionary efforts, some 
anomalous or bad knowledge will still exist, and can lead 
to seemingly semantically irrelevant concept expansions.  
In this case, we rely on the fail-soft nature of the 
application that uses this semantic resource to handle 
noise gracefully. 

3. 

3.1. 3.2. 

Constructing a World Semantic Resource 
In this section, we describe how a usable subset of the 

knowledge in OMCS is extracted and structured 
specifically for the photo retrieval task.  First, we apply 
sentence pattern rules to the raw OMCS corpus and 
extract crude predicate argument structures, where 
predicates represent commonsense relations and 
arguments represent commonsense concepts.  Second, 
concepts are normalized using natural language 
techniques, and unusable sentences are discarded.  Third, 
the predicate argument structures are read into a Concept 
Node Graph, where nodes represent concepts, and edges 
represent predicate relationships.  Edges are weighted to 
indicate the strength of the semantic connectedness 
between two concept nodes. 

Extracting Predicate Argument Structures 
The first step in extracting predicate argument 

structures is to apply a fixed number of mapping rules to 
the sentences in OMCS.  Each mapping rule captures a 
different commonsense relation.  Commonsense relations, 
insofar as what interests us for constructing our world 
semantic resource for photos, fall under the following 
general categories of knowledge: 

 
1. Classification: A dog is a pet 
2. Spatial: San Francisco is part of California 
3. Scene: Things often found together are: restaurant, 

food, waiters, tables, seats 
4. Purpose: A vacation is for relaxation; Pets are for 

companionship 
5. Causality: After the wedding ceremony comes the 

wedding reception. 
6. Emotion: A pet makes you feel happy; 

Rollercoasters make you feel excited and scared. 
 
In our extraction system, mapping rules can be found 

under all of these categories.  To explain mapping rules, 
we give an example of knowledge from the 
aforementioned Scene category: 

 
somewhere THING1 can be is PLACE1 
somewherecanbe 
THING1, PLACE1 
0.5, 0.1 
 
Mapping rules can be thought of as the grammar in a 

shallow sentence pattern matching parser.  The first line in 
each mapping rule is a sentence pattern. THING1 and 
PLACE1 are variables that approximately bind to a word 
or phrase, which is later mapped to a set of canonical 
commonsense concepts.  Line 2 specifies the name of this 
predicate relation.  Line 3 specifies the arguments to the 
predicate, and corresponds to the variable names in line 1.  

The pair of numbers on the last line represents the 
confidence weights given to forward relation (left to 
right), and backward relation (right to left), respectively, 
for this predicate relation.  This also corresponds to the 
weights associated with the directed edges between the 
nodes, THING1 and PLACE1 in the graph representation.   

It is important to distinguish the value of the forward 
relation on a particular rule, as compared to a backward 
relation.  For example, let us consider the commonsense 
fact, “somewhere a bride can be is at a wedding.”  Given 
the annotation “bride,” it may be very useful to return 
“wedding.” However, given the annotation “wedding,” it 
seems to be less useful to return “bride,” “groom,” 
“wedding cake,” “priest,” and all the other things found 
in a wedding.  For our problem domain, we will generally 
penalize the direction in a relation that returns hyponymic 
concepts as opposed to hypernymic ones.  The weights for 
the forward and backward directions were manually 
assigned based on a cursory examination of instances of 
that relation in the OMCS corpus. 

Approximately 20 mapping rules are applied to all the 
sentences (400,000+) in the OMCS corpus.  From this, a 
crude set of predicate argument relations are extracted.   
At this time, the text blob bound to each of the arguments 
needs to be normalized into concepts. 

Normalizing Concepts  
Because any arbitrary text blob can bind to a variable 

in a mapping rule, these blobs need to be normalized into 
concepts before they can be useful.  There are three 
categories of concepts that can accommodate the vast 
majority of the parseable commonsense knowledge in 
OMCS: Noun Phrases (things, places, people), Attributes 
(adjectives), and Activity Phrases (e.g.: “walk the dog,” 
“buy groceries.”), which are verb actions that take either 
no argument, a direct object, or indirect object.  

To normalize a text blob into a Noun Phrase, Attribute 
or Activity Phrase, we tag the text blob with part of 
speech information, and use these tags filter the blob 
through a miniature grammar.  If the blob does not fit the 
grammar, it is massaged until it does or it is rejected 
altogether.  Sentences, which contain text blobs that 
cannot be normalized, are discarded at this point. The final 
step involves normalizing the verb tenses and the number 
of the nouns.  Only after this is done can our predicate 
argument structure be added to our repository.   

The aforementioned noun phrase, and activity phrase 
grammar is shown below in a simplified view.  Attributes 
are simply singular adjectives. 
 
 NOUN PHRASE: 

 (PREP) (DET|POSS-PRON) NOUN 

 (PREP) (DET|POSS-PRON) NOUN NOUN 

 (PREP) NOUN POSS-MARKER (ADJ) NOUN 

 (PREP) (DET|POSS-PRON) NOUN NOUN NOUN 

 (PREP) (DET|POSS-PRON) (ADJ) NOUN PREP NOUN 

 

ACTIVITY PHRASE: 

 (PREP) (ADV) VERB (ADV) 

 (PREP) (ADV) VERB (ADV) (DET|POSS-PRON) (ADJ) NOUN 

 (PREP) (ADV) VERB (ADV) (DET|POSS-PRON) (ADJ) NOUN NOUN 

 (PREP) (ADV) VERB (ADV) PREP (DET|POSS-PRON) (ADJ) NOUN 

 



  The grammar is used as a filter.  If the input to a 
grammar rule matches any optional tokens, which are in 
parentheses, then this is still considered a match, but the 
output will filter out any optional fields.  For example, the 
phrase, “in your playground” will match the first rule and 
the phrase will stripped to just “playground.” 

)),((*)()( BAedgeweightAASBAS =        (1) 
 
When no more nodes are activated, we have found all 

the concepts that expand the input concept up to our set 
threshold. 

3.3. 

4. 

Concept Node Graph 4.1. 

4.1.1. Reinforcement 

4.1.2. 

Heuristics to Improve Relevance 
To model concept expansion as a spreading activation 

task, we convert the predicate argument structures 
gathered previously into a Concept Node Graph by 
mapping arguments to concept nodes, and predicate 
relations to edges connecting nodes.  Forward and 
backward edge weights come from the mapping rule 
associated with each predicate relation.  A segment of the 
graph is shown in Figure 1. 

One problem that can arise with spreading activation is 
that nodes that are activated two or more hops away from 
the origin node may quickly lose relevance, causing the 
search to lose focus.  One reason for this is noise.  
Because concept nodes do not make distinctions between 
different word senses (an aforementioned problem with 
OMCS), it is possible that a node represents many 
different word senses.  Therefore, activating more than 
one hop away risks exposure to noise. Although 
associating weights with the edges provides some measure 
of relevance, these weights form a homogenous class for 
all edges of a common predicate (recall that the weights 
came from mapping rules). 

0.2

bride

weddinggroom

0.5

0.1

0.2

0.5

0.1FoundTogether PartOf

PartOf

We identify two opportunities to re-weight the graph 
to improve relevance: reinforcement and popularity.  Both 
of these heuristics are known techniques associated with 
spreading activation networks (Salton and Buckley, 1988).  
We motivate their use here with observations about our 
particular corpus, OMCS. 

A CP PB

Q

Figure 1. A portion of the Concept Node Graph. Nodes 
are concepts, and edges correspond to predicate relations. 

 
The following statistics were compiled on the 

automatically constructed resource: Figure 2. An example of reinforcement 
  
• 400,000+ sentences in OMCS corpus As illustrated in Figure 2, we make the observation 

that if node C is connected to node A through both paths P 
and Q, then C would be more relevant to A than had either 
path P or Q been removed.  We call this reinforcement 
and define it as two or more corroborating pieces of 
evidence, represented by paths, that two nodes are 
semantically related. The stronger the reinforcement, the 
higher the potential relevance.   

• 50,000 predicate argument structures extracted 
• 20 predicates in mapping rules 
• 30,000 concept nodes 
• 160,000 edges 
• average branching factor of 5 

Concept Expansion  
Using Spreading Activation Looking at this in another way, if three or more nodes 

are mutually connected, they form a cluster.  Examples of 
clusters in our corpus are higher-level concepts like 
weddings, sporting events, parties, etc., that each have 
many inter-related concepts associated with them.  Within 
each such cluster, any two nodes have enhanced relevance 
because the other nodes provide additional paths for 
reinforcement. Applying this, we re-weight the graph by 
detecting clusters and increasing the weight on edges 
within the cluster.  

In this section, we explain how concept expansion is 
modeled as spreading activation.  We propose two 
heuristics for re-weighting the graph to improve 
relevance.  Examples of the spreading activation are then 
given. 

In spreading activation, the origin node is the concept 
we wish to expand (i.e. the annotation) and it is the first 
node to be activated. Next, nodes one hop away from the 
origin node are activated, then two levels away, and so on.  
A node will only be activated if its activation score (AS) 
meets the activation threshold, which is a tolerance level 
between 0 (irrelevant) and 1.0 (most relevant). The origin 
node has a score of 1.0.  Given two nodes A and B, where 
A has 1 edge pointing to B, the activation score of B is 
given in equation (1). 

Popularity 
The second observation we make is that if an origin 

node A has a path through node B, and node B has 100 



children, then each of node B's children are less likely to 
be relevant to node A than if node B had had 10 children.    

('england', '0.9618') ('ontario', '0.6108') 
('europe', '0.4799') ('california', '0.3622') 

We refer to nodes with a large branching factor as 
being popular.  It happens that popular nodes in our graph 
tend to either correspond to very common concepts in 
commonsense, or tend to have many different word 
senses, or word contexts.  This causes its children to have 
in general, a lower expectation of relevance.  

('united kingdom', '0.2644') ('forest', '0.2644') 
('earth', '0.1244') 
 
>>> expand(“symphony”) 
('concert', '0.5') ('music', '0.4') 
('theatre', '0.2469') 

 ('conductor', '0.2244') 
('concert hall', '0.2244') 

bridesmaid

bride groom

to wedding

to wedding

to beauty 

concepts

concepts
concepts

(bf = 2) 

(bf = 129) 

('xylophone', '0.1') ('harp', '0.1') 
('viola', '0.1') ('cello', '0.1') 
('wind instrument', '0.1') ('bassoon', '0.1') 
('violin', '0.1') 
 
>>> expand(“listen to music”) 
('relax', '0.4816') ('be entertained', '0.4816') 
('have fun', '0.4') ('relaxation', '0.4')  
('happy', '0.4') ('hang', '0.4') 
('hear music', '0.4') ('dorm room', '0.4') 
('understand', '0.4') ('mother', '0.2') 
('happy', '0.136')  

Figure 3. Illustrating the negative effects of popularity ('get away', '0.136') ('listen', '0.136') 
 ('change psyche', '0.136') ('show', '0.1354') 
As illustrated in Figure 3, the concept bride may lead 

to bridesmaid and groom.  Whereas bridesmaid is a more 
specific concept, not appearing in many contexts, groom 
is a less specific concept.  In fact, different senses and 
contexts of the word can mean “the groom at a wedding,” 
or “grooming a horse” or “he is well-groomed.”  This 
causes groom to have a much larger branching factor.   

('dance club', '0.1295') ('frisbee', '0.1295') 
('scenery', '0.124') ('garden', '0.124') 
('spa', '0.124') ('bean bag chair', '0.124') 
 

The expansion of “bride” shows the diversity of 
relations found in the semantic resource.  “Love” is some 
emotion that is implicitly linked to brides, weddings, and 
marriage.  Expansions like “priest”, “flower girl,” and 
“groom” are connected through social relations.  “Wife” 
seems to be temporally connected.  To “marry” indicates 
the function of a wedding. 

It seems that even though our knowledge is common 
sense, there is more value associated with more specific 
concepts than general ones.  To apply this principle, we 
visit each node and discount the weights on each of its 
edges based on the metric in equation (2).  (α and β are 
constants): 

However, there are also expansions whose connections 
are not as obvious, such as “hair,” and “lake.”  There are 
also other expansions that may be anomalies in the OMCS 
corpus, such as “tender moment” and  “snow covered 
mountain.”  These examples point to the need for some 
type of statistical filtering of the knowledge in the corpus, 
which is not currently done. 

 

)*log(
1

*

βα +
=

=

actorbranchingF
discount

discountoldWeightnewWeight
(2) 

 

4.2. 

5. Conclusion 

 In the last expansion example, the concept of “listen 
to music” is arguably more abstract than the wedding 
concept, and so the expansions may seem somewhat 
arbitrary.  This illustrates one of the limitations of any 
common sense acquisition effort: deciding upon which 
topics or concepts to cover, how well they are covered, 
and to what granularity they are covered. 

Examples 
Below are actual runs of the concept expansion 

program using an activation threshold of 0.1.  They were 
selected to illustrate what can be commonly expected 
from the expansions, including limitations posed by the 
knowledge.   

 
>>> expand(“bride”) 
('love', '0.632'), ('wedding', '0.5011') In this paper, we presented a mechanism for robust 

photo retrieval: using a world semantic resource to expand 
a photo’s annotations.  The resource was automatically 
constructed from the publicly available Open Mind 
Common Sense corpus.  Sentence patterns were applied to 
the corpus, and simple predicate argument structures were 
extracted.  After normalizing arguments into syntactically 
neat concepts, a weighted concept node graph was 
constructed.  Concept expansion is modeled as spreading 
activation over the graph.  To improve relevance in 
spreading activation, the graph was re-weighted using 
heuristics for reinforcement and popularity. 

('groom', '0.19'), ('marry', '0.1732') 
('church', '0.1602'), ('marriage', '0.1602') 
('flower girl', '0.131') ('happy', '0.131') 
('flower', '0.131') ('lake', '0.131') 
('cake decoration', '0.131') ('grass', '0.131') 
('priest', '0.131') ('tender moment', '0.131') 
('veil', '0.131') ('wife', '0.131') 
('wedding dress', '0.131') ('sky', '0.131') 
('hair', '0.1286') ('wedding bouquet', '0.1286') 
('snow covered mountain', '0.1286') 
 
>>> expand('london') 



This work has not yet been formally evaluated. Any 
evaluation will likely take place in the context of the 
larger system that this mechanism is used in, called 
(A)nnotation and (R)etrieval (I)ntegration (A)gent 
(Lieberman et al., 2001)  ARIA is an assistive software 
agent which automatically learns annotations for photos 
by observing how users place photos in emails and web 
pages.  It also monitors the user as s/he types an email and 
finds opportunities to suggest relevant photos.  The idea of 
using world semantics to make the retrieval process more 
robust comes from the observation that concepts depicted 
in photos are often spatially, temporally, and socially 
related in a commonsensical way.  While the knowledge 
extracted from OMCS does not give very complete 
coverage of many different concepts, we believe that what 
concept expansions are done have added to the robustness 
of the retrieval process. Sometimes the concept 
expansions are irrelevant, but because ARIA engages in 
opportunistic retrieval that does not obstruct the user’s 
task of writing the email, the user does not suffer as a 
result.  We sometimes refer to ARIA as being “fail-soft” 
because good photo suggestions can help the task, but the 
user can ignore bad photo suggestions.   

Robust photo retrieval is not the only IR task in which 
semantic resources extracted from OMCS have been 
successfully applied.  (Liu et al., 2002) used OMCS to 
perform inference to generate effective search queries by 
analyzing the user’s search goals. (Liu and Singh, 2002) 
uses the subset of causal knowledge in OMCS to generate 
crude story scripts. 

In general, the granularity of the knowledge in OMCS 
can benefit any program that deals with higher-level social 
concepts of the everyday world. However, because of 
limitations associated with this corpus such as noise, 
ambiguity, and coverage, OMCS is likely to be only 
useful at a very shallow level, such as providing an 
associative mechanism between everyday concepts or 
performing first-order inference. 

Future work is planned to improve the performance of 
the mechanism presented in this paper.  One major 
limitation that we have encountered is noise, stemming 
from ambiguous word senses and contexts.  To overcome 
this, we hope to apply known word sense disambiguation 
techniques to the concepts and the query, using word 
sense co-occurrence statistics, WordNet, or LDOCE.  A 
similar approach could be taken to disambiguate meaning 
contexts, but it is less clear how to proceed.   

Another point of future work is the migration from the 
sentence pattern parser to a broad coverage parser so that 
we can extract more kinds of commonsense relations from 
the corpus, and make more sentences “usable.” 

6. 

7. 
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