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Abstract 
Enabling end users to express programs in natural 
language would result in a dramatic increase in 
accessibility. Previous efforts in natural language 
programming have been hampered by the apparent 
ambiguity of natural language. We believe a large part 
of the solution to this problem is knowing what you're 
talking about – introducing enough semantics about the 
subject matter of the programs to provide sufficient 
context for understanding.  

We present MOOIDE (pronounced "moody"), a natural 
language programming system for a MOO (an 
extensible multi-player text-based virtual reality 
storytelling game). MOOIDE incorporates both a state-
of-the-art English parser, and a large Commonsense 
knowledge base to provide background knowledge 
about everyday objects, people, and activities. End-
user programmers can introduce new virtual objects 
and characters into the simulated world, which can 
then interact conversationally with (other) end users. 

In addition to using semantic context in traditional 
parsing applications such as anaphora resolution, 
Commonsense knowledge is used to assure that the 
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virtual objects and characters act in accordance with 
Commonsense notions of cause and effect, inheritance 
of properties, and affordances of verbs.  This leads to a 
more natural dialog.  

Programming in a MOO 
Figure 1 illustrates MOOIDE's interface. A MOO [2] is a 
conversational game modeling a simulated world 
containing virtual rooms or environments, virtual 
objects such as tables or flower pots, and virtual 
characters (played in real-time by humans or controlled 
by a program). Players of the game may take simulated 
physical actions, expressed in natural language, or say 
things to the virtual characters or other human players. 
Programming consists of introducing new virtual 
environments, objects, or characters. They then 
become part of the persistent, shared environment, and 
can subsequently interact with players.  

We choose the MOO programming domain for several 
reasons. Even though a conventional MOO has a 
stylized syntax, users conceive of the interaction as 
typing natural language to the system; an opportunity 
exists for extending that interaction to handle a wider 
range of expression. We leverage the ordinary person's 
understanding of natural language interaction to 
introduce programming concepts in ways that are 
analogous to how they are described in language. 
Interaction in natural language is, well, natural.  

Contemporary Web-based MOOs are examples of 
collaborative, distributed, persistent, end-user 
programmable virtual environments. Programming such 
environments generalizes to many other Web-based 
virtual environments, including those where the 
environments are represented graphically, perhaps in 

3D, such as Second Life. Finally, because the 
characters and objects in the MOO imitate the real 
world, there is often a good match between knowledge 
useful in the game, and the Commonsense knowledge 
collected in our Open Mind Common Sense knowledge 
base.  

Metafor 
Our previous work on the Metafor system ([3, 5]) 
showed how we could transform natural language 
descriptions of the properties and behavior of the 
virtual objects into the syntax of a conventional 
programming language, Python. We showed how we 
could recognize linguistic patterns corresponding to 
typical programming language concepts such as 
variables, conditionals, and iterations.  

In MOOIDE, like Metafor, we ask users to describe the 
operation of a desired program in unconstrained natural 
language, and, as far as we can, translate into Python 
code. Roughly, the parser turns nouns into descriptions 
of data structures ("There is a bar"), verbs into 
functions ("The bartender can make drinks"), and 
adjectives into properties ("a vodka martini").  It can 
also untangle various narrative stances; different points 
of view from which the situation is described ("When 
the customer orders a drink that is not on the menu, 
the bartender says, "I'm sorry, I can't make that 
drink""). 

However, the previous Metafor system was positioned 
primarily as a code editor; it did not have a runtime 
system. The MOOIDE system presented here contains a 
full MOO runtime environment in which we could 
dynamically query the states of objects. MOOIDE also 
adds the ability to introduce new Commonsense 
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statements as necessary to model the (necessarily 
incomplete) simulated environment.  

 

Figure 1. MOOIDE's programming interface. The user is 

programming the behavior of a microwave oven in the 

simulated world.  

 

Figure 2. MOOIDE's MOO simulation interface. It shows user 

interaction with the microwave oven defined in Figure 1.  

A dialogue with MOOIDE 
Let's look at an example of interaction with MOOIDE in 
detail, a snapshot of which is shown in the figures 
above. These examples are situated in a common 
household kitchen where a user is trying to build new 
virtual kitchen objects and giving them behaviors.  

There is a chicken in the kitchen. 
There is a microwave oven. 
You can only cook food in an oven. 
When you cook food in the oven, if the food 
is hot, say "The food is already hot." 
Otherwise make it hot. 

The user builds two objects, a chicken and an oven and 
teaches the oven to respond to the verb "cook". Any 
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player can subsequently use the verb by entering the 
following text into the MOO: 

cook chicken in microwave oven 

In the verb description, the user also describes a 
decision construct (the If-Else construct) as well as a 
command to change a property of an object—“make it 
hot". To disallow cooking of non-food items, he/she 
puts a rule saying that only objects of the 'food' class 
are allowed to be cooked in the oven (“You can only 
cook food in an oven”). Note this statement is captured 
as a commonsense fact because it describes generic 
objects. 

When the user presses the "Test" button on the 
MOOIDE interface, MOOIDE generates Python code and 
pushes it into the MOO where the user can test and 
simulate the world he/she made. To test the generated 
world, he/she enters cook chicken in oven into the 

MOO simulation interface. However, in this case the 
MOO generates an error— You can only cook food 
in an oven. This is not what the user expected!  

Of course you should be able to cook chicken, after all, 
isn't chicken a food? Wait, does the system know that? 
The user checks the Commonsense knowledge base, to 
see if it knows this fact. The knowledge base is never 
fully complete, and when it misses deductions 
"obvious" to a person, the cause is often an 
incompleteness of the knowledge base.  In this case, 
our user is surprised to find this simple fact missing. To 
resolve this error, he/she simply has to add the 
statement Chicken is a kind of food. Many other 
variants, some indirect, such as Chicken is a kind 

of meat or People eat chicken, could also supply 

the needed knowledge.  

Then he/she tests the system again using the same 
verb command. Now, the command succeeds and the 
MOO prints out The chicken is now hot. To test the 
decision construct, the user types cook chicken in 
oven into the MOO simulator. This time the MOO prints 
out The food is already hot. 

  

 

Figure 3: Commonsense facts used in the microwave oven 
example.  

Parsing 
MOOIDE performs natural language processing with a 
modified version of the Stanford link parser [8] and the 
Python NLTK natural language toolkit. As in Metafor, 
the ConceptNet Commonsense semantic network 
provides semantics for the simulated objects, including 
object class hierarchies, and matching the arguments 
of verbs to the types of objects they can act upon, in a 
manner similar to Berkeley's FRAMENET. We are 
incorporating the AnalogySpace inference described in 
to perform Commonsense reasoning. In aligning the 
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programmed objects and actions with our 
Commonsense knowledge base, we ignore for the 
moment, the possibility that the author might want to 
create "magic ovens" or other kinds of objects that 
would intentionally violate real-world expectations for 
literary effect.  

The  system uses two different types of parsing- 
syntactic parsing and frame based parsing.  Syntactic 
parsing works using a tagger that identifies syntactic 
categories in sentences and that generates parse trees 
by utilizing a grammar (often a probabilistic context 
free  grammar). For example a sentence can be tagged 
as:   

You/PRP can/MD put/VB water/NN in/IN a/DT 
bucket/NN ./.  

From the tag, (e.g. NN for noun, DT for determiner), a 
hierarchical parse tree that chunks syntactic categories 
together to form other categories (like noun/verb 
phrases) can also be generated:    

(ROOT  (S (NP (PRP You)) (VP (MD can)   
                (VP (VB put)  (NP (NN water))  
                (PP (IN in)   (NP (DT a) (NN bucket)))))  
                (. .)))     

Frame based parsing identifies chunks in sentences and 
makes them arguments of frame  variables. For 
example one might define a frame parse of the above 
sentence as:   You can put [ARG] in [OBJ]     

Syntactic parsing allows identification of noun phrases 
and verb phrases and dependency relationships 
between them. Frame based parsing allows us to do 

two things – first, it allows us to do chunk extractions 
that are required for extracting things  like object 
names, messages and verb arguments. Second, frame 
parsing allows us to identify and classify the input into 
our speech act categories for programming constructs, 
further explained below. For example a user input that 
is of the form "If....otherwise..." would be  identified as 
a variant of an "IF_ELSE" construct very typical in 
programming.    

 

Figure 4. MOOIDE's English representation of MOO 
program code.  

Dialog manager 
The logic of the parsing system is controlled by a dialog 
manager that interprets user interaction. When the 
user enters something into the system, it uses three 
kinds of information to categorize the input: the current 
context, a frame based classification of current input 
and the object  reference history. The current context 
broadly keeps track of what is being talked about - the 
user might be conversing about creating a new verb or 
adding decision criteria inside an IF construct.  The 
dialog manager also keeps track of object reference 
history to allow users to use anaphora so that they do 
not need to fully specify the object in question every 
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time. Using the previous  information, the frame based 
classifier does a broad syntactic classification of the 
input.    

After the input has been classified, the dialog  manager 
parses the input and makes changes to the internal 
representation of the objects, object  states, verbs and 
programs. Post parsing, the dialog manager can 
generate three types of dialogs  - a confirmation dialog, 
a clarification dialog or an elaboration dialog. A 
confirmation dialog simply tells the user what was 
understood in the input and if everything in the input 
was parsed  correctly. A clarification dialog is when the 
dialog manager needs to ask the user for clarification 
on the input. This could be simple 'yes/no' questions, 
reference resolution conflicts or input reformulation in 
case the parser cannot fully parse the input. If the 
parser fails to parse the input  correctly, the dialog 
manager does a rough categorization of the input to 
identify possible features  like noun phrases, verb 
phrases or programming artifacts. This allows it to 
generate help messages suggesting to the user to 
reformulate the input so that its parser can parse the 
input correctly. For the elaboration dialog, the system 
lets the user know what it did with the previous input 
and suggests other kinds of inputs to the user. These 
could be letting the user know what   commonsense 
properties were automatically added, suggesting new 
verbs or requesting the user to define an unknown 
verb. 

Commonsense reasoning 
An important lesson learned by the natural language 
community over the years is that language cannot be 
fully understood unless you have some semantic 

information – you've got to know what you're talking 
about.  

In our case, Commonsense semantics is provided by 
Open Mind Common Sense [3] , a knowledge base 
containing more than 800,000 sentences contributed by 
the general public to an open-source Web site. OMCS 
provides "ground truth" to disambiguate ambiguous 
parsings, and constrain underconstrained 
interpretations. OMCS statements come in as natural 
language, are processed with tagging and template 
matching similar to the processes used for interpreting 
natural language input explained above. The result is 
ConceptNet, a semantic network organized around 
about 20 distinguished relations, including IS-A, KIND-
OF, USED-FOR, etc. The site is available at 
openmind.media.mit.edu.  
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Figure 5. What Open Mind knows about microwave ovens. 

 
Commonsense reasoning is used in the following ways. 
First, it provides an ontology of objects, arranged in 
object hierarchies. These help anaphora resolution, and 
understanding intentional descriptions. It helps 
understand which objects can be the arguments to 
which verbs. It provides some basic cause-and-effect 
rules, such as "When an object is eaten, it disappears".  

 
Understanding language for MOO 
programming 
Key in going from parsing to programming is 
understanding the programming intent of particular 
natural language statements. Our recognizer classifies 
user utterances according to the following speech act 
categories: 

• Object creation, properties, states and 
relationships. For example,  "There is a microwave 
oven on the table. It is empty." A simple declarative 
statement about a previously unknown object is taken 
as introducing that object into the MOO world. 
Descriptive statements introduce properties of the 
object. Background semantics about microwave ovens 
say that “empty” means “does not contain food” (it 
might not be literally empty – there may be a turntable 
inside it).  

• Verb definitions, i.e. "You can put food in the 
basket". Statements about the possibility of taking an 
action, where that action has not be previously 
mentioned, are taken as introducing the action, as a 
possible action a MOO user can take. Here, what it 
means to “put food”. A “basket” is the argument to 

(object of) that action. Alternative definition styles: “To 
…, you…”, “Baskets are for putting food in”, etc.  

• Verb argument rules, such as "You can only put 
bread in the toaster." This introduces restrictions on 
what objects can be used as argument to what verbs. 
These semantic restrictions are in addition to syntactic 
restrictions on verb arguments found in many parsers.  

• Verb program generation. "When you press the 
button, the microwave turns on." Prose that describes 
sequences of events is taken as describing a procedure 
for accomplishing the given verb.  

• Imperative commands, like "Press the button." 

• Decisions. "If there is no food in the oven, say 'You 
are not cooking anything.'" Conditionals can be 
expressed in a variety of forms: IF statements, WHEN 
statements, etc. 

• Iterations, variables, and loops.  "Make all the 
objects in the oven hot." 

In [7], user investigations show that explicit 
descriptions of iterations are rare in natural language 
program descriptions; people usually express iterations 
in terms of sets, filters, etc. In [5] we build up a 
sophisticated model of how people describe loops in 
natural language, based on reading a corpus of natural 
language descriptions of programs expressed in 
program comments.  

Evaluation 
We designed MOOIDE so that it is intuitive for users 
who have little or no experience in programming to 
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describe objects and behaviors of common objects that 
they come across in their daily life. To evaluate this, we 
tested if subjects were able to program a simple 
scenario using MOOIDE. Our goal is to evaluate 
whether they can use our interface without getting 
frustrated, possibly enjoying the interaction while 
successfully completing a test programming scenario.  

Our hypothesis is that subjects will be able to complete 
a simple natural language programming scenario within 
20 min. If most of the users are able to complete the 
scenario in that amount of time, we would consider it a 
success. The users should not require more than 
minimal syntactic nudging from the experimenter. 

Experimental method 
We first ran users through a familiarization scenario so 
that they get a sense of how objects and verbs are 
described in the MOO. Then they were asked to do a 
couple of test cases in which we helped the subjects 
through the cases. The experimental scenario consisted 
of getting subjects to build an interesting candy 
machine that gives candy only when it is kicked. The 
experimenter gave the subject a verbal description of 
of the scenario (the experimenter did not 'read out' the 
description) 

You should build a candy machine that works only 
when you kick it. You have to make this 
interesting candy machine which has one candy 
inside it. It also has a lever on it. It runs on magic 
coins. The candy machine doesn't work when you 
turn the lever. It says interesting messages when 
the lever is pulled. So if you're pulling the lever, 
the machine might say “oooh I malfunctioned” It 
also says interesting things when magic coins are 

put in it like “thank you for your money”. And 
finally when you kick the machine, it gives the 
candy. 

The test scenario was hands-off for the experimenter 
who sat back and observed the user/MOOIDE 
interaction. The experimenter only helped if MOOIDE 
ran into implementation bugs, if people ignored minor 
syntactic nuances (e.g. comma after a when-clause) 
and if MOOIDE generated error messages. This was 
limited to once or twice in the test scenario.  

Experimental results 
Figure 4 summarizes the post-test questionnaire.  

 

 



 9 

Figure 6. Results of evaluation questionnaire.  

Overall, we felt that subjects were able to get the two 
main ideas about programming in the MOOs—
describing objects and giving them verb behavior. 
Some subjects who had never programmed before 
were visibly excited at seeing the system respond with 
an output message that they had programmed using 
MOOIDE while paying little attention to the 
demonstration part where we showed them an example 
of LambdaMOO. One such subject was an 
undergraduate woman who had tried to learn 
conventional programming but given up after spending 
significant amount of effort learning syntactic nuances. 
It seems that people would want to learn creative tasks 
like programming, but do not want to learn a 
programming language. Effectively, people are looking 
to do something that is interesting to them and that 
they are able to do that quickly enough with little 
learning overhead.  

In the post evaluation responses, all the subjects 
strongly felt that programming in MOOIDE was easier 
than learning a programming language. However, 40% 
of the subjects encountered limitations of our parser, 
and criticized MOOIDE for not handling a sufficient 
range of natural language expression. We investigated 
the cause for the parser failures. Some of the most 
serious, such as failures in correctly handling "an" and 
"the", were due to problems with the interface to 
MOOP, the third party MOO environment. These would 
be easily rectifiable. Others were due to incompleteness 
of the grammar or knowledge base, special characters 
typed, typos, and in a few cases, simply parser bugs. 
Since parsing per se was not the focus of our work, the 
experimenter helped users through some cases of what 

we deemed to be inessential parser failure. The 
experimenter provided a few examples of the kind of 
syntax the parser would accept, and all subjects were 
able to reformulate their particular verb command, 
without feeling like they were pressured into a formal 
syntax. Advances in the underlying parsing technology 
will drive steady improvements in its use in this 
application.  

There were some other things that came up in the test 
scenario that we did not handle and we had to tell 
people that the system would not handle them. All such 
cases below came across only once each in the 
evaluation.  

People would often put the event declaration at the 
end, rather than the beginning, confusing our system. 
So one might say “the food becomes hot, when you put 
it in the oven” instead of “when you put the food in the 
oven, it becomes hot”. This is a syntactic fix that 
requires addition of a few more patterns. The system 
does not understand commands like “nothing will come 
out” or “does not give the person a candy”, which 
describe negating an action. Negation is usually not 
required to be specified. These statements often 
correspond to the “pass” statement in Python. In other 
cases, it could be canceling a default behavior. – One 
subject overspecified – “if you put a coin in the candy 
machine, there will be a coin in the candy machine”.  

This was an example where a person would specify 
very basic commonsense which we consider to be at 
the sub-articulatable level, so we do not expect most 
people to enter these kind of facts. This relates to a 
larger issue—the kind of expectation the system puts 
upon its users about the level of detail in the 
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commonsense that they have to provide. The 
granularity issue also has been recognized in 
knowledge acquisition systems such as Blythe, Kim, 
Ramachandran and Gil's EXPECT [1], as informants are 
sometimes unsure as to how detailed their explanations 
need to be. Part of the job of a knowledge acquisition 
system and/or a human knowledge engineer, is to help 
the informant determine the appropriate level of 
granularity.  

Unfortunately, there's no one answer to this question. 
Tutorials, presented examples, and experience with the 
system can help the user discover the appropriate 
granularity, through experience of what the system 
gets right and wrong, and how particular modifications 
to the system's knowledge affect its performance. A 
guide is the Felicity Conditions of vanLehn [10], 
following Seymour Papert's dictum, "You can only learn 
something if you almost know it already". The best 
kinds of Commonsense statements for the user to 
provide are those which are at the level that help it fill 
in inference gaps such as the "Chicken is a food" 
example earlier. One could certainly say, "Chicken is 
made of atoms", but that isn't much use if you're trying 
to figure out how to cook something. Because our 
Commonsense knowledge base can be easily queried 
interactively, it is easy to discover what it does and 
does not know. There's some evidence [4] that people 
who interact with machine learning systems do adapt 
over time to the granularity effective for the system.  

The system did not handle object removals at this time, 
something that is also easily rectifiable. It does not 
handle chained event descriptions like “when you kick 
the candy machine, a candy bar comes out” and then 
“when the candy bar comes out of the candy machine, 

the person has the candy bar”. Instead one needs to 
say directly, “when you kick the candy machine, the 
person has the candy bar”. In preliminary evaluations 
we were able to identify many syntactic varieties of 
inputs that people were using and they were 
incorporated in the design prior to user evaluation. 
These were things like verb declarations chained with 
conjunctions e.g. “when you put food in the oven and 
press the start button, the food becomes hot” or using 
either “if” or “when” for verb declarations e.g. “if you 
press the start button, the oven cooks the food”.  

Related Work 
Aside from our previous work on Metafor [3] [5], the 
closest related work is Inform 7, a programming 
language for a MOO game which does incorporate a 
parser for a wide variety of English constructs [8].  
Inform 7 is still in the tradition of "English-like" formal 
programming languages, a tradition dating back to 
Cobol. Users of Inform reported being bothered by the 
need to laboriously specify "obvious" commonsense 
properties of objects. Our approach is to allow pretty 
much unrestricted natural language input, but be 
satisfied with only partial parsing if the semantic intent 
of the interaction can still be accomplished. We were 
originally inspired by the Natural Programming project 
of Pane and Myers [7] which considered unconstrained 
natural language descriptions of programming tasks, 
but eventually wound up with a graphical programming 
language of conventional syntactic structure.  

Conclusion 
While general natural language programming remains 
difficult, some semantic representation of the subject 
matter on which programs are intended to operate 
makes it a lot easier to understand the intent of the 
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programmer. Perhaps programming is really not so 
hard, as long as you know what you're talking about. 
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