
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The	 New	 Era	 of	 High-‐
Functionality	 Interfaces	

Henry	 Lieberman	 and	 Christopher	 Fry	
Media	 Laboratory	
Massachusetts	 Institute	 of	 Technology	
Cambridge,	 MA,	 USA	

Elizabeth	 Rosenzweig	
Bentley	 University	
Waltham,	 MA,	 USA	

Abstract

Traditional user interface design works best for applications that only have a rela-

tively small number of operations for the user to choose from. These applications
achieve usability by maintaining a simple correspondence between user goals and
interface elements such as menu items or icons. But we are entering an era of high-
functionality applications, where there may be hundreds or thousands of possible
operations. In contexts like mobile phones, even if each individual application is sim-
ple, the combined functionality represented by the entire phone constitutes such a
high-functionality command set. How are we going to manage the continued growth
of high-functionality computing?

 Artificial Intelligence promises some strategies for dealing with high-functionality
situations. Interfaces can be oriented around the goals of the user rather than the fea-
tures of the hardware or software. New interaction modalities like natural language,
speech, gesture, vision, and multi-modal interfaces can extend the interface vocabu-
lary. End-user programming can rethink the computer as a collection of capabilities to
be composed on the fly rather than a set of predefined "applications". We also need
new ways of teaching users about what kind of capabilities are available to them, and
how to interact in high-functionality situations.

High-functionality (hi-fun) interfaces

As the range of tasks that people want to do with computers expands, and the ca-

pability of software grows, we are faced with the development of high-functionality
(hi-fun) interfaces. We are not going to give a precise definition of hi-functionality
interfaces here, but roughly, we mean those that provide large command sets, long
menus, large or numerous icon bars, many data types, and complex patterns of use. In
many cases, the names of interface operations may not be “obvious” to a beginning
user, unless they know the underlying concepts of the application.

Low-functionality (lo-fun) interfaces are much simpler, acting on just a few kinds

of data, and providing reasonably small command sets, where the name and effect of
each command are expected to be immediately apparent to the user.

Apple’s Preview is an example of a relatively lo-fun application for images; it can,
for example, print, crop, and rotate images, but it has relatively few operations (about
9 top-level operations, 7 menus of 5-15 items, few subsidiary dialogs). Adobe’s Pho-
toshop is a hi-fun image application (25 top level operations (+ modifier keys on
many), 4 palettes of 2-3 tabs each, 8 menus of 10 to >25 items, many subsidiary dia-
logs). It has many different image types, and the total number of operations reaches
into the thousands. It has a number of abstract concepts that it is necessary to learn,
such as layers and different color models. It is user customizable, can record and play
macros, has numerous plug-ins, etc.

Applications that become popular tend to grow into high-functionality interfaces

over time as users desire more features and companies continually try to improve their
products. The most successful, like Photoshop or Microsoft Excel, become languages

Figure 1. Apple’s Preview (left) is an example of a “low functionality”

application, with a few dozen operations. Adobe’s “high-functionality”
Photoshop (right) has thousands of operations.

and programming environments in their own right. They become as powerful (and as
difficult to learn for new users) as interactive development environments for pro-
gramming languages.

The UI for high-functionality applications is typically designed for the expert and

habitual user. It aims to make all the operations that the expert user would want to use
easily accessible. But then the new user doesn’t know where to start. And users who
try to learn an interface by sequential exploration get confused because they are
tempted to try many things for which they won’t have use until much later, if at all.

User Interface Design for High Functionality Interfaces

Traditional user interface design aims to make interfaces easy to use, especially for
beginning users, reduce error rates, and be aesthetically pleasing. The metaphor that
most user-interface design tries to promote is that the computer is like a box of tools,
like hammers and screwdrivers. Each tool is specialized for a certain job, and it's up to
the user to know what each tool does, and which tool is appropriate for which job.

Interfaces strive for an ideal of simplicity and learnability. The menu items and

icons that provide access to each tool should be suggestive of the functionality that
the tool provides. Don Norman refers to this as "affordances" [Norman 99]. Simplici-
ty demands a one-to-one correspondence between controls and tools.

The problem is, as the number of things the person wants to do with the computer

grows, you wind up with too many tools in your toolbox. So you wind up with too
many controls. Our screens fill up with icons and menu bars. Hierarchical menus,
shift keys and other techniques, increase the capacity of the command set, but eventu-
ally space runs out (not to mention the user’s patience), no matter what you do. The
problem is that we’re using the UI design principles that are appropriate for low-
functionality interfaces to design the interfaces for high-functionality applications.

The alternative is what we call "goal-oriented interfaces". People have goals –

things like "plan a trip" or "design a building". But programs don't have goals. What
they have is specific functions, which are invoked by menu items, icons and typing.
It's up to the user to figure out how to accomplish their goals in terms of the functions
that the software provides. But when you have a large number of possible goals, and
each goal might require a sequence of steps to be accomplished, planning the interac-
tion becomes a high cognitive load on the user. This is at the root of most problems
with usability of high-functionality applications.

The solution is to try to move as much as possible of the burden of translating

goals into concrete functions, onto the computer. So Artificial Intelligence has a vital
role to play. Natural language and speech recognition interfaces are a good way of

interacting with high-functionality applications, since a typical user can use the ex-
pressiveness of language to cover a wide range of possible goals. Gestural interfaces,
image recognition, and other “natural” interface modalities can expand the vocabulary
of interactive elements. Recent technical improvements in this area are making such
interfaces increasingly practical. Traditional menu and icon-based interfaces can also
be used for high functionality applications, but require a greater degree of context
sensitivity and personalization to avoid overwhelming the user.

As an example of a high-functionality user interface architecture, Roadie [Lieber-

man and Espinosa 07] is a framework for goal oriented user interfaces. It provides a
goal-oriented speech recognition interface to control a room full of consumer elec-
tronics devices like televisions, audio equipment, and other devices. The intent of
Roadie is that the user can just speak their goal in relatively unrestricted natural lan-
guage, and the system performs the operation.

The essential steps in Roadie’s operation are:

• Goal recognition;
• Planning;
• Execution (either all at once or step-by-step); and
• (if necessary) Debugging.

Roadie puts a variety of AI technologies to work, detailed in the reference [Lieberman
and Espinosa 07]. Roadie uses a commonsense knowledge base to perform the goal
recognition. It uses a partial-order planner to compute a plan from each goal. It has
introspective knowledge of the capabilities of each device, mapping each function

Figure 2. Roadie is a speech interface for consumer electronics. The user’s
utterance, “I want to hear the news” is recognized (top left) as one of a number
of possible goals (TV, radio). For each goal, a step-by-step plan is constructed
(middle left), and a variety of execution options provided (lower left). On the
right, interfaces to each of the devices are simulated.

onto possible goals. Diagnostic reasoning modules are invoked in case the user says
“Oops” or is otherwise dissatisfied with the results. NLP, planning, and diagnostic
reasoning are all well-studied AI technologies, and they result in enabling an easy-to-
use, yet high-functionality interface.

The present and Future of Goal-Oriented Interfaces

Significant commercially available examples of goal-oriented interfaces are now be-
ginning to appear. The most well-known of these is perhaps Apple's Siri, which pro-
vides a speech recognition interface to Apple's iPhone. In the same category is Google
Now, which leverages the Google search engine to provide personal assistant func-
tions. Microsoft also recently entered this arena with an agent named Cortana. IBM
has ambitions to transform their successful Jeopardy-playing program, Watson, into a
broad-spectrum user agent in a variety of vertical markets. These are undoubtably the
first shots over the bow of an emerging category that will see rapid growth in the near
future.

But at the present time, all these efforts lack some essential capabilities that would
be desirable to make a personal assistant effective over a broad range of high func-
tionality applications. The limitations of present efforts provide AI with a research
agenda for improving the next generation of personal assistants.

Siri is only designed for one-shot speech interactions. You say something, and if

Siri is able to recognize your goal, it invokes a single function in a single application.
It can only work with a small number of applications programmed in advance. It can't
engage you in a multistep dialogue, execute multistep procedures, or work with more
than one application. It is purely a speech agent, and has no visual interface itself.
Google Now leverages the high functionality Google search engine (and Siri has a tie
to Wolfram Alpha), but again provides its personal assistant functions in a few well-
defined areas only, indicated by its "cards", for things like reminders and route plan-
ning. There’s no way to “debug” Siri or Now if they don’t do what you want. Their
capacity for true personalization is limited [Lieberman 14].

A key ingredient to making truly high-functionality interfaces is Commonsense

knowledge reasoning. In interfaces, Commonsense knowledge can be used to provide
intelligent, personalized, context-sensitive defaults; to adapt the interface to the user’s
expertise, goals, and particulars of a situation, and to provide proactive help. As men-
tioned above, Roadie consults a Commonsense knowledge base for goal recognition,
planning, and debugging. The Open Mind Common Sense effort, which has been
running for more than a decade, is collecting millions of statements of Commonsense
facts [Lieberman et al 04], and we have developed a large number of applications in
specific areas, from speech recognition to personalizing browsers and Web proce-
dures [Faaborg and Lieberman 10], to enable high-functionality personal assistants.

No less a key ingredient is good user interface design. It is necessary to understand
the needs of the user, understand how the user might use the interface to satisfy their
goals, and get continual feedback from users on whether they are willing and able to
learn, understand, and appreciate the functionality.

High-functionality Interaction is End-User Programming

Part of the key to removing these limitations is the realization that the user of a

high-functionality interface is really engaged in what is essentially a programming
task. After all, it's a computer; and what other way do we have a telling a computer
what to do than to program it? We're just programming it with natural language (and
perhaps pointing and typing and other modalities) rather than a conventional pro-
gramming language. Programming is our high-functionality way of accessing the
capabilities of a computer, and it’s just that to date, we have artificially imposed on
our users the low-functionality interaction paradigm of command and GUI interfaces.

So, we need some way to do everything that you might do in an interactive devel-

opment environment (IDE). We need sequencing. We need functions with arguments.
We need conditionals. We need loops. We need debugging. We even need capabilities
that seem advanced or exotic in programming environments, such as introspection. AI
also has a tradition of working on various kinds of “Automatic Programming” – gen-
erating programs from high-level specifications. Some work has also tried to bring
together the commonalities between natural language dialog and programs [Liu and
Lieberman 05]. Even though there is no conventional programming language, we’re
really doing end-user programming [Lieberman, Paterno, Wulf 06].

Justify [Fry and Lieberman 13] is an example. It is a high-functionality decision-

support system for online deliberation and argumentation. Arguments are threaded
discussions composed of “points”, each of which has a type that indicates its role in
the argument. It provides automatic summarization at every level, called “assess-
ments”, to emphasize their contingent nature. The type system is analogous to that of
a programming language, and many programming facilities are provided. It even sup-
ports novel AI-style program generation, in providing a facility for Programming by
Example [Lieberman 01].

Justify has a total of 4808 interface operations, making it comparable to Photoshop

(whose documentation index contains 4032 entries). While Photoshop has some pro-
gramming facilities like macros, it doesn't take its nature is a programming system
very seriously. Justify explicitly provides the programming operations and abstrac-
tions which give it the true generality that a high functionality system should have.

Learning High-Functionality Interfaces

Further, it’s not enough just to give a user a high-functionality interface. They’ve got
to be able to learn to use it. Today, many high functionality applications fail because
beginning users have a hard time learning them. Some that are successful today are
only that way because they started out as low functionality applications, and people
gradually learned them over time. Photoshop 1.0 was actually a relatively low func-
tionality application, roughly similar to Preview today. Today's gargantuan Photoshop
is only acceptable because the community transitioned slowly to its increasing capa-
bilities. If Photoshop had been first introduced in 2014, most likely it would have
been rejected as too difficult to use!

The AI community has had a tradition of research into Intelligent Tutoring Systems
(ITS), which hold the promise of being able to resolve the paradox of learning a high
functionality system. Contemporary applications seem to have almost given up on the
idea of help systems, after experience showing that conventional help is ineffective or
that users ignore help. But in the new era of high functionality computing we need to
revisit the idea of intelligent tutorials.

Figure 3. The Justify decision support system. It is a hi-fun system for

online discussion, but really, it is a programming environment for decision
support. It has a rich type system, and summarization and decision proce-
dures can be programmed.

We have invented a new kind of interactive tutorial, the steptorial (“stepper tutorial”)
[Lieberman, Rosenzweig, Fry 14] that allows a learner to vary the autonomy of the
interaction at every step. A steptorial is a kind of interactive tutorial based on the
control structure of a reversible programming language stepper.

The idea is that the interface steps necessary to complete the introductory example are
like a “program” (described by English sentences and/or interaction with the applica-
tion rather than programming language code). The steptorial allows the user to step
through the example, as a programmer steps through code. The steptorial is complete-
ly reversible. In extending the stepper metaphor beyond its origins in program debug-
ging, we are enabling learning by end-user debugging of application use-cases.

Not having to choose a fixed level of autonomy in advance means that interactions
can be tailored to the level of expertise of the individual user for that particular part of
the application, supporting different cognitive styles. Depending on the situation at
the moment, the user can choose help either in or out of context. Finally, having a
variable level of autonomy reduces the risk, since the user can always go back and
choose a different level of autonomy without any penalty.

Again, we see this work in the AI tradition of Intelligent Tutoring Systems, and many
opportunities arise for trying to better understand user behavior and provide personal-
ized help.

Figure 4. A steptorial (“stepper tutorial”) for Justify. The user is stepping through a

natural language description of an introductory example. At any point he/she can choose
to have the system perform an operation, try it him/herself, be guided through it step-by-
step [Kelleher & Pausch 05], or to back up to a previous state.

Testing High-Functionality Interfaces

Finally, no discussion of user interface development is complete without attention

to testing. User experience (UX) testers should realize that testing a high-functionality
interface is not the same as testing a low-functionality interface. In low-functionality
interfaces, UX testing may focus on the best way to organize the command set, re-
ceive user input, choose and display interface elements, and aesthetics.

In testing high-functionality interfaces, developers need more high-level feedback

on the adequacy of the functionality, the flexibility and composability of operations,
the learnability for new users, and the effectiveness of personalization to assure effi-
ciency for expert and habitual users. Can users grasp the high functionality that the
system can offer? This doesn’t need to fully happen in the initial encounter; the new
user need only get the sense that there is a world of utility waiting to be discovered.
Can the users understand the essential concepts that will enable them to succeed on a
simple but interesting example in the time plausible for an introductory session? Will
they be enthusiastic about continuing to learn the interface as time goes on? How can
the system communicate these essential concepts and offer assistance when users are
confused or stuck? Does the system take into account different people’s learning
styles when providing help in learning the system?

Conclusion

High functionality interfaces are here to stay, and AI has a lot to contribute to the
development of personalized interface agents that can operate over a broad spectrum
of “application” capabilities that computers, phones, and function-specific devices can
provide.

Today, some conservative or technophobic users recoil at the ever-growing prolif-

eration of applications, worrying that the increased capability will be plagued by dif-
ficulty in learning and using interfaces. They blame themselves as being “non-
technical” or too stupid to understand technology, when in fact, the fault is in poor
interface design. Let’s bust the myth that interfaces have to be “simple” and low-
functionality to be easy to use. Human beings are enormously capable, and, at the
same time, we have developed ways of interacting with each other that are effective
and pleasurable. We should demand no less from our technology.

References

1. Faaborg, A., Lieberman, H., A Goal-Oriented Web Browser, in No Code Re-
quired: End-User Programming for the Web, Allen Cypher, Mira Dontcheva,
Tessa Lau and Jeff Nichols, eds., Morgan Kaufmann, 2010.

2. Fry, C., Lieberman, H., Decision-Making Should Be More Like Programming,
Int’l Symposium on End-User Development, Copenhagen, June 2013.

3. Kelleher, C. and Pausch, R., Stencil Based Tutorials: Design and Evaluation, CHI
2005,pp 541-550

4. Lieberman, H., ed, Your Wish is My Command: Programming by Example, Mor-
gan Kaufmann, 2001.

5. Lieberman, H., Liu, H., Singh, P., Barry, B., Beating Common Sense into Interac-
tive Applications, AI Magazine, Association for the Advancement of Artificial In-
telligence, Winter 2004-2005.

6. Lieberman, H., Paterno, F., Wulf, V., eds. End-User Development, Springer, 2006.
7. Lieberman, H., Espinosa, J., A Goal-Oriented Interface To Consumer Electronics

Using Planning And Commonsense Reasoning, Knowledge-Based Systems Jour-
nal, Vol 20, pp. 592-606, January 2007.

8. Lieberman, H., Say Hello to Smarter Apps That Fulfill Your Wishes, Wired UK,
November 2012, p. 70.

9. Lieberman, H., Rosenzweig, E., Fry, C., Steptorials: Mixed-Initiative Learning of
High Functionality Applications, ACM Conference on Intelligent User Interfaces
(IUI-14), Haifa, Israel, February 2014.

10. Liu, H., Lieberman, H., Metafor: Visualizing Stories as Code, ACM Conference
on Intelligent User Interfaces (IUI-2005), San Diego, January 2005.

11. Norman, Donald A. (1999). Affordance, Conventions and Design. Interactions
6(3):38-43, May 1999, ACM Press.

