
Embracing Ambiguity

Kenneth C. Arnold
MIT Media Lab
20 Ames Street

Cambridge, MA 02139
kcarnold@media.mit.edu

Henry Lieberman
MIT Media Lab
20 Ames Street

Cambridge, MA 02139
lieber@media.mit.edu

ABSTRACT
Software helps people fulfill their goals, but development
tools lack understanding of those goals. But if development
tools did understand how software artifacts relate to higher-
level intents and goals, they could help developers reuse
code, solve problems, and develop systems that are more
robust and easier to use. In this paper, we suggest that sup-
porting software development at a stage before concrete for-
malization is an area of opportunity for software engineering
research. We discuss three aspects that are both core chal-
lenges and opportunities for this research area: handling
ambiguity, understanding human situations, and flexible re-
flection about failure, and identify research results suggest-
ing that substantial progress can be made on these problems
within a decade. We believe that this research will make it
easier to develop software that is more broadly useful and
robust, even in the face of everyday uncertainty and failure.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces—Natural language

1. INTRODUCTION
Humans often communicate their intentions incompletely
and ambiguously. When the problem is open-ended and the
situation is incompletely understood, imprecise communica-
tion helps us work together by attacking a problem from dif-
ferent directions. Since we leave open many ways of accom-
plishing our goals, others with different mental or physical
affordances can help us. Sometimes a single utterance (even
a single word: “help!”) is sufficient; other times a dialogue
is necessary to clarify the intent. And when our helper’s
actions prove unsuccessful, he/she can often recognize that
and try a different approach.

We find the opposite situation when we interact with com-
puters. They require us to communicate with an almost

mathematical precision, mostly about structured instruc-
tions, and infrequently about intentions. When the instruc-
tions are unclear, the computer usually either gives an error
message or blindly follows one possible interpretation. And
when some action is unsuccessful, often the only course of
action is a preprogrammed generic fallback routine.

Yet the huge differences in capabilities between humans and
computers suggests that higher-level communication would
be even more helpful in communicating with computers than
with other humans. And there are glimmers of hope: web
search engines do effectively find concrete results from in-
complete queries, for example. But perhaps one reason that
most user interfaces require precise instruction is that the
development tools used to write that software also require
precise instruction.

1.1 Mapping Between Levels of Description
In this paper, we will start to explore some alternatives to
the current style of interaction with software development
tools. The central concept is building rich mappings be-
tween representations at different levels of specifity and ab-
straction. These mappings are like those of a developer who
has been working on a project for some time: they represent
how different places and aspects of the code relate to di-
verse aspects of the system’s observable functionality, high-
level structure, and external constraints. These mappings
help pinpoint code locations, or even structural decisions,
that may be responsible for a bug; they facilitate quickly
adapting the software to suit changing requirements; and if
a future project has components with similar requirements,
they help locate potentially reusable code.

Combined with flexible and robust reasoning capabilities,
these mappings will enable software development tools to
support the development process before committing to con-
crete and formal representations. The impact will be felt
well beyond initial development, however; we will highlight
benefits in handling novel circumstances and in robustly re-
sponding to failure. Some of these ideas are already proto-
typed or implemented, others are merely conceptual, but all
have wide-reaching impact on the development and use of
computer software.

2. CHALLENGES AND OPPORTUNITIES
Since computers must execute a precise sequence of instruc-
tions, any imprecision or ambiguity in specifying those in-
structions risks failure or unexpected behavior. Software



development processes have been understandably averse to
informal representations, going to great lengths to ensure
a precise interpretation of instructions and avoid possible
ambiguity. So any efforts to enable development tools to
work with informal representations wiill face many chal-
lenges. But with each challenge comes great opportunity
to improve the reusability, flexibility, and reliability of soft-
ware. We focus here on three challenges and opportunities:
handling ambiguity, understanding human situations, and
flexible reflection about failure.

2.1 Handling Ambiguity
The process of authoring a program can be described as
going from ambiguous high-level representations about pur-
pose and approach (mostly contained in the minds of the
programmers) to unambiguous, highly structured represen-
tations of instructions (mostly contained in computers). Like-
wise, the process of reading or debugging code can be de-
scribed as building or verifying a mapping between the con-
crete code artifacts and abstract intentions and requirements.
Development environments provide great assistance for the
lowest level of this process: intelligent completion and refac-
toring greatly aid the input, verification, and manipulation
of the highly-structured code representation, and debuggers
can help programmers determine why the structured repre-
sentation behaves differently from their high-level purpose.
Also, modern programming languages have gradually freed
programmers from less relevant concerns and given them
representational tools to guide their middle-level thinking.
But most of the process of mapping between levels of de-
scription has remained the sole responsibility of the pro-
grammer.

Since the end products of programming should be as un-
ambiguous as possible, many programming researchers have
been understandably averse to allowing ambiguity even in
high-level specifications. However, we suggest that this aver-
sion may be unhelpful because it tends to force programmers
to prematurely commit to some particular and precise way
of thinking before they can dialogue with computers about
their programs. It also limits the development tools to only
the degree of flexibility afforded by the representation they
work with. Instead, we suggest that programming environ-
ments could permit programmers to describe desired behav-
ior in more natural terms, even if the terms themselves or
the relations between them are ambiguous, then assist the
programmer in the task of mapping out how those descrip-
tions relate to unambiguous and concrete software artifacts.

2.1.1 Interactions
A development environment capable of working with rela-
tionships between program representations at different levels
of detail could help programmers in several ways. First, it
could help them find existing code that they could reuse in
their programs. The programmer might specify the goal of
the immediately desired code, or a subgoal may be inferred
from a higher-level goal and the code written so far. Similar
techniques could apply to other types of software artifacts as
well. For example, a goal could map to both to code and to
behavioral tests that (partially) evaluate whether code ac-
complishes that purpose. And insomuch as failed test cases
or other bugs indicate a failure of the concrete code to sat-
isfy the ambiguous goal, we can also think of debugging this

way. For instance, we could collect and analyze examples of
solutions to problems in certain situations in order to learn
what problems might come up in other situations, what their
root causes were, and what problem-solving strategies or
code changes were helpful in fixing similar problems before.
Finally, the programming environment could help the pro-
grammer document and distribute the result in a way that
permits others to understand and utilize it.

An example of a one-step interaction is our purpose-directed
code reuse interface, called Zones, shown in Figure 1. Pro-
grammers can associate a fragment of code (a Zone) with a
natural language description of its purpose. By omitting
either the purpose or the code, this annotation interface
becomes a search interface, which becomes an annotation
when the search is complete. The interaction is thus much
like code search, but the search queries can include abstract
characteristics that would not match a keyword in an identi-
fier or type, and the retrieved code need not be commented.
Also unlike a typical code search interaction, Zones learns
how programmers describe purpose by capturing both suc-
cessful and unsuccessful search interactions, and simultane-
ously learns what code characteristics are relevant to the
goal and which are implementation details.

2.1.2 Promising Research

Code Search. One promising research direction is around
code search, since search queries can be expressed in a vari-
ety of different ways, some more or less ambiguous, and sys-
tems can find code within a project or within a code reposi-
tory that might be relevant to the query. [9] includes a good
survey of code search techniques, including formal specifica-
tions, type systems, design patterns, keywords, ontologies,
tagging, and test cases. A state-of-the-art example of code
search integrated into the development process is Blueprint
[1]. However, these code search systems have limited ability
to reason about purposes that can be accomplished in a va-
riety of ways, and their understanding of natural language
is limited at best.

Programming in Natural Language. Natural language
has often been seen as desirable as a high-level specification
or programming language because it is a natural medium
for communicating goals and ideas with human collabora-
tors. Various attempts have been made to interpret natural
language as computer instructions directly, from COBOL
to SQL to several modern attempts, including Pegasus [4].
However, since programs must execute unambiguously, many
previous attempts at natural language programming have re-
quired the use of unnaturally precise wording. Natural lan-
guage representations of program present many challenges,
but we think that managing ambiguity is a core challenge
that has not yet received sufficient attention. Several projects
have informed our thinking in this regard. Keyword Pro-
gramming [7] matches keywords to commands and types in
a function library. It is a useful tool for managing ambi-
guity on a low level: when a programmer know what key-
words should appear in a line of code but not exactly how
code is formed using these keywords, the Keyword Program-
ming system can use search and type chaining techniques
to disambiguate the keyword representation of that line of



(a) A Zone (black rectangle)
describes the purpose of some
Scratch code.

(b) Given an goal, the Zone browser shows
code that might fulfill it. Selecting an imple-
mentation from the list on the left shows its
code on the right. Red boxes surround val-
ues that vary among otherwise similar code,
highlighting what might need to be changed.

(c) The Zone can sug-
gest possible annota-
tions for a code frag-
ment. The program-
mer clicks to open the
Zone browser (left),
which suggests possi-
ble annotations

Figure 1: Types of interactions with Zones

code. However, the programmer’s thinking must still be pre-
cise enough to use keywords at the level of a single line of
code. Metafor [8] and its successor MOOIDE [6] use sentence
structure and mixed-initiative discourse to understand com-
pound descriptions. MOOIDE further showed that general
background world knowledge helps to understand natural
language input.

2.1.3 Mapping General to Specific
To assist in disambiguation, a programming environment
must be able to relate ambiguous descriptions to unambigu-
ous representations. One approach is to try various possible
realizations of the ambiguous description; this approach has
been successful where the ambiguous description straightfor-
wardly defines a constrained space of possible unambiguous
representations. Today’s large software libraries and open-
source code repositories enable a different approach: learn-
ing relationships between ambiguous and unambiguous from
examples. If a repository contains both code fragments and
natural language descriptions of their purpose, the program-
ming environment can learn how characteristics of the code
relate to characteristics of their descriptions.

The backend of our Zones system, called ProcedureSpace, is
one example of a system that can flexibly map general de-
scriptions to specific implementations. The knowledge about
purpose descriptions is incomplete both because they are
ambiguous to begin with and because the system has a very
incomplete understanding of the natural language itself: the
system may not have sufficient knowledge about a particular
word used, or the words may be combined in an unfamiliar
way. And knowledge about the code is incomplete in that it
is generally not known what parts of the code are relevant
to accomplishing the goal and what parts are merely imple-
mentation details. However, associations between code frag-
ments and purpose descriptions disambiguate each other:
ProcedureSpace, in effect, learns about purpose descriptions
from the code they describe, and learns about code by study-
ing how people describe its purpose. ProcedureSpace addi-
tionally uses semantic background knowledge about English
words and phrases to help understand the natural language
descriptions. The reasoning approach of ProcedureSpace is
not formal logic but an application of a new technique called
Blending [3], enabling the easy use of a variety of different
kinds of knowledge, so long as they can be made to overlap.

2.2 Understanding Human Contexts
The rapid proliferation of websites and smartphones has
brought software into direct contact with many parts of our
lives. Social constraints such as privacy and relevance have
had profound impacts on the design of even backend sys-
tems (such as image storage). Yet that software, and the
tools that help design it, hardly understand the contexts and
constraints they are working with. The result is a mismatch
between software and the human contexts in which it works;
recent outcries over unforeseen implications of Facebook’s
complex privacy settings underscore the possible severity of
this mismatch.

A major challenge in dealing with this mismatch is that hu-
man contexts are described in very different terms and at
very different levels of detail compared to the programs that
interact with them. A precise constraint, such as a simple
specific condition that must hold for a user’s pictures to be
visible, will soon be able to be checked automatically, once
verification tools become able to handle today’s highly dis-
tributed datacenters. But understanding human contexts
at their description level will allow not just avoiding spe-
cific mistakes but also acting appropriately in a variety of
situations.

Resources of commonsense knowledge can help development
environments determine what are reasonable or expected
actions or events. A knowledgebase represented in formal
logic, such as Cyc[5], could help reason about specific situ-
ations in detail, while a knowledgebase in natural language,
such as ConceptNet[2], could help understand broad issues
of intent and context. The Zones/ProcedureSpace system
described earlier uses ConceptNet to understand natural lan-
guage descriptions of code intent.

2.3 Reflecting About Failure
If everything always went as the developers expected, writ-
ing explicit logic for all situations would be merely tedious.
But if something fails, a system that does not understand
what higher-level goals it is meant to achieve will not know
how to react appropriately. Developers can give explicit in-
structions about what to do in certain cases, but enumerat-
ing all possible failure scenarios is difficult if not impossible
in a sufficiently complex system. So for a system to react
appropriately to unforeseen failure, it must know how each



of its functions relates to the goals that it is trying to pursue.

When one approach fails, one strategy is to try an alternative
approach. Consider a development tool that is aware of mul-
tiple ways of approaching a problem and presents them to a
developer in incompletely specified form. The developer will
probably choose to only flesh out one approach in detail to be
used in the typical execution of the program. But the devel-
oper may choose to also include selected other approaches in
the compiled program. In case of failure, the program could
switch to an alternative approach, perhaps in communica-
tion with the user or a central problem-solving knowledge-
base, or perhaps autonomously. Knowledge of the situation,
combined with commonsense knowledge as described in the
previous section, could be used to make informed guesses
at reasonable choices for any details that the developer left
unspecified. This failure-management process could happen
entirely in the field, or a forward-looking developer could en-
gage “what-if” scenarios in the lab. While fully autonomous
problem-solving is an ideal, it is important to note that this
approach is still helpful even if it merely suggests possible
failure scenarios and potentially reasonable courses of action
to the developer for review and further specification.

Some existing systems implement some parts of this vision.
But existing approaches are often limited to doing something
slightly different with the same data and problem represen-
tations. But if the system has a representation of its goal
at a sufficiently high level, it could switch to an entirely dif-
ferent approach. For example, a common type of failure in
message-passing systems is an unreliable or slow communi-
cations channel. So rather than failing, it could order the
messages by degree of relevance to the current goals of the
destination systems, understanding that message priorities
may change as goals change. Or it could even find alter-
native agents more nearby that may be able to accomplish
similar goals. This behavior could be hard-coded for certain
scenarios and representations, but to work in general, the
system must be able to reason about how capabilities ac-
cessible to it are related to goals that are, at least from its
point of view, incompletely specified or understood.

3. CASE AND MODEL-BASED METHODS
The points and scenarios described thus far may remind
readers of CASE or Model-Based Software Engineering tools
and methodologies that have waxed and waned in popular-
ity for the past three decades. These systems attempt to
address the difficulty of software engineering by raising the
level of abstraction in software descriptions and the degree of
automation in“compiling”those descriptions into executable
code [10]. However, these systems still require that their in-
put languages have precise semantics. Ideally it would be
easier for humans to manually disambiguate their thoughts
into that input language, then use that language alone as a
surrogate for the “real” program, but the results in practice
have been mixed. We suggest instead that once software
systems can deal with ambiguous presentations of the goals
they (or the systems they build) should have, the overall
process of crafting specifications, tests, and reliable software
can be substantially eased.

4. CONCLUSION

Reliable software will know its goals and have multiple strate-
gies to accomplish them in case something goes wrong. In-
telligent software development environments will be able to
participate in natural human discourse about the program
at all levels of detail. Software will understand human con-
texts and goals and behave appropriately in them. All of
these characteristics will be enabled once software engineer-
ing tools and practices embrace the reality of ambiguity, ac-
knowledge its strengths, and help programming teams flesh
out a complete description of the software that includes both
formal and informal descriptions.

5. REFERENCES
[1] J. Brandt, M. Dontcheva, M. Weskamp, and S. R.

Klemmer. Example-centric programming: Integrating
web search into the development environment.
Technical report, CSTR-2009-01, 2009.

[2] C. Havasi, R. Speer, and J. Alonso. ConceptNet 3: a
flexible, multilingual semantic network for common
sense knowledge. In Recent Advances in Natural
Language Processing, Borovets, Bulgaria, September
2007.

[3] C. Havasi, R. Speer, J. Pustejovsky, and
H. Lieberman. Digital Intuition: Applying common
sense using dimensionality reduction. IEEE Intelligent
Systems, July 2009.

[4] R. Knöll and M. Mezini. Pegasus: first steps toward a
naturalistic programming language. In OOPSLA ’06:
Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and
applications, pages 542–559, New York, NY, USA,
2006. ACM.

[5] D. Lenat. CYC: A large-scale investment in knowledge
infrastructure. Communications of the ACM,
11:33–38, 1995.

[6] H. Lieberman and M. Ahmad. Knowing what you’re
talking about: Natural language programming of a
multi-player online game. In M. Dontcheva, T. Lau,
A. Cypher, and J. Nichols, editors, No Code Required:
Giving Users Tools to Transform the Web. Morgan
Kaufmann, 2010.

[7] G. Little and R. C. Miller. Keyword programming in
Java. In ASE ’07: Proceedings of the twenty-second
IEEE/ACM international conference on Automated
software engineering, pages 84–93, New York, NY,
USA, 2007. ACM.

[8] H. Liu and H. Lieberman. Programmatic semantics for
natural language interfaces. In CHI ’05: CHI ’05
extended abstracts on Human factors in computing
systems, pages 1597–1600, New York, NY, USA, 2005.
ACM.

[9] S. P. Reiss. Semantics-based code search. In ICSE ’09:
Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering, pages 243–253,
Washington, DC, USA, 2009. IEEE Computer Society.

[10] B. Selic. Personal reflections on automation,
programming culture, and model-based software
engineering. Automated Software Engineering, 15(3-4),
2008.


