
AnalogySpace: Reducing the Dimensionality of Common Sense Knowledge
Robyn Speer

CSAIL
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
rspeer@mit.edu

Catherine Havasi
Laboratory for Linguistics and Computation

Brandeis University
Waltham, MA 02454, USA

havasi@cs.brandeis.edu

Henry Lieberman
Software Agents Group

MIT Media Lab
Cambridge, MA 02139, USA
lieber@media.mit.edu

Abstract

We are interested in the problem of reasoning over very large
common sense knowledge bases. When such a knowledge
base contains noisy and subjective data, it is important to
have a method for making rough conclusions based on simi-
larities and tendencies, rather than absolute truth. We present
AnalogySpace, which accomplishes this by forming the ana-
logical closure of a semantic network through dimensionality
reduction. It self-organizes concepts around dimensions that
can be seen as making distinctions such as “good vs. bad”
or “easy vs. hard”, and generalizes its knowledge by judging
where concepts lie along these dimensions. An evaluation
demonstrates that users often agree with the predicted knowl-
edge, and that its accuracy is an improvement over previous
techniques.

Introduction
This paper introduces AnalogySpace, a new technique de-
signed to facilitate reasoning over a large knowledge base
of natural language assertions that represent common sense
knowledge. Reasoning about common sense poses some
unique challenges. Unlike traditional mathematical logic,
common sense knowledge is often imprecise and inconsis-
tent, causing problems for traditional proof procedures. We
are often less interested in determining the absolute truth of
a factual proposition, as we are in computing somewhat in-
tangible qualities such as context, connotations, tendencies,
analogies, and patterns of similar relationships.

AnalogySpace represents a new synthesis between sym-
bolic reasoning techniques and statistical methods. Like
symbolic reasoning, the source material for our reasoning
is a set of assertions, which in our case are expressed in nat-
ural language or a derivative representation, rather than in
logic. AnalogySpace learns from this source data using a
technique similar to the information retrieval technique of
latent semantic analysis (LSA), because of its ability to con-
struct large-scale patterns out of a myriad small of bits of
evidence. Unlike traditional LSA, however, AnalogySpace
works with semantically strong assertions, rather than the
weak semantics of word co-occurrence in documents.

AnalogySpace, using data from the Open Mind Common
Sense (OMCS) project, represents knowledge as a matrix of
objects or concepts along one axis, and features of those ob-
jects along another, yielding a sparse matrix of very high di-
mension. We then use singular value decomposition (SVD)

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to reduce the dimensionality of that matrix. This results in
computing principal components which represent the most
salient aspects of the knowledge, which can then be used to
organize it along the most semantically meaningful dimen-
sions. The key idea is that semantic similarity can be deter-
mined using linear operations over the resulting vectors.

What AnalogySpace Can Do
AnalogySpace provides a computationally efficient way to
calculate a wide variety of semantically meaningful opera-
tions:

AnalogySpace can generalize from sparsely-collected
knowledge. The amount of common sense knowledge
needed in everyday life is extraordinary: estimates say that
we have at least several million facts (Chklovski 2003) at our
disposal. It has been theorized that much of semantic mean-
ing is generative (Pustejovsky 1998), and thus we believe
that people are likely to generalize some of their common
sense information by creating an analogy to existing knowl-
edge. It is important, then, for a knowledge base to be able
to be generalized in the same way, and dimensionality re-
duction gives us a way to do so by inferring new features for
concepts in a knowledge base.

AnalogySpace can classify information in a knowledge
base in a variety of ways. The reduced-dimensionality space
that results from principal components analysis (PCA) is the
one that best describes the variations in the knowledge. Dif-
ferent vectors in this space represent different ways of mak-
ing binary distinctions among the concepts in ConceptNet,
by projecting all of the concepts onto one line.

Interesting distinctions come from vectors that align with
a meaningful cluster of concepts, and some of them are sug-
gested by the principal components themselves. For exam-
ple, we can observe that the most significant component of
AnalogySpace distinguishes things people want from things
people do not want. Concepts that fall in the “people want”
direction include love, money, and vacation, while the oppo-
site direction includes lose your keys and slavery. By pro-
jecting concepts onto other vectors, we can make other dis-
tinctions such as “urban vs. rural”, “animate vs. inanimate”,
and “indoors vs. outdoors”.

AnalogySpace can create “ad hoc categories” and pro-
vide common sense justifications for why things belong to
those categories. Our notion of generalized similarity makes
it easy to extend a category using a few examples. For exam-
ple, typing “knife, fork, spoon” into our categorizer will re-
sult in a category that also includes “plate” and “chopsticks”.

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

548

AnalogySpace can also list the common sense features that
justify the classification, such as “found in the kitchen” and
“used to eat food”.

AnalogySpace can confirm or question existing knowl-
edge. AnalogySpace can assign an inference score to
any assertion, including assertions that already exist in the
database. This determines which assertions are well sup-
ported by other knowledge, and which appear dubious and
should be checked by humans. This procedure has been used
to identify bad assertions in ConceptNet such as “Books
taste good”.

Common Sense Computing
To improve computers’ understanding of the world and the
way they interact with users, we must teach them about
the concepts and relationships which underlie everything we
know and talk about. Common sense knowledge is the ba-
sis of this network of information, expressing the relations
between concepts that we take for granted. However, this
knowledge can be difficult to capture, because much of it is
considered so obvious that it is rarely mentioned in corpora.

The Open Mind Common Sense Project
In 2000, what would become the Common Sense Computing
Initiative started the Open Mind Common Sense (OMCS)
project, asking volunteers on the internet to enter common
sense information through a website (Singh et al. 2002).
OMCS has collected over 700,000 pieces of common sense
information in English alone from 15,000 contributors, and
has expanded to several other languages.

ConceptNet
Many kinds of statements that users have entered into Open
Mind can be expressed as relationships between two con-
cepts, which are essentially short phrases of natural lan-
guage. This fact was used to create ConceptNet, the seman-
tic network representation of the OMCS knowledge base
(Havasi, Speer, & Alonso 2007; Liu & Singh 2004). Con-
ceptNet is made up of a network of concepts connected by
one of about twenty relations such as “IsA”, “PartOf”, or
“UsedFor”, which are labeled as expressing positive or neg-
ative information using a polarity flag. The relations are
based on the most common types of knowledge entered into
the OMCS database, both through free text entry and semi-
structured entry. For the assertion “A trunk is part of a car”,
for instance, the two concepts are “trunk” and “car”, the re-
lation is “PartOf”, and the polarity is positive. For the asser-
tion “People don’t want to be hurt”, the concepts are “per-
son” and “hurt”, the relation is “Desires”, and the polarity is
negative.

The current version of ConceptNet contains over 250,000
assertions. 3.4% of these assertions have negative polarity.

ConceptNet is useful because it provides applications
with a connection between natural language text and an un-
derstanding of the world (Lieberman et al. 2004). A spe-
cific example of its use is to improve the accuracy of speech
recognition (Lieberman et al. 2005) by selecting words that
make sense in context.

Figure 1: An illustration of a small section of ConceptNet.

Learner and Cumulative Analogy
Tim Chklovski used knowledge extracted from Open Mind
to create the Learner system (Chklovski 2003). With
Learner, he introduced the idea of reasoning about common
sense by “cumulative analogy”, a form of inference by in-
duction.

First, statements of common sense knowledge are divided
into objects (analogous to ConceptNet’s concepts) and fea-
tures, which are descriptions of objects that complete a state-
ment about them, such as “is a part of a car”. The similarity
between two objects is defined as the number of features
they have in common. The analogy step, then, is to hypoth-
esize that features that hold for one object also hold for simi-
lar objects. If many of an object’s nearest neighbors by sim-
ilarity have a certain feature, this creates a strong inference
that that object has the feature as well.

Let us suppose, for the sake of example, that such a sys-
tem doesn’t know much about cats. To begin with, it knows
that “a cat is a pet”, “a cat has fur”, and “a cat has a tail”.
It knows slightly more about dogs, including “a dog is a
pet”, “a dog has fur”, “a dog has a tail”, and “a dog has
four legs”. Based on the three existing similarities in its
knowledge about cats and dogs, it could transfer the “has
four legs” feature from the dog concept to the cat concept,
correctly inferring that “a cat has four legs”.

Cumulative analogy is the ideological predecessor to
AnalogySpace, which uses a vector space of potential analo-
gies to add more power, efficiency and resistance to noise to
the process.

AnalogySpace
The Motivation for Dimensionality Reduction
In order to draw new conclusions from analogies, we need
to be able to identify similarities between concepts in Con-
ceptNet, with a technique that retains its effectiveness as the
number of concepts and features increases. Concepts that
share features that are themselves similar, but not identical,
are missed by the basic process of cumulative analogy. This
motivates us to use truncated singular value decomposition
to discover similarities, which simultaneously reduces the
dimensionality of our data and generalizes the notion of sim-
ilarity to one that is less brittle.

The crucial observation to make is that similarity is a lin-
ear operation over vectors. This makes it possible to gen-

549

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05 0 0.05 0.1

F
ea

si
bi

lit
y

Desirability

person/Desires

person/CapableOf

person feel lovedsnake

add numbers

homework
see the worldslavery

make friends

talk to a person

computer
friend

play sport

comfort

watch tvdie

fall
car

love

vote

get drunk

tie shoes

hard work
fly an airplane

ignored dictatorship

fly

catch a cold

forget

lots of money

close door

hurt

Losing a wallet

smell flowers
age

lose a key

live at home

come home

receive gifts

walk on walls

drink wineflood
know the truth

lose his job

hate

make mistakes

reproduce

breathe air

walk on water
live forever

live in the ocean

office work

speak human languages

Causes/pain

human/CapableOf

UsedFor/fun

breathe water

Figure 2: AnalogySpace projected onto its first two compo-
nents, with some concepts and features labeled. We inter-
pret these components as representing the notions of “desir-
ability” and “feasibility”. The features “Person/Desires” and
“Person/CapableOf” have very large values on these respec-
tive axes, indicated by arrows pointing off the graph.

eralize and optimize the cumulative analogy process using
singular value decomposition, the linear algebra technique
used in principal component analysis and latent semantic in-
ference.

As in Learner, we define features as the complement of
concepts. Because assertions relate two concepts, each as-
sertion can be decomposed into a concept and a feature in
two ways, by focusing on the concept from each side. For
example, the assertion which states that “a trunk is part
of a car” applies the feature (PartOf, “car”) to the concept
“trunk”, and also applies the feature (“trunk”, PartOf) to the
concept “car”.

Each concept can then be associated with a vector in the
space of possible features. The values of this vector are pos-
itive for features that produce an assertion of positive polar-
ity when combined with that concept, negative for features
that produce an assertion of negative polarity, and zero when
nothing is known about the assertion formed by combining
that concept with that assertion. As an example, the feature
vector for “steering wheel” could have +1 in the position for
“is part of a car”, +1 for “is round”, and −1 for “is alive”.
(We will address more specifically what positive and nega-
tive values we assign later, in the Scores and Normalization
section). These vectors together form a matrix whose rows
are concepts, whose columns are features, and whose values
indicate truth values of assertions.

The degree of similarity between two concepts, then, is
the dot product between their rows in the concept/feature
matrix. The value of such a dot product increases when-
ever two concepts are described with the same feature, and
decreases when they are described by features that are nega-
tions of each other. When performed on the concept/feature
matrix, however, these dot products have very high dimen-

sionality (as many dimensions as there are features) and are
difficult to work with.

The process of truncated singular value decomposition
lets us approximate these dot products in a useful way. A
truncated SVD projects all of the concepts from the space
of features into a space with many fewer dimensions. It
also performs the dual operation, projecting features from a
space of concepts into the same reduced-dimensional space.
We can now run the cumulative analogy process in this new,
more compact space of concepts and features, which we call
AnalogySpace.

Building AnalogySpace
The principle of singular value decomposition (Wall, Recht-
steiner, & Rocha 2003) is that any matrix A can be factored
into an orthonormal matrix U , a diagonal matrix Σ, and an
orthonormal matrix V T , so that A = UΣV T . The singular
values in Σ are ordered from largest to smallest, where the
larger values correspond to the vectors in U and V that are
more significant components of the initial A matrix.

We discard all but the first k components — the princi-
pal components of A — resulting in the smaller matrices
Uk, Σk, and V T

k . The components that are discarded repre-
sent relatively small variations in the data, and the principal
components form a good approximation to the original data.
This is called a truncated SVD, representing the approxima-
tion A ≈ Ak = UkΣkV T

k .
As AnalogySpace is an orthogonal transformation of

the original concept and feature spaces, dot products in
AnalogySpace approximate dot products in the original
spaces. This fact can be used to compute similarity between
concepts or between features in AnalogySpace. We call the
result generalized similarity.

Concepts that ought to be similar, but share no exact fea-
tures, get an ordinary similarity value of 0, but their gener-
alized similarity can be a positive number. So generalized
similarity allows a useful similarity value to be calculated
for any two concepts, not just concepts with exact features
in common.

The truncated SVD can be seen as a way of finding a space
of “eigenconcepts” – k independent linear combinations of
concepts that span the k dimensions of AnalogySpace – and
representing both concepts and features as linear combina-
tions of eigenconcepts. Specifically, if there are m concepts
and n features, the m × n matrix representing ConceptNet
is factored into:
• Uk, a m × k orthogonal matrix that relates concepts and

eigenconcepts
• Σk, a k × k diagonal matrix of singular values, which

assign a weight to each eigenconcept
• Vk, a n × k orthogonal matrix that relates features and

eigenconcepts.
A plot of the first two components of AnalogySpace, rep-

resenting both U2 and V2, is shown in Figure 2.

Making Inferences using AnalogySpace
In the AnalogySpace representation, concepts and features
can be directly compared, now that they are both represented

550

in terms of eigenconcepts. In fact, if we take the dot prod-
uct of a concept and a feature, while weighting each eigen-
concept by the singular value that represents how significant
it is, we simply get the defining equation for the truncated
SVD: Ak = UkΣkV T

k .
Each row of Ak corresponds to a concept, and contains a

vector that assigns numerical values to its features. These
values become larger than they were in the original matrix
A when they belong to multiple similar concepts. This is
exactly what cumulative analogy is meant to do. In short, Ak

is not just an approximation, it is the closure of cumulative
analogy over ConceptNet.

Another way to view the truncated SVD is that it
“smooths” the somewhat noisy data in ConceptNet. Asser-
tions which do not correlate well with other assertions are
discarded, while large-scale similarities between many con-
cepts are emphasized. Individual concepts are no longer as-
sociated with a complete list of their features; instead, they
are blurred together somewhat with similar concepts. We
take advantage of this smoothing effect to make inferences
in AnalogySpace.

Scores and Normalization
Every existing assertion in ConceptNet has an integer con-
fidence score, which is initially 1. This score is automati-
cally increased when multiple users enter the same assertion
and decreased when users enter contradictory assertions, and
users of the Web site can increment or decrement the score
of an assertion by 1. Assertions with zero or negative confi-
dence are not used in the matrix.

We combine the confidence score with the polarity when
assigning numerical values to assertions in the matrix. As-
sertions with positive polarity are assigned their confidence
score as a value, while negative assertions are assigned the
negation of their confidence score.

Before computing the SVD, we normalize the rows of the
matrix so that a few high-information concepts such as “per-
son” do not dominate all the others. We scale the rows down
by their Euclidean norm, plus a small additional term; this
makes all concepts have nearly the same magnitude, with the
magnitude decreasing for very low-information concepts.

Parameters
Because it is parsed from free text, ConceptNet contains
some spurious concepts that appear, for example, in only
one assertion. Very rare concepts make the SVD take longer
to compute for little benefit, so we set a minimum on how
many assertions a concept needs to be involved in before
we represent it in AnalogySpace. We currently use a mini-
mum of 4 assertions. (In other research, we are working on
processes that encourage Open Mind users to “bootstrap”
new concepts, answering questions about them that provide
enough information to represent them in AnalogySpace.)

As a parameter to the SVD process, we need to specify k,
the size of the truncated matrices – in other words, the num-
ber of singular values or eigenconcepts to find. The sparse
SVD implementation we use, Doug Rohde’s svdlibc, can
be asked to produce all singular values it considers statisti-
cally significant, in which case it produces over 400 singular

values for AnalogySpace. However, we find that too large of
a value of k makes inference run slower while generalizing
less, so we typically use k = 50 or k = 100. A value of
k = 50 was used for the evaluation in this paper.

Open Mind Commons
The inferences produced by AnalogySpace have an im-
mediate purpose, completing a cycle of feedback in the
way that Open Mind learns. Open Mind Commons (Speer
2007) is a knowledge collection interface that runs on top
of ConceptNet 3, bridging the gap between the computer-
understandable knowledge and contributors. When contrib-
utors enter new statements through this interface, they im-
mediately become part of ConceptNet. They are then used
to infer new possible assertions, which are presented to the
user for approval. This helps make the knowledge entry pro-
cess more interactive, and aids us by encouraging users to
enter assertions whose answers will fill gaps in ConceptNet.

Related Work
Other Methods for Acquiring Common Sense
Some projects aim to extract general knowledge from exist-
ing corpora. Suh, Halpin, & Klein (2006) use named en-
tity recognition and noun and verb group detection to ex-
tract common sense statements from Wikipedia, and (Eslick
2006) has used data mining techniques to extract common
sense from websites on the Internet. The KNEXT project
(Schubert 2002) uses patterns to extract semantic relation-
ships from the Penn Treebank. The knowledge collected by
these projects is of a different nature than the common sense
OMCS aim to collect, because it does not include the set
of fundamental knowledge that is so “obvious” that people
leave it unstated.

The Cyc project (Lenat 1995) is another attempt to collect
common sense knowledge. Started by Doug Lenat in 1984,
this project utilizes knowledge engineers who handcraft as-
sertions and place them in Cyc’s logical frameworks, us-
ing a logical representation called CycL. Cyc has tradition-
ally relied on trained knowledge engineers to acquire their
knowledge but has recently made efforts to acquire knowl-
edge from other sources. For example, the goal of the WAC
project (Coursey 2007) is to let Cyc discover patterns in its
own data using the Weka (Witten & Frank 2005) classifier.
The project then uses this classifier to allow Cyc to classify
whether email is spam based only on its subject line.

PCA for Semantic Relationships
The most well-known use of principal component analysis,
or singular value decomposition, in language is in latent se-
mantic analysis (LSA), which attempts to find similarities
in the domains of words and documents (Deerwester et al.
1990). LSA is often used in information retrieval, where it
is also known as latent semantic indexing. In the representa-
tion used by LSA, a document is seen as an unordered col-
lection of words, and the matrix of words versus documents
is analyzed with SVD, so that documents are sorted into im-
plicit categories according to the words that are contained in
them.

551

Various research projects have expanded the use of SVD
in semantic contexts to examine broader contexts than words
within documents. An approach used by Patwardhan & Ped-
ersen (2006) is to replace the documents in LSA with sen-
tences. This reduced connections made between words or
concepts that are far from each other in a document.

Turney (2005) creates a matrix using the co-occuring
words as the rows and the context in which the words ap-
pear within a sentence as the columns. This project aims at
creating more literal analogies: its goal is to answer the kind
of analogy questions that would appear on a standardized
test, such as “quart:volume :: mile:distance”.

The field of applying SVD to lexical resources themselves
is small so far. Banerjee & Pedersen (2003) use the co-
occurrence of words in WordNet glosses as a measure of
semantic similarity. This measure of similarity is based only
on dictionary-like glosses within WordNet, rather than the
connections in WordNet itself. Perhaps the closest thing to
our application of SVD is another project descended from
Open Mind Common Sense, using Honda’s domain-specific
Open Mind Indoor Common Sense corpus. The constructed
second-order SVD mapping concept to concept within an in-
dividual relation type, such as PartOf or AtLocation (Gupta
& Kochenderfer 2004). However, this technique cannot
learn by synthesizing information expressed with different
relations. Because this technique is the closest to the meth-
ods we have used, we choose to evaluate our system in com-
parison to this algorithm.

Evaluation
We use AnalogySpace to fill gaps in ConceptNet’s common
sense knowledge and to ask relevant questions to contribu-
tors, so our goal is for it to produce inferences that make
sense to users, and which they frequently consider true.
The truth of inferences is important in unsupervised uses of
AnalogySpace, and in the context of user interaction, it as-
sures users that the system is learning from their input. To
evaluate the success of inference using AnalogySpace, we
asked users to evaluate the truth of assertions produced by
AnalogySpace, as compared with assertions produced with
other sources.

Our subjects were 40 college students and recent college
graduates, most of whom had never interacted with Open
Mind before, taking this evaluation on a special page of the
Open Mind Commons web site. No compensation was of-
fered. We presented each subject with a list of 60 assertions,
converted from assertions to English sentences using a nat-
ural language procedure in Open Mind Commons.

The assertions were produced from four sources and shuf-
fled together. 25% of them were existing assertions in Con-
ceptNet, entered by human contributors, sampled randomly
from all those with a confidence score of at least 2. An-
other 25% were produced by AnalogySpace but did not al-
ready exist in ConceptNet, and were sampled with a proba-
bility function that increases with their inferred score. 25%
more were sampled in the same way from a modification
of AnalogySpace to emulate the previous work by Gupta &
Kochenderfer (2004), by using a separate SVD for each re-
lation instead of a single combined SVD, and using the same

number of principal components as AnalogySpace (k = 50)
for each SVD. We refer to this implementation below as
the “within-relations SVD”. The final 25% of the asser-
tions were nonsense, generated from random combinations
of concepts and features.

Participants rated each assertion with one of the choices
“Generally true”, “Sometimes / Somewhat true”, “Don’t
know / Opinion”, “Generally false”, “Doesn’t make sense”,
and “Not true but amusing” (an option suggested by partic-
ipants in a previous study). Figure 3 shows the breakdown
of ratings that participants gave to assertions from all four
sources. The performance of both methods of inference was
much closer to that of existing assertions than to randomly-
generated assertions. The most prominent difference be-
tween AnalogySpace and the within-relations SVD is that
AnalogySpace produced considerably fewer assertions that
were rated as untrue or nonsensical.

 0

 20

 40

 60

 80

 100

Random Within
relations

AnalogySpace People

%
 o

f t
ot

al

Breakdown of ratings in user evaluation

Generally true
Sometimes / Somewhat true

Don’t know / Opinion
Not true / Nonsense

Figure 3: The ratings given by participants in the study to
assertions from four different sources.

In order to quantitatively compare these ratings, we
mapped the rating choices to scores, where “Generally true”
was worth 2, “Sometimes / Somewhat” worth 1, “Don’t
know / Opinion” worth 0, and all other options were worth
-1. On this scale, the existing assertions in AnalogySpace
received an average score of 1.315. The new assertions in-
ferred by AnalogySpace scored 1.025, outperforming the
within-relations SVD which scored 0.882. The random as-
sertions, as expected, scored much lower at -0.644.

Next, we recalibrated the average ratings for each sub-
ject, to take into account the fact that they would have differ-
ing interpretations of the options. We linearly mapped each
user’s scores to a scale where 0 represented that user’s av-
erage rating of random assertions, and 100 represented that
user’s average rating of assertions contributed by people.

On this scale, the within-relations SVD received a mean
score of 78.1 and a standard deviation of 18.5, while
AnalogySpace received a mean score of 87.5 and a stan-
dard deviation of 22.2. These large standard deviations come

552

from the fact that different users used the scale very differ-
ently, which the reason why we have calibrated the ratings
per user. Comparing the calibrated scores for each user us-
ing a paired t-test showed that the average 9.4 point differ-
ence was statistically significant at the p < 0.05 level, with
a 95% confidence interval of (1.0, 17.8). We conclude from
this that AnalogySpace’s use of features that involve many
different relations gives it additional inferential power over
the previous state of the art.

Discussion
By reducing the dimensionality of the sparse knowledge
in ConceptNet, AnalogySpace generalizes that knowledge
and makes it more broadly useful to applications. Analogy-
Space’s ability to predict new assertions has already helped
to improve the way that OMCS collects its knowledge, by
giving its users feedback in the form of relevant inferences.
The fact that these inferences are frequently true or at least
sensible, as shown by our user evaluation, helps to give our
users confidence that the system is learning from their input.

AnalogySpace can be used to accomplish other tasks
besides filling in the gaps of ConceptNet. As men-
tioned in the introduction, one of our example applica-
tions uses the notion of generalized similarity to find
members of ad-hoc categories. Given several phrases,
it averages together their corresponding vectors in Con-
ceptNet and returns other concepts that are sufficiently
similar. This technique can fill in the missing mem-
bers of a category, much like the proprietary Google Sets
(http://labs1.google.com/sets).

The combination of ConceptNet and AnalogySpace pro-
vides a broad base of domain-general knowledge that can
benefit AI systems, particularly those that work with natural
language. A large corpus alone, or an inference technique
alone, would not accomplish this, but in combination they
give access to a wealth of knowledge.

Acknowledgments
We would like to thank James Pustejovsky for all of his help.
Additional thanks go to Jason Alonso and Kenneth Arnold
for their work on Divisi, the software package which can
be downloaded for use in working with AnalogySpace. The
Common Sense Computing Initiative would like to thank the
tens of thousands of users whose contributions have made
the Open Mind project possible, as well as the many people
who volunteered to take our evaluation.

References
Banerjee, S., and Pedersen, T. 2003. Extended gloss overlaps as
a measure of semantic relatedness. In ”Eighteenth International
Joint Conference on Artificial Intelligence”.
Chklovski, T. 2003. Learner: a system for acquiring common-
sense knowledge by analogy. In K-CAP ’03: Proceedings of the
2nd International Conference on Knowledge Capture, 4–12. New
York, NY, USA: ACM Press.
Coursey, K. 2007. WAC: Weka and Cyc: Teaching Cyc to learn
through self-recursive data mining. In Proceedings of the Work-
shop on Common Sense and Intelligent User Interfaces.

Deerwester, S. C.; Dumais, S. T.; Landauer, T. K.; Furnas, G. W.;
and Harshman, R. A. 1990. Indexing by latent semantic anal-
ysis. Journal of the American Society of Information Science
41(6):391–407.
Eslick, I. 2006. Searching for Commonsense. Ph.D. Dissertation,
MIT Media Lab.
Gupta, R., and Kochenderfer, M. J. 2004. Using statistical tech-
niques and WordNet to reason with noisy data. In Workshop on
Adaptive Text Extraction and Mining, Nineteenth National Con-
ference on Artificial Intelligence (AAAI-04).
Havasi, C.; Speer, R.; and Alonso, J. 2007. ConceptNet 3: a flexi-
ble, multilingual semantic network for common sense knowledge.
In Recent Advances in Natural Language Processing.
Lenat, D. 1995. Cyc: A large-scale investment in knowledge
infrastructure. Communications of the ACM 11:33–38.
Lieberman, H.; Liu, H.; Singh, P.; and Barry, B. 2004. Beat-
ing common sense into interactive applications. AI Magazine
25(4):63–76.
Lieberman, H.; Faaborg, A.; Daher, W.; and Espinosa, J. 2005.
How to wreck a nice beach you sing calm incense. In Proceed-
ings of the 10th International Conference on Intelligent User In-
terfaces.
Liu, H., and Singh, P. 2004. ConceptNet: A practical common-
sense reasoning toolkit. BT Technology Journal 22(4):211–226.
Patwardhan, S., and Pedersen, T. 2006. Using WordNet-based
context vectors to estimate the semantic relatedness of concepts.
In EACL 2006 Workshop Making Sense of Sense—Bringing Com-
putational Linguistics and Psycholinguistics Together, 1–8.
Pustejovsky, J. 1998. The Generative Lexicon. Cambridge, MA:
MIT Press.
Schubert, L. K. 2002. Can we derive general world knowledge
from texts? In Proceedings of the Human Language Technology
Conference.
Singh, P.; Lin, T.; Mueller, E. T.; Lim, G.; Perkins, T.; and Zhu,
W. L. 2002. Open Mind Common Sense: Knowledge acqui-
sition from the general public. In On the Move to Meaningful
Internet Systems, 2002 - DOA/Coop IS/ODBASE 2002 Confeder-
ated International Conferences DOA, CoopIS and ODBASE 200
2, 1223–1237. London, UK: Springer-Verlag.
Speer, R. 2007. Open Mind Commons: An inquisitive approach
to learning common sense. Proceedings of the Workshop on Com-
mon Sense and Interactive Applications.
Suh, S.; Halpin, H.; and Klein, E. 2006. Extracting common sense
knowledge from Wikipedia. In Proc. of the ISWC2006 Workshop
on Web Content Mining with Human Language Technology.
Turney, P. D. 2005. Measuring semantic similarity by latent rela-
tional analysis.
Wall, M. E.; Rechtsteiner, A.; and Rocha, L. M. 2003. A Practical
Approach to Microarray Data Analysis. Norwell, MA: Kluwel.
chapter 5, 91–109.
Witten, I. H., and Frank, E. 2005. Data Mining: Practical Ma-
chine Learning Tools and Techniques. Morgan Kaufmann Series
in Data Management Systems. Morgan Kaufmann, second edi-
tion.

553

