

 Agents for the User Interface

Henry Lieberman and Ted Selker
Media Laboratory
Massachusetts Institute of Technology

Introduction We often use the word “agent” to describe people who have a

helping or assistive relationship to us – travel agents, secretaries,
butlers. The job of such an agent is to act autonomously to satisfy
goals that we may have, give us a greater sense of productivity
and reduce our workload. In this article, we’ll use the word agent
to describe software that plays a similar role – providing help,
advice, and “running errands” for the user.

Just as with a human agent, the nature of the relationship
between the agent and the client is paramount to success. So
with computer agents, it is often the user interface which holds
the key. The image of an agent or agent-oriented system as
acting in a helping role like a butler, secretary, or service
organization is most vivid when that helping role is reflected
directly in interaction with the user.

Oliver Selfridge, whose 1959 Pandemonium paper [] introduced
the term “agent”, referred both to this sense and also to a sense
of agent internal to a system, where multiple goal-seeking entities
both compete and cooperate to produce intelligent behavior.
Many of the other chapters of this book describe these “back-end”
agents, where most of the agentry is taking place behind the
scenes, and interaction with the user happens in a relatively
conventional manner. But in this article, we’ll focus on agents
that display the characteristics of intelligence in interacting
directly with the user.

What do you mean by
“intelligent interface

agent”?

Terminology in the field is a problem, since researchers have
varying definitions, especially of the term “agent”. But for the
purposes of this article, we’ll break down the term “intelligent
interface agent” as follows:

• Intelligent. One way to define computer intelligence is that it is
when the computer exhibits behavior that is like what we call
intelligence in people. Human intelligence is composed of a wide
variety of thought, affect and behavioral mechanisms, from
something as simple as holding a pen, to the complexity of
interpersonal relationships. Some of these mechanisms are
conscious and others are opaque to our introspection. When
computers appear to solve problems in ways we would not have
expected to be able to do mechanically, it is reasonable to
ascribe intelligence to the machine.

Henry Lieberman 1

While it is unrealistic to expect that an interface agent have
human-level intelligence, many agents do exhibit some
characteristics of human intelligence. Some of them do reasoning
and inference, and some of them have domain-specific
knowledge or procedures that enable them to perform useful
tasks. Some of them learn through interaction with their users and
adapt to context. Daniel Dennett [] proposed the intentional
stance as a criteria for machine intelligence – if it makes sense to
ascribe intention to the machine as the best way to explain its
behavior, as in “the machine learned what I wanted” – then you
can call it intelligent.

• Interface. For an agent to be considered an “interface” agent,

we’ll require that the agent communicate with the person directly
through the input and output of the user interface or interface to
the environment. An interface agent can observe actions taken by
the user in a direct manipulation interface, can sense the objects
that the user sees on the screen, and can itself take actions by
invoking the commands provided by the interface. The agent can
add graphics or animation to the interface, it can use speech
input or output, or communicate via other sensory streams.
Increasingly, agents also will use sensors and effectors that
sense and act directly with the real world. An agent that senses
force in an exercise machine or moves a bulldozer blade can also
be an interface agent.

• Agent. This is the most controversial term. Among the myriad

senses of agents described in this book, all seem to involve the
ascription of some form of human characteristics to the agent,
whether it is autonomy, mobility, intelligence, etc. Here we’ll
concentrate on the function of an agent in an assistive role to the
user. The job of the agent, like human agents such as travel
agents or stockbrokers, is to further the person’s task, that is, to
do things that make the person’s goals succeed. It can act on the
person’s behalf, which we call an assistant, or teach the person
how to perform the task, which we call an advisor. We believe
that there is anagential stance, similar to Dennett’s intentional
stance. The machine can be considered an agent if the best way
to explain its behavior is by analogy to the agential role that
humans can play.

Since the 1980s, the field of human computer interface, as
represented at the annual CHI and Interact conferences, has
concentrated on the development of the so-called direct
manipulation interface [Shneiderman] of multiple-windows,
menus, icons, and pointing devices. This model has served us
well for two decades, but it alone will not suffice for future
applications. The reason is that the growth of functionality in
these interfaces is not sustainable. Interface agents represent a
way out of this dilemma.

Why interface agents?

We can think of many current interactive applications as like a
tool box containing hammers, screwdrivers, and pliers. Each
menu operation, typed command, or graphic icon can be thought
of as the means of access to an individual tool. It is up to the user

Henry Lieberman 2

to decide which tool to use for what purpose, and what sequence
of steps of use of individual tools will accomplish a given task.
The problem is that, as the scope of applications increases, each
purpose may require a separate tool, and the number of tools
available to the user grows too large.

This is in fact what is happening in computer interfaces today.
The graph below shows the growth of the tool set for a typical
application, Microsoft Word. Under the [perhaps charitable]
assumption that the growth is linear, our grandchildren will have
to deal with an absurdly large number of menu operations and
icons. The application of computers to more and more ambitious
tasks shows no sign of slowing. Inevitably, we will have to at
some point abandon the simple one-to-one correspondence of
one user interface element per tool.

0

50

100

150

200

250

300

350

1980 1990 2000 2010 2020

Menu
items
in Word

Icons
in Word

Growth of the tool set in a typical application

A single user interface element will need to have the potential of
accessing any number of underlying tools, making independent
decisions depending on the current interactive context, without
unnecessary user interaction at each step. User interface
elements will become user agents.

Shared context cuts down on the amount of communication
necessary between the computer and the user. When we talk to
other people, do we need to enumerate all the possible things we
could say or do? Of course not. It is assumed that intelligent use
of the communication channel means to choose only those
possibilities that are meaningful and appropriate.

The only plausible alternative to thinking about an interface as
being a set of tools is thinking about an interface as acting as one
or more agents. Users delegate their goals to agents, rather than
directly manipulate screen representations of objects. Negroponte

Henry Lieberman 3

[] uses the metaphor of a highly trained English butler, who uses
personal knowledge of their employer and proactive anticipation
of the employer’s needs and goals to provide service. Other kinds
of agents, such as travel agents, stockbrokers, and car
mechanics might have different areas of expertise and service.
On-line travel planners and electronic traders are now beginning
to serve some of the functions that were formerly performed by
human agents in these areas, and we expect that trend to
continue. More and more, personal history, anticipation of needs
and goals, adaptivity to context, and long-term learning will play
important roles in the user interface.

If I described an automated washing machine of today to a
person in 1920, they would call it an agent—something that does
something a person or they would have had to do—because
washing clothes was a procedure that required intelligence:
washing the clothes, thinking about them, etc. Today we don’t
think of the washing machine that way, we think of a washing
machine as a washing machine—a simple, inexpensive tool that
everyone can have.

A story: Evolution of the
washing machine

Early in this century washing was thought to be something where
you put soap on fabric, rubbed it, rinsed it out, looked at it, put
soap on the hard places, rubbed it again, rinsed it out, wrung it
out, and hung it up to dry. An automated washing machine came
along which could do some parts of that. A person would turn on
the motor to make the fabric and the soap and water rub against
each other, then turn it off, turn a valve which would let the water
out. More water would be put in buckets and the fabric agitated
again to get rid of the soap. Finally, the person would wring out
the clothes. At some point a very exciting idea arose -- to have a
timer that would time when different parts of this process
occurred, deciding to wash all the clothing, rinse it, and spin it dry.

The procedures that had once been totally manual, and then
mechanical, were suddenly automated. The list of steps was the
equivalent of a program, and activation of the timer was the input
from the user. Sensors monitor the process so that an alert signal
occurs if the machine is off balance, or users may choose options
that allow notification during the process, such as when to add
fabric softener.

The automation of all these processes, putting them together and
allowing a person to simply put in the clothes and the soap,
became the washing machine that we know today. At the time,
even when the mechanical washing machine was created, it
would have fit our definition of agent. That is, the timer was the
intelligence that made the mechanical aspects of the washing
machine replace what the person thought they had to do before.
Instead of just replacing the mechanical aspects of moving the
fabric, the timer replaced the procedure that the person had to do.
In that way, the washing machine’s timer makes the washing
machine into an agent. Certainly today we don’t think of the
washing machine as an agent—a washing machine is a washing
machine. In that way, many things that we think of as agents will
over time become thought of simply as tools, units that are

Henry Lieberman 4

inseparable from the way they are used and integral to our
lifestyle.

In 1990, Apple [CHI Video Review] released the controversial
film, Knowledge Navigator, which presented their vision of what a
future computer interface would be like. It presented a scenario of
a professor preparing material for a class, managing his
schedule, retrieving articles, communicating with a colleague.

Visions of future interface
agents

Technological breakthroughs such as
continuous speech and natural language
understanding were posited, but the
most significant departure from present-
day interfaces was the presence of Phil.
Phil was a bow-tied character who

appeared on the screen in animated video, responding to
commands, offering advice, providing reminders, keeping track of
goals, fetching and integrating data from diverse sources when
needed. Phil performed the function of a secretary or assistant at
human-level competence.

The Knowledge Navigator video was the most widely circulated,
but was only one of many “vision videos” that included the earlier
Atari “Intelligent Encyclopaedia”, and later HP’s “1995”, NTT’s
“Seamless Media” Sun’s “Starfire”, AT&T’s “Connections” and
videos by Ford, Philips, IBM, Atari and others. Some of these
provide scenarios that differ in important respects from Apple’s
vision, but all potray the computer as playing a helpful and
assistive role. Science fiction had long portrayed intelligent robots
and computers, such as 2001’s HAL, but these videos were
statements that many of the capabilities were indeed close to
being within our grasp.

The film was controversial in many respects. First, it was clear
that this vision, if it could be achieved, would represent a radical
improvement in the helpfulness of computers in daily life over
present ways of working. But some people also felt wary of the
scenario; not everyone wants a butler. Some found the agent
annoying or intrusive: “Why should I have to negotiate with a little
dip in a bow tie whenever I want to do something?”

There was doubt about its feasibility. However, [Miller and
Norman] performed an analysis showing that most of the
ingredients were indeed technically feasible. Voice recognition is
now on the verge of practicality, while full natural language
understanding remains elusive. Videoconferencing and the ease
of data access we now enjoy on the Web is commonplace.
Striking in the scenario but still not achieved today was its
seamlessness – there were no “applications”, no file dialog
boxes, no cut and paste. We could certainly eliminate these
stumbling blocks today if we wanted.

Nevertheless, Knowledge Navigator presented a provocative
vision of how agents might transform the interface. Seeing these

Henry Lieberman 5

vision videos still is one of the best ways to get a feel for what
agents in the interface might mean.

Characteristics of
interface agents

All present-day direct-manipulation interfaces are essentially
editors for sets of objects represented graphically on the screen,
be they text, pictures, spreadsheet cells, e-mail messages, etc.
What is striking about the vision contained in these videos, is that
very little of the interaction centers on object-editing. Rather it
centers on the user’s goals [writing a paper, making a business
presentation, arranging a schedule], and what object editing does
occur is incidental. Most of the interaction is in the form of the
computer supplying information to teach a user or delegating
tasks to an interface agent.

Delegation to agents, just like delegation to humans, always
involves some risk and followup; the risk that intentions could be
misunderstood, and the risk that the task might not be performed
correctly. But we don’t let that stop us from delegating many tasks
to people that we work with, and the result is that we are able to
do more by collaborating with others.

Collaborations often seem slower because it is hard to
communicate and delegate accurately. Often the most important
part of the collaboration is learning from the other person. Many
of the most successful user interface agents have been systems
that carefully decide what kind of information and how much
information to tell the user, and know how to stay out of the way
when users prefer to act for themselves.

Initiative Most conventional interfaces simply sit still unless the user is
actively commanding them. Interface agents, on the other hand,
can be proactive, actively working while the user is thinking, or
performing other actions. This saves the user time, since the
system is making use of time that would otherwise be wasted. It
allows the agent to anticipate the needs of the user. The system
may even take initiative in interrupting the user [for example, if a
higher-priority event occurs]. The agent can alert the user to
opportunities that would otherwise be missed. This capability
must be used wisely, or users will object to being interrupted. This
leads to a mixed-initiative dialog, where either the user or the
agent may take the lead.

Assistants and Advisors We can distinguish between two roles that an interface agent
might play, assistants and advisors.

• Assistant. An assistant agent is one that does things that you

could have done. By being an assistant, as a butler or a servant,
the agent is doing things for you. Instead of you having to type in
something, it is typing in something; instead of you having to
arrange something, it is arranging something; instead of you
having to find something, it is finding something for you. To the
extent that a new relationship between a person and a computer
is enhanced and built by such an assistant, the person is
protected from having to do this work. The danger of the
computer learning what you need and learning it in your language

Henry Lieberman 6

is that a private relationship is created between you and the
computer, where you have a dependency relationship on the
agent.

• Advisor. An advisory agent is one in which the person does all of

the work—the computer only teaches the person or suggests to
the person. The kind of agent that teaches, tutors, suggests, or
documents can be even more productive than assistant agents,
and avoids many of the problems of loss of responsibility feared
by the critics of agents. Advisory agents were the first type of
agents for which experimental evidence verified that they
improved user performance [].

Users of conventional applications expect to see exactly the
same interface. But “one size fits all” is not appropriate for
computer interfaces. Interface agents can learn the individual
characteristics, idiosyncracies, unique needs and preferences of
a user, and adapt, giving each user a personalized interface.

Personalization

Until recently, the idea of the computer changing for the individual
use to seemed like science fiction. We have changed our
intuitions over the last few decades. We've gotten very used to
having our mailing list, our vocabulary list, our most commonly
used function list, our aliases, all of these personalized, It is
becoming simpler to using systems where our actions are
remembered. Now many of the popular Internet facilities
personalize themselves so that they do not show news that they
have shown you before. They show you products that are like
products that you have purchased before. They allow you to
identify other similarities that you believe will be useful to the
computer in extracting information for you. But now, we moving to
a time when, models of what a person wants are explicitly and
even adaptively created by the computer, or through a mixed
initiative.

Every computer program has a user model, even if only implicitly.
The user model is the program’s expectation of what a user will
do, what they need to be told and how they will respond.
Historically, it is hard-wired into the program. Command-line
interfaces are predicated on the unrealistic assumption that the
user knows all commands and can type them in without spelling
or punctuation errors.

User modeling

This implicit model of the user interface coexists with a model of
the task and domain. In more sophisticated user interface agents,
it is often useful to be make the model more explicit so it can be
manipulated and reasoned about. Interface agents may also need
to move from the static, implicit models found in conventional
programs, to more explicit and dynamic models. In a dynamic
user model, the system could notice that the user is using a new
feature that he or she never has before, and offer tutorial
information.

The most sophisticated way to acquire user models are adaptive,
which means they can create dynamic behavior without being
pre-programmed. The user interface could learn common

Henry Lieberman 7

misspellings and typos and remind a user of how to correct
them. The interface could offer syntactic or presentation
alternatives. The interface could watch user performance and
suggest ways in which it might be improved.

The simplest way for an agent to construct a user model is to
have explicit interaction with the user. If the user accepts
suggestions from the computer such as corrections to misspelled
words, those could be added to a user model. More interesting is
when the user model is constructed implicitly, by the computer
making observations about user behavior that can be used to
improve subsequent performance. For example, the user
habitually drops an item close to a window instead of in the
window and then makes a correction, the computer could at some
point surmise that the person’s goal is to put things into the
window. The computer should either suggest it or do it for them.

Even in something as seemingly simple as a pointing device,
models of the user’s behavior lead to better performance. The
IBM TrackPoint [] software incorporates behavioral, perceptual
and motor models that improve accuracy and user satisfaction.

Somehow, overshoot was always a problem when force was
applied to position control Sometime in 1987 it was discovered
that overshoot could be eliminated by a model that reduced the
speed that a person was moving the cursor to a speed that a an
eye could track. Where it had appeared that a mechanical control
was at fault and a person could not control the stopping of a
cursor with a joy stick, in fact, the cause was ignoring of cognitive,
perceptual limitations of eye-hand coordination. The TrackPoint
incorporated this model of people needing to see what they are
looking at and a model of the shakiness of the finger.

It has an approach to allow a person to make a pixel size
selections and character size selections that is based on study of
how the human hand can control something. It appears that the
human hand has too little ability for direct force control to make
the accurate selections directly. In Track Point, a consistent,
predictable speed is used for very fine motions. Whereas people
are not as good at controlling the force they are good at
controlling the time at which they do something. So the action of
fine motor control is transferred from force to speed. Such a
match where the persons physiological and perceptual
capabilities are taken into account in an explicit or an internal
model in the computer can make a gigantic difference in the
performance.

In TrackPoint, these and other user modeling approaches
improve the speed in which the person could make a selections
by 25%. A large number considering in many cases, in that
people can tell the difference when even 5% improvements are
made.

This is always a concern that the computer will adapt and the
person will adapt simultaneously with expectations of each other.
Certainly we even see this in people when we anticipate that a
person cannot do something and after some practice they

Henry Lieberman 8

achieve it and surprise us. In some of the early experiments with
Track Point the computer would change and the person would
change and it was very easy for the system to get out of phase
with the persons expectations of what the computer could do. The
adaptive procedures had to be abandoned in some cases
because it was too difficult to make the user anticipate the
adaptation that the computer would perform. This is a typical
control theory problem, termed damping convergence.

While adaptation is not appropriate for every situation, it can be
helpful in reducing the brittleness of many systems. Even when
adaptive user models are used, it is important to keep in mind
that control problems may result, if only temporarily, as the user
and the computer adjust their behavior to each other.

For an agent to be useful, the user must have trust in the agent.
Now, when computers routinely lose files or issue cryptic error
messages, some may be skeptical about whether computers can
really be trusted, but a relationship of trust could be built up out of
successful interactions with the agent over a long term. The
authority given to the agent could be slowly increased as the user
becomes confident in the agent’s abilities. Trust in the agent is
encouraged by those agents which provide for feedback in their
operation and allow the user to influence their operation.

Trust

In both industrial design and user interface design, the idea of
affordances is important [Norman]. Affordance is the idea that the
appearance of a tool or agent has connotations that allow a user
to infer what the likely function of that component is. A door
handle that looks like it should be pulled rather than pushed leads
people to expect to perform that operation. The design of the
appearance of an agent and the actions that the agent takes
should be appropriate to what that agent’s function is in the
interface. Agents generate expectations about what the interface
is supposed to do, and if these expectations are fulfilled or
exceeded, the user’s trust and confidence in the agent grows.

Important to developing confidence in an agent is feedback. The
agent should always be able to explain its actions, or have the
results of its actions examined and critiqued by the user. If the
agent is performing actions in a direct-manipulation interface, the
user can use the same interface to examine or edit the objects
directly.

Feedback

When we interact with others, they learn from interactions and
improve their interaction with us over time. The same should be
true of interface agents. Learning is therefore a critical capability,
one we shall return to in detail. Agents should record user actions
and try to use them to improve future agent actions. Rather than
simply issue commands, as in a conventional user interface, the
user may instruct the agent by issuing advice. Advice [McCarthy]
is more flexible than commands, since it needn’t be as precise,
can be given in non-sequential order, and influences the ongoing
processes of the agent.

Instructibility

Henry Lieberman 9

Should an agent be represented by a humanoid character on the
screen? The argument for doing so is that it may facilitate the
formation of a perceived relationship between the user and the
computer. Once there is a relationship a person acts differently
towards the computer -- they engage more, they might try harder,
they might be able to focus their attention on something the
computer is presenting to them. This is most easily seen in how
kids react to on-screen characters used as avatars or guides in
games and educational software. Research by Nass and Reeves
at Stanford [] has shown that even adults cannot help but treat
the computer as a social actor and relate to it in human-like ways
even though they know it is not human.

Anthropomorphization

The central issue regarding anthropomorphism is whether we are
attracting a person’s attention to the things they are actually trying
to do or distracting them. If the character is entertaining or
supportive, then anthropomorphism can be helpful. If on the other
hand it takes a person’s attention away from the things that they
are focusing on, then it's not.

Of course, there is always the danger that people will treat the on-
screen character as a real person, or their expectations for the
human-like behavior of the system will inevitably be
overextended. This is a real danger, and one that we must keep
in mind and address as we are designing systems.

However, we believe that this danger should not be regarded as a
"show-stopper" for anthropomorphic agents. People are generally
pretty good at keeping in mind the differences between computer
characters and real humans, and will get better with this as their
experience with on-screen agents grows. Our everyday
experience with household pets, cartoon characters, video
games, etc. shows that we can deal with talking about non-
humans in anthropomorphic terms without dangerously
overextending our ideas of what they can do.

That leads us the views of the critics.

Some critics have argued that since computers are not likely to
achieve full human-level intelligence, replacing human decision-
making with computer decision making in an interface is always a
bad idea. Because the system will likely not be able to predict or
understand the user's purposes, it will always be better to provide
tools rather than assistance.

Critical views

This view, which Ben Shneiderman has become famous for
arguing in public forums, promotes that direct manipulation is the
ideal form of communication with a computer. That view says that
the more direct the communication with a computer is, the better
the user will be able to use their own judgment, and any
indirection or assistance will only screw things up. Unfortunately
for Ben, growing success in the interface agent field erodes this
argument, as we shall argue in the conclusion of this paper.
Some agents can be experimentally shown to improve
performance []. And, as interface agents take their places
alongside traditional direct manipulation, we increasingly see that
we can have both kinds of interfaces.

Henry Lieberman 10

Jaron Lanier [Lanier] provides a different argument. He argues
that as computers get smarter, humans will get lazier, and we will
come to rely on computer agents to an extent that is no longer
healthy for us. This, too, is indeed a danger, but that charge has
been leveled against every labor-saving technology since the
wheel. The important question is, does it make us better able to
do the things we want to do? Many people feel that their time is
overcommitted, and being able to delegate tasks to agents
improves the proportion of time they spend on activities of most
interest to them. And it is human nature to stretch the boundaries
of what is possible by attempting more and more ambitious tasks
as soon as simple tasks can be done without thinking about them.
Again, striking a balance between convenience and control is the
key.

An often overlooked, if intangible, variable that determines the
appropriateness of agent interfaces is the user’s cognitive style.
Just as some might appreciate the attentiveness of an English
butler and others find it intrusive, people vary in the amount of
external assistance they wish to receive. This is fine. We don’t
want to force unwanted “help” on users when they prefer to act
for themselves. Thus an essential characteristic for successful
agent interfaces is to give the user the user the ability to adjust
the degree of initiative that the agent can take. Furthermore, this
decision should be dynamically adjustable, since people may
want lots of help in one situation and to be left alone in another.
Agent interfaces should also always be on the lookout for clues
that the user wants more or less interaction.

Cognitive style

Traditional work in Artificial Intelligence is oriented toward the
goal of creating intelligent programs that can solve difficult
cognitive problems. Since the focus is on the intelligence of the
machine, simple interfaces such as sequential conversational
interfaces are assumed. As a strategy for developing intelligent
systems, this approach is brittle, because any failure of the
machine intelligence to deal with the problem leads to a failure of
the system as a whole.

AI and HCI perspectives
on agents

The traditional CHI approach suffers from the opposite problem.
Problem-solving intelligence is assumed to reside almost
completely with the user's initiative. The job of the interface is to
provide the best possible coupling of the computer's data-
manipulation ability to the user's intelligence. This approach is
also brittle, as the complexity of the problem can easily
overwhelm the user's short-term memory, searching and
reasoning capabilities.

The intelligent agent approach is to consider the combination of
the user and the machine as a single system, the intelligence of
the user and that of the system collaborating to solve a problem.
The approach is more robust, as the agent can compensate for
shortcomings of the user's memory and attention, and the user
can compensate for any incompleteness in the agent's ability to
solve the task or decide what information is relevant.

Henry Lieberman 11

Just like people can have different relationships with each other,
there can be many different kinds of relationships between an
agent and its user[s]. The most prominent in many envisionments
of future agent systems is that the agent acts as a secretary or
English butler. Thus the agent anticipates the needs and desires
of its client, and acts independently as the client’s representative.

Relationships between
agent and user

While this is certainly a goal, an
intermediate step and useful capability in its
own right is to imagine the agent-user
relationship to be more like a teacher-
student relationship. After all, even if we
have agents capable of being butlers or

secretaries, at first they’ll be new on the job and have to learn
what it is we want. And before we are willing to trust them
completely we might be willing to accept their advice, then act on
our own. In the following sections we’ll focus on agents that have
that kind of relationship to the user.

Agents that teach
you

The application area that has the longest history of use of
interface agents is the subfield of Artificial Intelligence called
Intelligent Tutoring Systems. Because tutoring systems tend to
deal with inexperienced computer users, ease of use in the
interface is a prime consideration. Tutoring systems are generally
implemented as conversational advisors that decide when and
how to present tutoring material to the student, and help the
student with problems or answer questions. The agent can be
helpful to the user because it can have more knowledge of the
material than the beginning student, and it can also encode the
experience of teachers in recognizing common problems or
errors.

Intelligent Tutoring
System examples

A good example of an early ITS system was Brown’s Debuggy [].
Debuggy worked in the domain of electronic circuits and
monitored the user’s questions asking for the values of current,
voltage, etc. at each point in the circuit. It tried to infer from that
information a user model concerning what the student did or
didn’t know, the hypotheses that the student was likely to have
made, etc. in order to provide intelligent advice. In another early
example, Eliot Soloway [] implemented an ITS for introductory
programming that analyzed student programs written in Pascal.
The tutor had knowledge of typical classes of errors that
beginners made, and attempted to analyze a given erroneous
program as belonging to one of the categories, which enabled it
to make appropriate suggestions to the student. CMU Interbook
[] provides a more recent example, where student interaction with
a tutorial hypertext is monitored, and inferences regarding what
the student has or hasn’t seen are used to adjust the presentation
to an appropriate level of detail and subject.

In all these projects, modeling the user was crucial for a
successful interaction. Conventional software doesn’t keep any

Henry Lieberman 12

significant information about individual users beyond perhaps a
simple preference table. Being able to adapt its behavior to the
needs and context of different users, or a single user over time, is
essential for the user to perceive the interface as being intelligent.

Coach [Selker] is a teaching agent that formed a user model by
recording examples that the user tried in the course of interaction
with a programming system, or with an operating system shell.

Coach

Coach

When the user asks for help, Coach used the user’s own
examples and the immediate interactive context to make its
points, rather than “generic” examples. Like a good teacher,
making the material relevant to the user’s particular time,
interests and situation enhances comprehension and retention.

Critics Another role that the system can play is that of a critic. The user
proceeds by using the direct-manipulation interface as usual and
produces a design, and then the system can critique the design.
The critic criticizes according to additional knowledge it had that
the user might not possess or might not find convenient to apply.
A good example of this sort of system is Fischer et al.’s system
that critiqued architectural design of kitchens []. For example, an
architect usually applies a “rule of thumb” in designing kitchens
that the distance of the frequently-traveled triangle between the
sink, stove, and countertop be minimized. The agent can inform
the user if this informal rule is violated and perhaps suggest

Henry Lieberman 13

alternative designs. Critics are also sometimes applied in
intelligent tutoring systems to critique student work. As in
situations where humans criticize each other, particular care must
be taken to ensure that the criticism comes at a time and in a
manner that is welcome to users rather than offensive.

Wizards [] are conversational interfaces oriented towards doing
very particular tasks, that present the user with a sequence of
questions, the answers to which enable the wizard to perform the
task. They are intended to provide a shortcut through the maze of
endless menus and dialog boxes that would otherwise be
required to perform even the simplest cases of that task. While
wizards do certainly perform an assistive function, most present-
day wizards lack the user modeling capability, adaptivity, and
flexiblility that characterize the intelligent tutoring systems
projects. They merely lead the user through a predefined
sequence of interactions and that sequence is not substantially
affected either by the user’s answers, or by the user’s past
behavior. Nevertheless, if users do like the kind of interaction
offered by wizards, there is the potential for adding more context
sensitivity and developing them into truly intelligent guides.

Wizards

Agents that you
teach

Equally important is the relationship in which the user teaches the
agent. Agents that can be taught by the user are what we will
term instructible agents [Lieberman and Maulsby]. The simplest
kind of interface agent might already have its goals and methods
built-in, and be able to perform its services for the user without
any other explicit input from the user. The next step up would be
if the user tells the agent explicitly what he or she wants, by
communicating commands to the agent or “programming” the
agent in some sort of procedural language. This is the kind of
interaction that we are most accustomed to with today’s
computers. We are also already familiar with the problems with
this kind of communication – the languages are inflexible and
unforgiving, unable to deal with incomplete information, and the
programming process is tedious.

Programming by
Example

A way out of this dilemma is to give the agent the ability to learn
dynamically from interaction with the user. An exciting and
underappreciated technique for doing this is called programming
by example [sometimes also called programming by
demonstration]. With programming by example, the user uses a
conventional direct-manipulation interface such as a text editor,
graphic editor, spreadsheet, Web browser, etc. The interface is
equipped with a recording mechanism that keeps a history of the
user interactions and their results. Then, machine learning
techniques are used to generalize the program so that it can be
used in situations that are analogous to, but not exactly the same
as the situation on which the agent was originally taught. The
book Watch What I Do, edited by Allen Cyper [Cypher 93], is the
definitive reference on the topic, and collects descriptions of more
than 15 such systems in a wide variety of applications.

The beauty of programming by example is that it corresponds to a
natural “show and tell” kind of interaction common when people
try to teach each other procedures. It requires less explicit

Henry Lieberman 14

instruction by the teacher because the student can observe the
actions of the teacher directly. Users can do their work in realistic
exmpales and program their agents as a side-effect of the
ineraction.

Many users are familiar with “macro recorders” which simply
record a sequence of operations and play them back exactly as
they were recorded. Users also recognize that such macros are
brittle – if anything changes in the data environment between the
time the macro is recorded to the time it is played back, the
macro is unlikely to work. Programming by example is like
“macros on steroids”. By generalizing the procedure [replacing
constants with variables, inferring general descriptions of
concrete objects], the agent can learn a procedure that is less
sensitive to accidental details and more effective in a wide variety
of situations.

 Mondrian

Mondrian [Lieberman 95] is a graphical editor with an agent that
records graphical procedures using programming by example.
The user demonstrates a procedure using the graphical editing
operations on concrete graphical objects, indicating which ones
are to be taken as examples. The system then records a
procedure that can be used later with new objects in place of the
examples. Mondrian’s learning procedure is similar to what is
called in the literature explanation-based generalization [], where
a tree of dependencies among operations is constructed and the
generalizations are propagated through this dependency tree.

Mondrian also possessed the ability to learn declaratively as well
as procedurally. The user could put graphical annotations on
images or video frames that created a visual representation of
objects that can be manipulated by the graphical editor. These
graphical annotations named objects and established a graphical
part-whole hierarchy. The user could then operate on the
graphical objects and the procedures would be recorded in terms
of the relations described by the graphical annotations. In [], the
user can teach the agent how to take apart a motor by annotating
a video of a human performing the same procedure in the real
world. By asking the user to graphically annotate objects, there

Graphical annotation

Henry Lieberman 15

was no need to have computer vision procedures for recognizing
objects in the scene. Graphical annotation represents a method
for the user to use the interactive interface to communicate intent
to the agent.

Reconnaissance agents While agents like Mondrian learn by explicit instruction, another
kind of agent learns simply by observation. While programming
by example demands active participation from the user, it may
also in many situations be desirable for the agent to simply make
what inferences it can from observing the user’s actions without
any additional input. A class of user-interface agents called
reconnaissance agents learns by watching actions in the user
interface and compiling a user profile. The user profile serves to
help the agent anticipate what the user might want or need.
These agents perform reconnaissance, a look-ahead process
that anticipates the user’s needs and interests and saves the user
time.

A simple example familiar to many is in the Microsoft Office
assistant, where user interface actions are fed to a Bayesian
network which is used to help the assistant guess which
documentation topics are relevant when the user poses a
question []. Although many users are turned-off by the too-
aggressive pop-up animation of the current incarnation of this
agent, the user tracking and heuristic inference of topics are
important features that will hopefully be packaged in a more user-
friendly manner in the future.

Letizia Letizia is a user interface agent to assist a user browsing the
Web. It observes the user’s Web browsing and reads the pages
chosen by the user, analyzing them with a keyword-frequency
algorithm similar to that used by search engines to extract topics.
As the user is reading a page, Letizia actively searches a
breadth-first neighborhood of the page, spiraling out from the link
the user is currently looking at. A continuous series of
recommendations is generated by filtering the pages searched
through the profile created by the user’s browsing patterns. The
user need give Letizia no additional input beyond clicking links in
the browser to view each page. Thus the agent learns in a
completely autonomous manner.

Henry Lieberman 16

Letizia’s breadth-first search complements the user’s depth-first search

Agents and context We forsee that a growing role for user interface agents will be in
the management of the user’s context. A lot of what we call
intelligence in people is really just being sensitive to context, and
taking action appropriate to context. A secretary realizes that his
or her boss is busy, and decides whether or not to interrupt the
boss for any given event on the basis of that context. A travel
agent knows what kinds of tickets are appropriate for vacation
travelers versus business travelers. Neither the secretary’s boss
nor the travel agent need be told the context explicitly. They can
infer it from the situation. Part of what makes human agents so
useful is that they can figure out what parts of the context are
relevant and apply them when needed.

Context is everything but what the user tells the system explicitly.
A context aware application is one that makes its decisions based
on information other than what it gets explicitly from the user.

Context aware applications go beyond explicit I/O

Context-aware agents may sense their additional input from the
environment using sensory input such as computer vision,
speech recognition, electric or magnetic field sensors, global
positioning systems, etc. Context can be the history of interaction,
or the user model maintained by the agent. A context agent may
also affect the environment in ways that go beyond explicitly
returning a value or printing a reply as conventional applications
do.

Traditional computer science has trouble with the idea of context,
since it is oriented towards describing computer programs as
functions computing relations between inputs and outputs. The

Henry Lieberman 17

input and the output must be explicitly given in the formal models.
We think it is time to move beyond that and move towards
systems that can take account of context as well.

Integrating agents
with conventional
user interfaces

Especially for the next few years, agents will be appear
increasingly as add-ons to more conventional direct-manipulation
applications. Agents will need to use these applications as if they
were tools, using the conventional application to access, edit, and
display objects in the domain of interest. It is not just a problem of
transfer of data from the application to the agent; users wish to
retain the ability to use a conventional interface to edit the data
interactively themselves, as well as delegate handling the data to
an agent.

However, conventional applications, such as text editors, graphic
editors, mail systems, CAD systems, etc. have typically been
designed to be operated in real time by a live human user, not by
an external program, agent or otherwise. What's a poor agent
implementor to do?

Currently, the agent implementor is faced with the following
choices.

• Don't rely on an external application. Implement the interactive
interface that edits the data from scratch in order to be able to
work with the agent. This is the most reliable option, but obviously
the most work for the implementor. If the users already have an
application that they like for editing the data, they may be
unwilling to give it up.

• Modify an existing application to work with the agent. This is next

best. However, the agent implementor may not have access to
the source code for the application, or it may be difficult to change
it and debug changes. New versions of the application will
necessitate new modified versions.

• Use an API [application programmer's interface]. When the

application provides such as interface, this can be a good choice.
Unfortunately, many APIs only provide partial access to the
capabilities of the application.

• Slip between two layers of programs. We call these
intermediaries. If there is a "natural boundary" between two layers
of the internal organization of a program, such that all input or
output passes through this layer, that gives an opportunity for an
agent to "insert itself" into the workflow. For example, when a
computer program collects all characters and mouse input, as
does the Coach system, or they collect all HTTP information in a
Web application [WBI]. An intermediary can completely take over
the look, the feel, the input, the output of any program. In this way
we are in a very powerful position, even with unchanged,
unintegrated computer systems.

Henry Lieberman 18

 As we have noted, the idea of an interface agent as an intelligent
assistant dates back to the pioneering visions of early AI
researchers such as Selfridge, Minsky and McCarthy in the 50s.
The modern “agent movement” picked up steam in the early 90s
when people started to realize that some of the visions were now
achievable [Kay, Maes], and frustration with conventional direct-
manipulation interfaces was growing. But where are we now [as
of this writing, June 1999]?

The state of the art of
interface agents

We are seeing agent capabilities slowly make their way into
commercial applications. One of the most prominent examples [if
perhaps not the best] is the “dancing paper clip” help agent in the
Microsoft Office applications. Though many find it annoying
because of its distracting and meaningless fidgeting while the
computer is idle, Microsoft should at least be credited with the
attempt to provide context-sensitive help in a mainstream
application based on tracking user interface actions with a
Bayesian network []. More sophisticated help systems such as
IBM OS/2’s Coach kept track of your actions, and then used your
own examples to explain new procedures and concepts to you in
their natural context.

Spelling and grammar checkers have evolved from simple
dictionary-lookup to using sophisticated linguistic analysis,
predictive and heuristic matching. They employ real-time and in-
context delivery of their suggestions, such as the wavy-
underlining in Microsoft Word. Predictive typing interfaces such
as the Reactive Keyboard [] show quantitative improvements in
input productivity and are gaining in popularity.

Personalization is becoming more widespread on Web sites.
Book companies like Amazon.com and Barnes and Noble track
user buying and browsing patterns, and provide recommendation
agents based on collaborative filtering techniques. News and
information sites are beginning to tailor their content to personal
preferences, geographic location, and past browsing activities so
that they don’t show you the same things you’ve already seen.
Shopping agents such as Bargain Finder [] and Tête-à-Tête [],
automate comparison shopping by accessing merchant Web
sites and comparing according to algorithms based on the user’s
expressed priorities.

Games are an area where anthropomorphism for agents is so
natural that it is rarely even commented upon. Some computer
games use computer-controlled players [sometimes called “AIs”
in gaming magazines] that play alongside avatars for human
players. Tamagotchi-like toys are becoming more sophisticated in
their artificial-life simulations. So-called “bots”, automated players
on MUDs, even while simple, can be effective in holding players’
attention. The Eliza-like Julia [] ,had extensive knowledge of
soccer, and played a flirting female that captivated potential
suitors for considerable lengths of time before they discovered its
true nature.

Large, tough problems like optical character recognition and
speech recognition, which used to be considered substantial

Henry Lieberman 19

subfields of AI, are rapidly reaching the point where they will be
taken for granted in the interface. OCR programs that separate
text recognition from graphics, recognize page formatting, scan
business cards regardless of font or layout, are uses of
intelligence in software that have become almost invisible. These
are instances of the well known “disappearing AI” problem, where
when AI achieves a goal it gets redefined as being part of its
application area, so that AI as a field is not credited with the
success.

All of these examples show that the idea of interface agents is not
so crazy as it may have seemed in the 70s and the 80s. But for
all these examples, we still have not reached the point where
agent interfaces become a matter of course. Industry is sticking
its toes into the waters of agent applications, but has yet to dive
into the pool. Even newly-introduced programs still mire the user
in a thicket of dialog boxes, endless options, file selections and
icon manipulation. We keep filling out the same Web site forms
over and over and the programs don’t remember what we did with
them and improve their behavior. We are still at the mercy of one-
size-fits-all user interfaces. The behavior of programs improves, if
at all, only slowly with new releases that come months or years
apart. But as we have shown, user interface agents point a way
out of this mess, and it will be the task of the early years of the
next millennium to make a new generation of truly agent-enabled
applications. We expect that, probably within a decade, it will be
hard to look back and remember a time we didn’t view having
knowledge and learning in user interfaces as crucial to making
computers usable.

Henry Lieberman 20

Henry Lieberman 21

	Introduction
	What do you mean by “intelligent interface agent”
	Why interface agents?
	A story: Evolution of the washing machine
	Visions of future interface agents

	Characteristics of interface agents
	Initiative
	Assistants and Advisors
	Personalization
	User modeling
	Trust
	Feedback
	Instructibility
	Anthropomorphization
	Critical views
	Cognitive style
	AI and HCI perspectives on agents
	Relationships between agent and user

	Agents that teach you
	Intelligent Tutoring System examples
	Coach
	Critics
	Wizards

	Agents that you teach
	Programming by Example
	Mondrian
	Graphical annotation
	Reconnaissance agents
	Letizia

	Agents and context
	Integrating agents with conventional user interfaces
	The state of the art of interface agents
	�

