
A Three-Dimensional Representation For Program Execution

Henry Lieberman

Media Laboratory
Visible Language Workshop

Massachusetts Institute of Technology
Cambridge, Mass. USA

Abstract

Modern graphical workstations make possible interactive real-time manipulation of three-dimensional
objects. While 3D graphics is usually used to model real-world objects, in this paper we explore an
abstract three-dimensional pictorial representation of computer programs. Since programs are
descriptions of dynamic processes, the focus is on the dynamic behavior of the graphical representation,
resulting in an animation of the program’s execution. The goal is to aid the debugging process by
helping the programmer visualize the dynamic aspects of a program’s behavior. 3D representations
help make use of the enormous innate power of the human visual system.

Shu’s book on visual programming [Shu 881
discusses many projects which use pictorial
representations for computer programs and their
data. Most of the representations that are
described in Shu’s book and other sources are
two-dimensional, and concentrate mainly on the
static appearance of program code. The
experiments described in this paper are aimed at
extending the visual vocabulary for graphical
programming, using an abstract
three-dimensional representation for computer
programs in the context of an interactive dynamic
debugger. Three-dimensional representations
are now made practical by hardware which
automatically performs rendering of solid objects
just as easily as displaying a line of text.

Other graphical techniques employed in this
debugger to provide an integrated view of
program execution are:

a re-roofing process which keeps a fixed
viewpoint while displaying a changing context,

graphical objects,
a reversible control structure,
use of 3D rotation to simultaneously present

sequential and time-slice views.

. Programming in three dimensions

the Of as substitution Of Program elements are represented by colored
polyhedra. Each program element is labeled by
three-dimensional text attached to a face of the
program element. The size, shape, color and
position of program elements are significant. The
properties of tGe polyhedra changgto reflect the
current state of the program. Boxes grow, shrink,

TH0277-4/89/0000/0111$1 .OOO 1989 IEEE 1 1 1

turn, move, and change color as the program
runs. We present this illustration now to show
the reader what the display looks like. Later, we
explain the reasons for each design choice in
detail.

The examples in this paper were generated on an
Hp 350 Bobcat workstation with a Renaissance
display, which has hardware for rendering
shaded polyhedra. We are converting to a next
generation machine which we hope will be fast
enough to manipulate these displays interactively
in real time. The examples were produced using a
3D storyboarding system designed by Bob
Sabiston, and are currently being hooked to the
debugging interpreter described in [Lieberman
871 and [Lieberman 891.

Display of programs as tree structures

There are two related aspects to the visual
representation: static display of program
structure, and its dynamic behavior during
evaluation. Rather than simply display the static
structure of the program as source code text, a
more useful graphic representation makes
apparent the tree structure of function calls and
arguments which comprise the program. In
functional languages such as Lisp, the textual
syntax uses nested parentheses and
"pretty-printing'' to make this tree structure
apparent.

We have previously experimented with graphical
representations that draw the calling tree with
functions and arguments represented as nodes
and arcs [Lieberman 891. This is a good
representation for displaying the tree structure in
two dimensions. Note that drawing the
function-calling tree is not the same kind of
graphical representation for programs as the
venerable and justly-maligned flowchart.

Another possibility for depicting the
function-argument relationship spatially is to use
containment of graphic forms. This has been done
in several graphical programming projects, with
[Smith 791, [Lakin 801, and [Abelson, et. al. 871 as
good examples. A large icon representing a
function graphically encloses smaller icons which
represent arguments. This is the approach

adopted here, except in three dimensions rather
than two, as illustrated above. This represents a
function call to a function named Alpha-Beta,
with an argument named Cutoff . We could
have more complex three-dimensional abstract
pictorial representations of program elements, but
here we stick to boxes as the simplest 3D shapes,
distinguished only by text labels.

Move the focus or move the context?

All visual representations for dynamic display of
programs are faced with a common design
decision: How should we display the relationship
between the particular part of the program that is
the "focus" of current interest [such as the source
expression currently being evaluated] and the rest
of the program?

There are two fundamental possibilities for
display of the viewpoint or current focus of
interest. First, the program display itself can
remain static, and the viewpoint can move by
means of highlighting, blinking, cursor motion or
some other attention-getting device. This is the
alternative used in most traditional static, textual
program representations. Display of source text,
highlighting the current expression, and "follow
the bouncing ball" cursors are examples of this
approach. The alternative, which is much less
common in programming environments, is to
leave the viewpoint fixed, and alter the display of
the surrounding context to reflect the current
point of view.

Many text editors use both "move the focus" and

112

The pictures on this page illustrate a sequence in the
animation of the execution of a call to the ALPHA-BETA
function. The initial state was shown in the second
illustration of this paper. Evaluating the argument, it grows
to intersect the shrinking function.

The argument CUTOFF now becomes the outermost box,
signifying that it is the current focus of evaluation. The func-
tion changes from gray to blue, to show that it is receding
from interest, while the argument changes from red to gray.

The argument turns to indicate that it is being evaluated. As
the value returns, the label is replaced by that of its value.
Labels for program expressions are white, and labels for
values are yellow.

As the focus of attention moves away from the list returned
as a value, the diamond shrinks and changes color to blue.
As we invoke the definition of ALPHA-BETA, the expression
beginning with IF pops up to surround the previous

113

"move the context" approaches. The motion of a
text cursor within a single window is a "move the
focus" interface -- the text does not move, but the
cursor indicating the current position does move.
Scroll bars on a window, however, are an example
of a "move the context" interface. The focus,
namely the outline of the window which presents
text to the user, remains fixed, while the context,
the text displayed in the contents of the window,
shifts to reflect the new position of the scroll bar.,

In the past, preference for static display of context
and dynamic display of focus was motivated in
part by the need to minimize the amount of
dynamic display update, since the focus is usually
much smaller than the display of the surrounding
context. The increasing speed of modem
computational platforms now gives us the
freedom to experiment with the alternative, since
globally re-writing the screen at each change is no
longer prohibitive. Though this approach
sacrifices something in visual continuity between
successive frames, it has some advantages in
making it easier to control the level of detail in
large programs. By experimenting with dynamic
display of context and static display of focus, we
hope to find out what
the real tradeoffs are
between these
altematives once the
unfamiliarity and
novelty wear off.

Re-rooting: A "move
the context" interface
for tree structures

Re-rooting is a method of
"shifting focus" in tree
structures. The idea is
that when you move
from the root node of a
tree along one of its
branches to a target
node, you can view the
result bv a new tree that

operation. Re-rooting in the containment tree
causes the target rectangle 2 to grow to become
the outermost rectangle, and the former root
shrinks to fit within it.

Re-rooting a containment tree is a good way to
emphasize the target node, because it is always
the largest displayed object. This is why
re-rooting is a good strategy for displaying
program trees, because the expression currently
being evaluated is always the largest, outermost
object.

One problem with simple re-rooting, as illustrated
above, is that some information, namely that 1
was the original root node, is lost. In general,
when you re-root a tree, some of the links which
originally all pointed "downward", may then
point "upward". For display of program trees, the
direction is significant and must be preserved.
Our solution is to use color to indicate direction.
The warm colors all indicate downward links, and
saturation is an indicator of tree depth. The cool
colors indicate upward links, also becoming
darker the farther upward in the tree you get.
Things get smaller and darker the farther away . .

you get, either in the
upward or downward
direction. Re-rooting keeps viewpoint fixed at root node

I
4

I Put another way, the

2 3 reddish elements are a
"windshield" view of
the program: things get

r smaller [and darker1
3

4 A the farther ahead they
are. The bluish

2 elements are the

5
3

"rear-view mirror"
view: things get
smaller as they are
farther behind. The
outermost box always
revresents the current
focus, and is gray, the
"midpoint" between the

has the'target node as its root and maintains all
the same connectivity as the original. In the
illustration, we move from the node marked 1 in
the tree to the circled node 2. To the right of each
tree, we display a tree of rectangles ordered by
containment, and show the effect of the re-rooting

reds and the blues.

I first came across the idea of re-rooting in [Baker
19751. My use of re-rooting to display program
trees was inspired by a two-dimensional browser
for static data structures in the CYC knowledge

114

base by Michael Travers [Travers 19891.

Displaying evaluation: rotation and
substitution

Re-rooting is used for display of the static
program tree, but the main type of event that
needs to be displayed dynamically is the
evaluation of program expressions and display of
returned values. [We do not consider here
explicitly any special treatment for code with side
effects.] Our basic model of evaluation is as a
substitution process. To display an evaluation, a
display of the value of the expression is
substituted for the display of the expression itself.
Substitution is a simple, easily explained graphic

model for evaluation. The substitution model
and its role in graphical debuggers is described in
more detail in [Lieberman 841 and [Lieberman 891.

We need some graphic device to distinguish
expressions that are to be evaluated from values
returned. In the three dimensional
representation, evaluation is represented
graphically as rotation about the axis which points
toward the viewer. This keeps the same labeled
face toward the viewer, while maintaining a clear
distinction between the expressions, which are
boxes, and values, which are diamonds. The text
labeling the value replaces the text that labels the
expression.

In this version, the replacement operation is
performed suddenly, but we have also
experimented with interfaces in which creating or
removing display objects is performed gradually,
with fade-ins and fade-outs. This helps enhance
the visual continuity of the display. We have
also experimented with translucent display of
objects, so that less important information [such
as a history of previously seen states] remains
unobtrusively displayed on the screen but does
not obscure more important information.

The effect of re-rooting and value substitution is
shown in the illustration. The Alpha-Beta
expression has been re-rooted to the variable
Cutoff and then evaluated, so that the outermost
object is the diamond representing the returned
value, the list ((4 3) (1 2)) .

The third dimension: a "side view mirror"

The use of the third dimension helps solve a tricky
problem in presenting a dynamic view of a
program. There are two different points of view
that the user is typically interested in seeing. The
first is the "head on" view of the running program
as a sequence of events, ordered sequentially by
time, as would be presented by a conventional
single-stepping debugger. The second is what is
traditionally called the "stack" in many
programming environments, a time-slice view of
the active goals the program is trying to satisfy at
the moment. This is a path from the root of the
computation to the currently active node.

In conventional debuggers, you normally see the
sequential view of events, but it possible to stop
the program and request a view of the stack at a
given moment. In many systems, each "stack
frame" must be requested individually. In
[Lieberman 891, this situation is improved by
showing a continuous display of the stack in a
separate window, automatically updated
dynamically as the program runs. This provides
an overview of the stack without having to
specifically request it, and the animated
correspondence between changes in the stack and
changes in the program code help give the user a
better feel for what the program is doing.

But this is still unsatisfactory, since the stack and
program displays are in separate windows, the
correspondence between a program expression
and its stack frame is not made visually apparent.

I I5

In the three-dimensional program representation,
each program expression is represented by a box,
and in addition to labeling each box on its face,
we also label the box on its side. As you move away
from the expression currently being evaluated,
each smaller program element is moved toward the
viewer. Thus, the Z axis is being used as the "stack
depth' dimension. [Actually, this displays more
information than is typically available with most
stack browsers.]

In the three-dimensional program representation,
the physical metaphor of a "stack' is given direct
visual reality. While the "head on" view normally
shows the progress of events sequentially, the
stack view can be seen simply by rotating the three
dimensional point of view. Each successive stack
frame "sticks out" of its containing expression so
that by rotating the point of view, the "side view"
shows all stack frames at once. Rotation, pan and
zoom operations performed by the hardware can
easily emphasize some portion of the stack of
particular interest to the user. Since seeing the
stack is simply another viewpoint on the program
display, the correspondence between each event
and its associated stack frame is visually evident.

Acknowledgments

Major support for the work described in this
paper was provided by a grant from
Hewlett-Packard. I would like to thank Nick
Copping, TW Cook, JB Eriksen, and Pat Cole at
HP's Software Engineering Systems group, and
Muriel Cooper and Nicholas Negroponte at the
MIT Media Lab for their support of this project.
The Visible Language Workshop is also supported
by grants and equipment from HI', IBM, Apple,
DARPA, and NYNEX and Xerox.

Bibliography

[Abelson and diSessa 871 Hal Abelson and Andy di Sessa,
Boxer: A Principled Design for an Integrated
Comuutational Environment, CACM, 1987

[Baker 751 Henry Baker, Shallow Binding in Lisp i.5, MIT
Artificial Intelligence Lab, 1975.

[Baecker 831 Ronald Baecker, Sorting out Sortin5 Color
videotape, University of Toronto Media Centre, Toronto,
Canada.

[Bolt 771 Richard Bolt, Color Transuarency Effects From

Mosaics ot Ouaaue Color, MII' Architecture Machine
Group, June 1977.

[Lakin 801 Fred Lakin, Comuutinv With Text-Graphic
Forms. Proceedings of the First Lisp Conference, Stanford,
California, 1980

[Levitt 861 David Levitt, Hookup) Conference on Small
Computers and the Arts, Philadelphia 1986.

[Lieberman 841 Henry Lieberman, Steps Toward Better
Debugejne Tools for Lisp, Proceedings of the Third Lisp
Conference, Austin, Texas, August 1984.

[Lieberman 871 Henry Lieberman, Reversible
Object-Oriented Interpreters, First European Conference on
Object-Oriented Programming, Paris, June 1987.

[Lieberman 891 Henry Lieberman, Graphics for Software
Visualization, MIT Media Lab, 1989

[London 861 Ralph London, et. al. Animatine Proeram
Behavior in Smalltalk, First Conference on Object-Oriented
Systems, Languages, and Applications, Portland, Oregon,
1986.

[Ludolph 881 Frank Ludolph, Dan Ingalls, et al. The Fabrik
Visual Proeramminz Environment, OOPSLA 88, San Diego

[Smith 791 David Canfield Smith, Pvemalion: A Creative
Proerammine Environment, Birkhauser-Verlag, 1979

[Shu 881 Nan Shu, Visual Proeramminp, Van Nostrand
ReinholdJ988

[SigGraph 87J SigGraph report and videotape, Visualization
in Scientific Computing. ACM Press, 1987

[Travers 891 Michael Travers, A Visual Reuresentation for
Knowledge Structures, Hypertext Conference, Pittsburgh,
PA, USA, November 1989.

[Zimmerman, Lanier, et. al. 19871 Tom Zimmerman, Jaron
Lanier, et. al., A Hand Gesture Input Device, Computers
and Human Interaction Conference [CHI+GI], Tortonto,
Ontario, April 1987. .?-

