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Abstract 

Modern graphical workstations make possible interactive real-time manipulation of three-dimensional 
objects. While 3D graphics is usually used to model real-world objects, in this paper we explore an 
abstract three-dimensional pictorial representation of computer programs. Since programs are 
descriptions of dynamic processes, the focus is on the dynamic behavior of the graphical representation, 
resulting in an animation of the program’s execution. The goal is to aid the debugging process by 
helping the programmer visualize the dynamic aspects of a program’s behavior. 3D representations 
help make use of the enormous innate power of the human visual system. 

Shu’s book on visual programming [Shu 881 
discusses many projects which use pictorial 
representations for computer programs and their 
data. Most of the representations that are 
described in Shu’s book and other sources are 
two-dimensional, and concentrate mainly on the 
static appearance of program code. The 
experiments described in this paper are aimed at 
extending the visual vocabulary for graphical 
programming, using an abstract 
three-dimensional representation for computer 
programs in the context of an interactive dynamic 
debugger. Three-dimensional representations 
are now made practical by hardware which 
automatically performs rendering of solid objects 
just as easily as displaying a line of text. 

Other graphical techniques employed in this 
debugger to provide an integrated view of 
program execution are: 

a re-roofing process which keeps a fixed 
viewpoint while displaying a changing context, 

graphical objects, 
a reversible control structure, 
use of 3D rotation to simultaneously present 

sequential and time-slice views. 

. Programming in three dimensions 

the Of as substitution Of Program elements are represented by colored 
polyhedra. Each program element is labeled by 
three-dimensional text attached to a face of the 
program element. The size, shape, color and 
position of program elements are significant. The 
properties of tGe polyhedra changgto reflect the 
current state of the program. Boxes grow, shrink, 
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turn, move, and change color as the program 
runs. We present this illustration now to show 
the reader what the display looks like. Later, we 
explain the reasons for each design choice in 
detail. 

The examples in this paper were generated on an 
Hp 350 Bobcat workstation with a Renaissance 
display, which has hardware for rendering 
shaded polyhedra. We are converting to a next 
generation machine which we hope will be fast 
enough to manipulate these displays interactively 
in real time. The examples were produced using a 
3D storyboarding system designed by Bob 
Sabiston, and are currently being hooked to the 
debugging interpreter described in [Lieberman 
871 and [Lieberman 891. 

Display of programs as tree structures 

There are two related aspects to the visual 
representation: static display of program 
structure, and its dynamic behavior during 
evaluation. Rather than simply display the static 
structure of the program as source code text, a 
more useful graphic representation makes 
apparent the tree structure of function calls and 
arguments which comprise the program. In 
functional languages such as Lisp, the textual 
syntax uses nested parentheses and 
"pretty-printing'' to make this tree structure 
apparent. 

We have previously experimented with graphical 
representations that draw the calling tree with 
functions and arguments represented as nodes 
and arcs [Lieberman 891. This is a good 
representation for displaying the tree structure in 
two dimensions. Note that drawing the 
function-calling tree is not the same kind of 
graphical representation for programs as the 
venerable and justly-maligned flowchart. 

Another possibility for depicting the 
function-argument relationship spatially is to use 
containment of graphic forms. This has been done 
in several graphical programming projects, with 
[Smith 791, [Lakin 801, and [Abelson, et. al. 871 as 
good examples. A large icon representing a 
function graphically encloses smaller icons which 
represent arguments. This is the approach 

adopted here, except in three dimensions rather 
than two, as illustrated above. This represents a 
function call to a function named Alpha-Beta, 
with an argument named Cutoff .  We could 
have more complex three-dimensional abstract 
pictorial representations of program elements, but 
here we stick to boxes as the simplest 3D shapes, 
distinguished only by text labels. 

Move the focus or move the context? 

All visual representations for dynamic display of 
programs are faced with a common design 
decision: How should we display the relationship 
between the particular part of the program that is 
the "focus" of current interest [such as the source 
expression currently being evaluated] and the rest 
of the program? 

There are two fundamental possibilities for 
display of the viewpoint or current focus of 
interest. First, the program display itself can 
remain static, and the viewpoint can move by 
means of highlighting, blinking, cursor motion or 
some other attention-getting device. This is the 
alternative used in most traditional static, textual 
program representations. Display of source text, 
highlighting the current expression, and "follow 
the bouncing ball" cursors are examples of this 
approach. The alternative, which is much less 
common in programming environments, is to 
leave the viewpoint fixed, and alter the display of 
the surrounding context to reflect the current 
point of view. 

Many text editors use both "move the focus" and 
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The pictures on this page illustrate a sequence in the 
animation of the execution of a call to the ALPHA-BETA 
function. The initial state was shown in the second 
illustration of this paper. Evaluating the argument, it grows 
to intersect the shrinking function. 

The argument CUTOFF now becomes the outermost box, 
signifying that it is the current focus of evaluation. The func- 
tion changes from gray to blue, to show that it is receding 
from interest, while the argument changes from red to gray. 

The argument turns to indicate that it is being evaluated. As 
the value returns, the label is replaced by that of its value. 
Labels for program expressions are white, and labels for 
values are yellow. 

As the focus of attention moves away from the list returned 
as a value, the diamond shrinks and changes color to blue. 
As we invoke the definition of ALPHA-BETA, the expression 
beginning with IF pops up to surround the previous 
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"move the context" approaches. The motion of a 
text cursor within a single window is a "move the 
focus" interface -- the text does not move, but the 
cursor indicating the current position does move. 
Scroll bars on a window, however, are an example 
of a "move the context" interface. The focus, 
namely the outline of the window which presents 
text to the user, remains fixed, while the context, 
the text displayed in the contents of the window, 
shifts to reflect the new position of the scroll bar., 

In the past, preference for static display of context 
and dynamic display of focus was motivated in 
part by the need to minimize the amount of 
dynamic display update, since the focus is usually 
much smaller than the display of the surrounding 
context. The increasing speed of modem 
computational platforms now gives us the 
freedom to experiment with the alternative, since 
globally re-writing the screen at each change is no 
longer prohibitive. Though this approach 
sacrifices something in visual continuity between 
successive frames, it has some advantages in 
making it easier to control the level of detail in 
large programs. By experimenting with dynamic 
display of context and static display of focus, we 
hope to find out what 
the real tradeoffs are 
between these 
altematives once the 
unfamiliarity and 
novelty wear off. 

Re-rooting: A "move 
the context" interface 
for tree structures 

Re-rooting is a method of 
"shifting focus" in tree 
structures. The idea is 
that when you move 
from the root node of a 
tree along one of its 
branches to a target 
node, you can view the 
result bv a new tree that 

operation. Re-rooting in the containment tree 
causes the target rectangle 2 to grow to become 
the outermost rectangle, and the former root 
shrinks to fit within it. 

Re-rooting a containment tree is a good way to 
emphasize the target node, because it is always 
the largest displayed object. This is why 
re-rooting is a good strategy for displaying 
program trees, because the expression currently 
being evaluated is always the largest, outermost 
object. 

One problem with simple re-rooting, as illustrated 
above, is that some information, namely that 1 
was the original root node, is lost. In general, 
when you re-root a tree, some of the links which 
originally all pointed "downward", may then 
point "upward". For display of program trees, the 
direction is significant and must be preserved. 
Our solution is to use color to indicate direction. 
The warm colors all indicate downward links, and 
saturation is an indicator of tree depth. The cool 
colors indicate upward links, also becoming 
darker the farther upward in the tree you get. 
Things get smaller and darker the farther away . .  

you get, either in the 
upward or downward 
direction. Re-rooting keeps viewpoint fixed at root node 

I 
4 

I Put another way, the 

2 3 reddish elements are a 
"windshield" view of 
the program: things get 

r smaller [and darker1 
3 

4 A the farther ahead they 
are. The bluish 

2 elements are the 

5 
3 

"rear-view mirror" 
view: things get 
smaller as they are 
farther behind. The 
outermost box always 
revresents the current 
focus, and is gray, the 
"midpoint" between the 

has the'target node as its root and maintains all 
the same connectivity as the original. In the 
illustration, we move from the node marked 1 in 
the tree to the circled node 2. To the right of each 
tree, we display a tree of rectangles ordered by 
containment, and show the effect of the re-rooting 

reds and the blues. 

I first came across the idea of re-rooting in [Baker 
19751. My use of re-rooting to display program 
trees was inspired by a two-dimensional browser 
for static data structures in the CYC knowledge 
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base by Michael Travers [Travers 19891. 

Displaying evaluation: rotation and 
substitution 

Re-rooting is used for display of the static 
program tree, but the main type of event that 
needs to be displayed dynamically is the 
evaluation of program expressions and display of 
returned values. [We do not consider here 
explicitly any special treatment for code with side 
effects.] Our basic model of evaluation is as a 
substitution process. To display an evaluation, a 
display of the value of the expression is 
substituted for the display of the expression itself. 
Substitution is a simple, easily explained graphic 

model for evaluation. The substitution model 
and its role in graphical debuggers is described in 
more detail in [Lieberman 841 and [Lieberman 891. 

We need some graphic device to distinguish 
expressions that are to be evaluated from values 
returned. In the three dimensional 
representation, evaluation is represented 
graphically as rotation about the axis which points 
toward the viewer. This keeps the same labeled 
face toward the viewer, while maintaining a clear 
distinction between the expressions, which are 
boxes, and values, which are diamonds. The text 
labeling the value replaces the text that labels the 
expression. 

In this version, the replacement operation is 
performed suddenly, but we have also 
experimented with interfaces in which creating or 
removing display objects is performed gradually, 
with fade-ins and fade-outs. This helps enhance 
the visual continuity of the display. We have 
also experimented with translucent display of 
objects, so that less important information [such 
as a history of previously seen states] remains 
unobtrusively displayed on the screen but does 
not obscure more important information. 

The effect of re-rooting and value substitution is 
shown in the illustration. The Alpha-Beta 
expression has been re-rooted to the variable 
Cutoff and then evaluated, so that the outermost 
object is the diamond representing the returned 
value, the list ( ( 4 3 ) ( 1 2 ) ) . 

The third dimension: a "side view mirror" 

The use of the third dimension helps solve a tricky 
problem in presenting a dynamic view of a 
program. There are two different points of view 
that the user is typically interested in seeing. The 
first is the "head on" view of the running program 
as a sequence of events, ordered sequentially by 
time, as would be presented by a conventional 
single-stepping debugger. The second is what is 
traditionally called the "stack" in many 
programming environments, a time-slice view of 
the active goals the program is trying to satisfy at 
the moment. This is a path from the root of the 
computation to the currently active node. 

In conventional debuggers, you normally see the 
sequential view of events, but it possible to stop 
the program and request a view of the stack at a 
given moment. In many systems, each "stack 
frame" must be requested individually. In 
[Lieberman 891, this situation is improved by 
showing a continuous display of the stack in a 
separate window, automatically updated 
dynamically as the program runs. This provides 
an overview of the stack without having to 
specifically request it, and the animated 
correspondence between changes in the stack and 
changes in the program code help give the user a 
better feel for what the program is doing. 

But this is still unsatisfactory, since the stack and 
program displays are in separate windows, the 
correspondence between a program expression 
and its stack frame is not made visually apparent. 
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In the three-dimensional program representation, 
each program expression is represented by a box, 
and in addition to labeling each box on its face, 
we also label the box on its side. As you move away 
from the expression currently being evaluated, 
each smaller program element is moved toward the 
viewer. Thus, the Z axis is being used as the "stack 
depth' dimension. [Actually, this displays more 
information than is typically available with most 
stack browsers.] 

In the three-dimensional program representation, 
the physical metaphor of a "stack' is given direct 
visual reality. While the "head on" view normally 
shows the progress of events sequentially, the 
stack view can be seen simply by rotating the three 
dimensional point of view. Each successive stack 
frame "sticks out" of its containing expression so 
that by rotating the point of view, the "side view" 
shows all stack frames at once. Rotation, pan and 
zoom operations performed by the hardware can 
easily emphasize some portion of the stack of 
particular interest to the user. Since seeing the 
stack is simply another viewpoint on the program 
display, the correspondence between each event 
and its associated stack frame is visually evident. 
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