Exploring the Web with

RECONNAISSANCE

Why surf alone?

New agent technology can
scout out the online terrain and
recommend the best paths for
you to follow.

L.
L

_

=

CAREN ROSENBLATT

AGENTS

EVERY CLICK ON A LINK IS A LEAP OF FAITH. WHEN
you click on the blue underlined text or on a pic-
ture on a Web page, there is always a (sometimes
much too long) moment of suspense when you are
waiting for the page to load. Until you actually see
what is behind the link, you don’t know whether it
will lead to the reward of another interesting page,
to the disappointment of a junk page, or worse, to
a “404 Not Found” error message.

But what if you had an assistant always looking
ahead for you—clicking on the Web links and

Henry Lieberman, Christopher Fry,
and Louis Weitzman

COMMUNICATIONS OF THE ACM August 2001 /Vol. 44, No. 8 69

Figure |. The two dimensions of using

agents based on amount of user
effort and the connectivity of the data.

]
'8 PowerScout
O Search Engines
Alexa
Collaborative Filtering
&
S Constrained Search
B
o
(0]
c
5 Find File
©)
Yahoo
— Browsing Letizia
5]
(9]
o
-
Active User Effort Passive

checking out the page behind the link before you even
get to it? An assistant that, like a good secretary, has a
good idea of what you might like. The assistant could
warn you if the page was irrelevant or alert you if that
link or some other link merited your attention. The
assistant could save you time and frustration. The
function of such an assistant represents a new cate-
gory of computer agents that will soon be as common
as search engines in browsing assistance on the Web
and in large databases and hypermedia networks.

These agents are called reconnaissance agents—pro-
grams that look ahead in the user’s browsing activities
and act as an advance scout to save the user needless
searching and recommend the best paths to follow.
Reconnaissance agents are also among the first repre-
sentatives of a new class of computer applications—
learning agents that infer user preferences and
interests by tracking interactions between the user and
the machine over the long term.

Well provide two examples of reconnaissance
agents: Letizia and Powerscout. The main difference
is that Letizia uses local reconnaissance—searching
the neighborhood of the current page, while Power-
scout uses global reconnaissance—making use of a
traditional search engine to search the Web in general.
Both learn user preferences from watching the user’s
browsing, and both provide continuous, real-time dis-
play of recommendations. Reconnaissance agents
treat Web browsing as a cooperative search activity
between the human user and the computer agent,
providing a middle ground between narrowly targeted
retrieval that search engines typically provide and

70

August 2001/Vol. 44, No. 8 COMMUNICATIONS OF THE ACM

completely unconstrained manual browsing.

One description of this landscape of systems orga-
nizes them around two axes, one characterizing
reconnaissance connectivity (local vs. global) and one
characterizing user effort (active vs. passive). Local
reconnaissance traces links locally, while global recon-
naissance uses global repositories such as search
engines. Figure 1 plots a number of tools and agents
against these attributes. Typical file browsing is in the
lower-left quadrant while standard search engines are
located in the upper-left quadrant.

The One-Input Interface. Newcomers to the Web
often complain they have trouble using search engines
because they feel the interface to a search engine is too
complicated. The first time I heard this complaint, I
was astonished.

What could possibly be simpler than the interface
to a search engine? All you get is a simple box for text
entry, you type in anything you want, and then hit
“go.” (Of course, today’s search engines aren’t really
that simple since they tend to contain advertisements,
subject catalogs, and many other features. But the
essential functionality lies in the simple query box.)
How could you simplify this interface any further?

When you think about the task faced by the new
user, however, the complexity becomes apparent. In
the user’s mind is a complex blend of considerations.
They may be looking for something very specific;
they may be just interested in generally learning about
a given subject. How specific should they be in
describing their interests? Should they use a single
word, or is it better or worse to type in multiple
words? Should they bother learning the advanced
query syntax? How should they choose between the
myriad search engines, and compare their often-
inconsistent syntax and behavior [7]? Would they be
better off tracing through the subject catalog rather
than the search engines, since most portal sites now
offer both? And, regardless of what they choose to
type in the search box, they are deluged with a torrent
of (aptly named) “hits,” and are then faced with the
problem of how to determine which, if any, is actually
of interest. No wonder they get confused.

The Zero-Input Interface. The only thing simpler
than an interface with only one input is an interface
that takes no input at all! With a zero-input interface,
the computer could already know a great deal about
what you're interested in before you enter a word into
that search engine. You've already given it the infor-
mation it needs—the problem is the computer threw
that information away. Why do you need to keep
telling a system about your interests when it should
already know?

Present-day computers throw away valuable his-

merited your attention.

tory information. Every time you click on a link in a
browser, that’s an expression of interest in the subject
of the link, and hopefully, the subject of the page the
link points to. If a person were watching your brows-
ing activity, they would soon have a good idea of what
subjects you were interested in. Unfortunately, the
only use the browser currently makes of that expres-
sion of interest is to fetch the next page. What if the
computer kept that information, and over time, used
it to learn what you
might or might not be
interested in? Browsing
history, after all, is a rich
source of input about
your interests.

Systems that track past
user behavior and use it
to predict future interest
are a new form of zero-
input interface. Even
though they need no
input in the sense they do
not require explicit inter-
action themselves, they
repurpose input you sup-
ply to the computer for
other reasons. Such inter-
faces are rare now
because each application
has its own self-contained
interface and applications
cannot reuse input from
other applications or
keep any significant histories of interaction.

Letizia

If I were with a friend and watching him or her
browsing on the Web, I'd soon learn which pages
were likely to attract my friend’s interest. Given
enough time, I might even become pretty good at
predicting which link my friend would be likely to
choose next. If my friend viewed a site for the first
time that I had previously explored thoroughly, I
might even be in a position to give a better recom-
mendation to my friend as to what might satisfy his

Figure 2. Letizia spirals out from the user’s
current page, filtering pages through the
user’s interest profile.

clicking on the Web links and checking out the
page behind the link before you even get to it? The assistant could warn
you if the page was irrelevant or alert you if that link or some other link

or her interest. And all this could occur without my
friend explicitly telling me what those interests were.

Letizia [4, 5] is a zero-input software agent that
automates this kind of interaction. It learns a profile
of the user’s interests by recording and analyzing the
user’s browsing activity in real time, and provides a
continuous stream of recommendations of Web
pages.

Browsing with Letizia is a cooperative activity
between the human user
and the Letizia software
agent. The task of explor-
ing the Web is divided
between the human, who
is good at looking at pages
and deciding what to
view next, and Letizia,
which uses the computer’s
search power to automate
exploration.

Letizia runs simultane-
ously with Netscape, and
determines a list of
weighted keywords that
represents the subject of
the page, similar to the
kind of analysis done by
search engines. Over
time, it learns a profile of
the user’s interests. Letizia
simply uses Netscape as
its interface, with one
window dedicated to user
browsing, and one or more additional windows show-
ing recommendations continuously.

When the user is actively browsing and attention is
focused on the current page, the user need not pay
any attention to the agent. However, if the user is
unsure where to go next, or dissatisfied with the cur-
rent offerings, he or she can glance over to the recom-
mendation window to look at Letizias suggestions.
Netscape’s usual history mechanism allows easy access
to past recommendations, just in case the user missed
an interesting page when it first appeared.

During the time the user spends looking at a page,

COMMUNICATIONS OF THE ACM August 2001 /Vol. 44, No. 8 71

Letizia conducts a search in the local neighborhood
surrounding that page. It traces links from the origi-
nal page, spiraling out to pages one link away, then
two links away, and so on, for as long as the user stays
on the same page. The moment the user switches
pages, Letizia drops the current search and initiates a

ment the history into topic-coherent subsessions, and
we can detect browsing patterns such as tentative
explorations that don’t work out, or switching back
and forth between two related topics.

Letizias local reconnaissance is great when the
most relevant pages of interest to you are nearby in

new search starting from
the page the user is cur-
rently viewing (see Figure
2). We call this process
“reconnaissance” because,
like military reconnais-
sance, Letizia scouts out
new territory before the
user commits to entering
it.

This leads to a higher
degree of relevance than
search engines. Current
search engines are just big
bags of pages, taking no
account of the connectiv-
ity between pages.
Because two pages are
connected on the Web
only when some author
thought a user viewing
one might want to view
the other, that connection
is a good indication of rel-
evance. Thus the local

Figure 3. Letizia’s real-time display of user
interests. The graph on the lower right climbs
while the user keeps browsing on a single topic

(here “Programming by Example”). It dips
abruptly when the user switches topics.

ul. b vy vl Moy Iy vy - -
immpmnqha_ﬁ r

T T rerayeus B oo e T o v e b dedn e
TR e W B R A, e

| L Y A T Py e

o | vy
Il il B 9 D 2 P 1 DT
I]

S| A Pl W G R (T B

MELE] ALY RS AF R R LRI

link space. But what if
the best pages are really
far away?

Powerscout

Letizia takes advantage
of the user’s behavior to
create a zero-input pro-
gram that finds pages
interesting to the user.
But there are a number
of zero-input resources
that Letizia does not
exploit. Letizia only
scouts pages close to the
current page and can
only hope to examine
tens of pages, while
hundreds of millions of
pages exist on the Web,
any one of which might
be relevant. Users have
many interests over time
and Letizia only focuses
on the current page that

neighborhood of a page,

the user is viewing. Also,

obtained by tracing a

small number of links from the originating page, is
a good approximation to the semantic neighborhood
of the page.

If I'm looking for a place to eat lunch and I like
Indian food, it’s not a very good idea to type “Indian
food” to a search engine—I'm likely to get wonderful
Indian restaurants, but they might be in New Delhi
and Mumbai. What I want is the intersection of my
interests and what’s in the neighborhood. If the idea
of geographic neighborhood is replaced by the idea of
semantic neighborhood on the Web, that intersection
is what Letizia provides.

Further work on Letizia is concerned with tracking
and understanding users’ patterns of Web browsing.
In one experiment, student Aileen Tang added a real-
time display of the agent’s tracking of the user’s inter-
ests. As the user delves deeper into a subject, we
observed that the interest function steadily increases,
only to dive abruptly as the user changes topics (see
Figure 3). Watching such a display lets the user know
when he or she is getting off track. Letizia can seg-

72 August 2001/Vol. 44, No. 8 COMMUNICATIONS OF THE ACM

users have a rich brows-
ing history over potentially many months that can
be exploited to better understand their true interests.
PowerScout is another zero-input reconnaissance
agent whose vision addresses some of these more
general issues.

PowerScout is a different kind of reconnaissance
agent. While it, too, watches you browse and provides
a continuous display of recommendations, it uses a
different strategy to obtain and display those recom-
mendations. Like people, agents need not surf the
Web alone, and PowerScout uses a familiar compan-
ion—a conventional search engine—to support its
global reconnaissance technique. PowerScout uses its
model of the user’s interests to compose a complex
query to a search engine, and sends that query while
the user continues to browse (see Figure 5). If we
think of a search engine as being a very simple sort of
agent itself (and the more complex among the search
engines do have some agent-like features), Power-
Scout represents an example of how agents with dif-
ferent capabilities can cooperate. By using global

search engines to find documents in the semantic
neighborhood of the users current document, the sys-
tem is performing a different class of browsing—con-
cept browsing.

PowerScout introduced the term “concept brows-
ing” to emphasize the idea of browsing links not spec-
ified by a document’s author, but nonetheless
semantically relevant to the document being viewed.
This auxiliary set of links may have been overlooked
or unknown to the author, or might not have even
existed when the page was created.

The PowerScout reconnaissance
engine formulates the concepts by
extracting keywords from the cur-
rent page. These concepts can be
used directly or influenced by user-
declared long-term interests that we
[E

i apd: Fomeriddul

terms used in explicit searches, word frequency, and
multiword terms. The details are beyond the scope
of this article, but these techniques are the founda-
tion for accurately characterizing a page.

Only one of the profiles is the current profile at any
time. By clicking on the “Add to Profile” button, the
significant terms of the current page are merged into
the term set of the current profile. This process
extends the profile with one click. We like to think of
it as focusing the profile to match the user’s real inter-
est more closely. Both the user’s long-term interest

Figure 4. Powerscout’s screen. The list of recommendations
on the left is grouped by concept and dynamically updated.

On the right, Powerscout’s search dialogue provides fine control.

call “profiles.” Figure 4 shows the

[|

user viewing a page in the browser PowerScout @
. f@niepl FreWEE 5
on the left while the results of a s
search is displayed in the Power- . Een & Famricaul trarch
Scout window on the right. The Lo @ 3 Search P s RO, g
results are grouped by the concepts | || Emstomems [-)
used to find them. In this example, r o [I
the recommendations are organized 2 = o 2 e C
<«
under the concept of “proposal e S
Writin » [T e——py ey - :-:-\.- ———
E 5}51 iohel T —— I e |
 Each concept represents a slighdly _ =T | Bl —
different slant on what is important e L — T]
P e L Finpe - pralaLi
on the page. PowerScout does the 2 bt s Gy rraing b e
best it can, but it can’t read the user’s epinrpmops ey O sl B a
) e e |
mind. However, the user can e e 2 tole i G sion
quickly look at the concepts and " mre, e :
. . . . 1l"h?‘l.r:r:u-llul-.l:?-llll
decide which, if any, are important. e PO
Beneath each concept is a short list @ a8

of page hits with summaries. Click-

ing on the title of a page brings the | |
full page into the browser.

Profiles
A profile represents a user’s interest in a particular
area. The user may create as many profiles as needed
to characterize interests. Each profile is made up of a
set of ordered terms and a research notebook. The
terms are words extracted from a number of differ-
ent sources including Web pages, explicit searches,
and text from documents and email messages. The
Research Notebook, as we will discuss, provides the
user a way to access and organize the source of the
terms in the profile, such as the original URLs,
searches, and text.

PowerScout uses a variety of heuristics for
extracting and scoring keywords, such as word posi-
tion, utilization of HTML markup, emphasis of

(modeled by the current profile) and short-term inter-
est (modeled by the current page) affect what pages
PowerScout recommends.

By keeping areas of interest separated into distinct
profiles, one area of interest doesnt pollute another.
You may, for example, be interested in computer
music and New Orleans architecture, but not care
about computer architecture or New Orleans music.
When you're browsing for computer music, you don’t
want to be distracted by articles on New Orleans
architecture even though later that day, the converse
may be true.

Unlike Letizia, PowerScout does not follow links
on the page to get candidates for recommendations.
Rather it presents complex queries to a traditional

73

COMMUNICATIONS OF THE ACM August 2001 /Vol. 44, No. 8

search engine, such as AltaVista. By automatically
constructing queries, PowerScout employs the zero-
input principle to perform multiterm, complex
queries to search engines without bothering the
user with the query language’s syntax.

Concept browsing is actually an iterative process of
multiple queries based on the current page. Initially,
the queries are very specific and exacting. If few
results are returned successive iterations relax the con-
straints on the search. These latter searches are guar-
anteed to retrieve some results, but will be less
relevant than the initial
queries. Each query uses
several terms, combined
in various patterns of
“ands” and “ors.” There
are significant design
tradeoffs between the
quality of recommenda-
tions and the time
required to return those
recommendations.

PowerScout’s Search
window complements its
automatic reconnaissance.
The search window allows
the user to manually
refine automatically con-
structed queries or easily
construct a new query.
This search dialogue box,
illustrated in Figure 4,
contains a text-edit field
for each of seven terms.
When the user requests
the dialogue box be dis-
played, it is preloaded
with the seven most significant terms from the page
being reviewed. The user may then edit the terms as
well as indicate where the search engine should look
for them (that is, in page’s title, URL, body, or tem-
porarily ignored items shown in the expanded pop-up
menu on the left). When the user clicks the search
button, the complex query is generated and sent to
the search engine of choice.

Concept Summaries

Unlike Letizia, PowerScout does not automatically
display the top recommended page. In fact, there
is no single top recommended page. Rather, Pow-
erScout displays a dynamically changing list of
recommendations, so the user can get an overview
of what’s reccommended. This is more appropriate
to search engines’ all-at-once interaction, rather

74

August 2001/Vol. 44, No. 8 COMMUNICATIONS OF THE ACM

Figure 5. While the user views a page in
the browser, PowerScout does global
reconnaissance in the background by performing
complex queries to a search engine.

than Letizia’s incremental search.

PowerScout’s list of concepts and the related page
summaries are just like an auxiliary set of related links
that the original author of the current page might or
might not have included on the page. The recom-
mendations are clustered in related groups by con-
cept. Details of a recommendation can be hidden or
expanded while the user reviews the search results.
Figure 4 shows the expanded details in the recom-
mendations list.

Often the top recommendation of any given
algorithm is not the best
for the user’s needs.
Sorting, categorizing,
and summarizing a set
of recommended pages
is often needed to find
the most relevant rec-
ommendations.

There is valuable
information saved in the
Research Notebook of
Powerscout’s profile that
can become a tool in the
larger task of collecting
and storing informa-
tion. There are three
data types: URLs,
searches, and notes.
When the user adds a
page to the current pro-
file, not only are the sig-
nificant keywords
merged into the profile’s
terms, but the URL is
recorded as well. The
user can see these URLs
and use them like a folder of bookmarks.

Refining an automatic query results in an explicit
search, which can also be saved in a profile. Power-
Scout’s search dialogue box assists the user in making
complex queries without having to know the syntax
of the search engine. The user can rerun saved
searches, such as a periodic query to see what’s new on
a given topic.

The user may also create notes of text to add to a
profile. The full text of a note is kept for later view-
ing, and the significant keywords in the text are
merged into the profile’s terms. This is particularly
useful when the user wishes to add just a paragraph of
a page or perhaps the text of an email message from a
colleague on the subject.

Profiles are useful as bookmarks for URLs,
searches, and notes, but they can also be valuable

when shared with others. A profile is stored as a file,
so it can be easily shared with colleagues. By inspect-
ing someone else’s research notebook on a topic, you
have access to their URLs, searches, and notes. In
addition, you can effectively concept-browse the Web
with the interests of the profile’s author.

Related Work

The space of search engines and other tools for nav-
igation of the Web is rapidly expanding, and it isn’t
possible to cover them all here. While search engines
could be considered first-generation Web-browsing
agents, second-generation agents are becoming more
sophisticated in their analysis and classification of
documents. Some now use popularity of pages, such
as ParaSite [8], and/or analysis of link structure pat-
terns, such as IBM Clever [2]. But most still rely on
the conventional paradigm of the user explicitly
querying a centralized repository that indexes and
ranks documents independent of the individual user.
We see the future trend toward navigation assistants
more personalized toward individual users’ interests
and dynamic user behavior. That’s where reconnais-
sance agents come in.

Perhaps the most widespread example of a recon-
naissance agent at present is Alexa (www.alexa.com),
the service behind Netscape’s “What's Related”
option. Alexa performs reconnaissance in tracking
user-browsing history, and uses collaborative filtering
to recommend new pages. Collaborative filtering
matches the behavior of each user with other users
whose browsing pattern fits most closely, and returns
what they looked at subsequently as its predictions.
Thus Alexa doesn’t have to understand the content of
pages, which is both its strength and its weakness.

Northwestern University’s Watson [1] also uses
tracking user behavior and automatically generated
queries to a search engine to recommend pages—as
does Powerscout. In addition, Watson has other inter-
esting capabilities, such as searching for pictures or
searching for contrasting information instead of that
most similar.

Conclusion
Both the Letizia and the PowerScout style of agent
have their advantages and disadvantages. Letizia
finds pages on a site of interest that the user might
overlook because of the complexity of the site’s nav-
igation, while PowerScout’s global reconnaissance is
better at retrieving faraway pages. PowerScout may
also work better over a low-bandwidth line, since
most of the bandwidth requirements have effectively
been absorbed in advance by the search engine.
Letizia’s interface design goal was to keep the inter-

action as minimal as possible, and so it does not show
the user directly its profile of the user’s interests or its
analysis of Web pages. It does not provide any direct
means to tell the system what the user is interested in.
PowerScout, on the other hand, does provides an
extensive interface for its user model and lets the user
specify with precision what he or she is or isn’t inter-
ested in.

As of this writing, the Web consists of an estimated
800 million pages [3]. This wealth of information
becomes useful only if we can find what we need.
Web users are currently forced to choose between
browsing and searching. Both are great tools, yet each
limits the process of finding relevant information. A
new generation of tools—reconnaissance agents—
automatically search while you browse. This permits
users to maintain a focus on their quest for informa-
tion while decreasing the time and frustration of
finding material of interest. This blending of brows-
ing and searching empowers users to focus on their
task while engaging the system to do what it does best
—analyzing, storing, and retrieving relevant
information. @

REFERENCES

1. Budzik, J., Hammond, K.J., Marlow, C.A., and Scheinkman, A. Antici-
pating information needs: Everyday applications as interfaces to Internet
information sources. In Proceedings of the 1998 World Conference on the
WWW, Internet, and Intranet.

2. Chakrabart, S., Dom, B., Gibson, D., Kleinberg, J., Raghavan, P., and
Rajagopalan, S. Automatic resource compilation by analyzing hyperlink
structure and associated text. In Proceedings of the 7th World-Wide Web
Conference. (1998).

. Lawrence, S., and Giles, L. Accessibility and distribution of information
on the Web. Nature 400. (1999), 107-109.

4. Lieberman, H. Letizia: An agent that assists Web browsing. In Proceed-
ings of the International Joint Conference on Artificial Intelligence IJCAI-
95. (Montreal, Aug. 1995).

. Lieberman, H. Autonomous interface agents. In Proceedings of the ACM
Conference on Computers and Human Interface. (Atlanta, May 1997).

. Salton, G. Automatic Text Processing: The Transformation, Analysis and
Retrieval of Information by Computer. Addison Wesley, 1989.

7. Shneiderman, B., Byrd, D., Croft, W.B. Clarifying search: A user-inter-
face framework for text searches. D-Lib Magazine (Jan. 1997).

. Spertus, E. ParaSite: Mining structural information on the Web. In Pro-
ceedings of the Sixth World Wide Web Conference. (Santa Clara, Calif., 1997).

(S8

N

(=)}

(o)

HENRY LIEBERMAN (liecber@media.mit.edu) is a research scientist
in the Software Agents Group at the Massachusetts Institute of
Technology Media Lab in Cambridge, MA.

CHRISTOPHER FRY (cfry@shore.net) is a language architect at Glue-
works, Lexington, MA.

Louis WEITZMAN (louisw@us.ibm.com) is a senior software
engineer at the IBM Internet Technology Group in Cambridge, MA.

Lieberman’s research was supported by the Digital Life Consortium and the News in
the Future Consortium, and other sponsors of the MIT Media Laboratory.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2001 ACM 0002-0782/01/0800 $5.00

COMMUNICATIONS OF THE ACM August 2001 /Vol. 44, No. 8 75

