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Abstract 
In a hypermedia authoring task, an author often wants to set 
up meaningful connections between different media, such 
as text and photographs. To facilitate this task, it is helpful 
to have a software agent dynamically adapt the presentation 
of a media database to the user's authoring activities, and 
look for opportunities for annotation and retrieval. 
However, potential connections are often missed because of 
differences in vocabulary or semantic connections that are 
"obvious" to people but that might not be explicit.  
ARIA (Annotation and Retrieval Integration Agent) is a 
software agent that acts an assistant to a user writing e-mail 
or Web pages. As the user types a story, it does continuous 
retrieval and ranking on a photo database. It can use 
descriptions in the story to semi-automatically annotate 
pictures. To improve the associations beyond simple 
keyword matching, we use natural language parsing 
techniques to extract important roles played by text, such as 
"who, what, where, when". Since many of the photos depict 
common everyday situations such as weddings or recitals, 
we use a common sense knowledge base, Open Mind, to fill 
in semantic gaps that might otherwise prevent successful 
associations.  
 

Introduction1 
 
The task described in this paper is the robust retrieval of 
annotated photos by a keyword query.  By “annotated 
photos”, we mean a photo accompanied by some metadata 
about the photo, such as keywords and phrases describing 
people, things, places, and activities depicted in the photo.   
By “robust retrieval”, we mean that photos should be 
retrievable not just by the explicit keywords in the 
annotation, but also by other related keywords 
conceptually related to the event in the photo. 
  In the retrieval sense, annotated photos behave similarly 
to documents because both contain text, which can be 
exploited by conventional IR techniques.  In fact, the 
common query enrichment techniques such as thesaurus-
based keyword expansion developed for document 
                                                 
 

retrieval may very well work for the photo retrieval 
domain. 
 However, keyword expansion using thesauri is limited 
in its usefulness because keywords expanded by their 
synonyms can still only retrieve documents directly related 
to the original keyword.  Furthermore, naïve synonym 
expansion may actually contribute more noise to the query 
and negate what little benefit keyword expansion may add 
to the query, namely, if keywords cannot have their word 
sense disambiguated, then synonyms for all the word 
senses of a particular word may be used in the expansion, 
and this has the potential to retrieve many irrelevant 
documents. 

Relevant Work 
 Attempting to overcome the limited usefulness of 
keyword expansion by synonyms, various researchers have 
tried to use slightly more sophisticated resources for query 
expansion.  These include dictionary-like resources such as 
lexical semantic relations (Voorhees, 1994), and keyword 
co-occurrence statistics (Peat, 1991), as well as more 
resources generated dynamically through relevance 
feedback, like global document analysis (Xu, 1996), and 
collaborative concept-based expansion (Klink, 2001) 
 Although some of these approaches are promising, they 
share some of the same problems as naïve synonym 
expansion.  Dictionary-like resources such as WordNet 
(Fellbaum, 1998) and co-occurrence frequencies, although 
more sophisticated that just synonyms, still operate mostly 
on the word-level and suggest expansions that are lexically 
motivated rather than conceptually motivated. Relevance 
feedback, though somewhat more successful than 
dictionary approaches, requires additional user action and 
we cannot consider it fully automated retrieval, which 
makes it inappropriate for our task. 

Photos vs. Documents 
 With regard to our domain of photo retrieval, we make a 
key observation about the difference between photos and 
documents.  We argue that a photo has more structure and 
is more predictable than a document, even though that 
structure may not be immediately evident.  The contents of 



a typical document such as a web page are hard to predict, 
because there are too many types and genres of web pages 
and the content doesn’t usually follow a stereotyped 
structure.  However, with typical photos, such as one 
found in your photo album, there is more predictable 
structure.  Photos capture people and things in certain 
places, participating in certain events and activities.   Many 
of these situations depicted, such as a wedding, a hike, or a 
recital are common to human experience, and therefore 
have a high level of predictability.   
 Take for example, a picture annotated with the keyword 
“bride”.  Even without looking at the photo, a person may 
be able to successfully guess who else is in the photo, and 
what situation is being depicted.  Common sense says that 
brides are usually found at weddings, that people found 
around her are usually the groom, the father of the bride, 
bridesmaids, that weddings may take place in a chapel or 
church, that there may be a wedding cake, walking down 
the aisle, and a wedding reception.  

World Semantics  
Knowledge about the spatial, temporal, and social relations 
of the everyday world, as exemplified above, is part of 
commonsense knowledge.  We also call this world 
semantics, referring to the meaning of concepts and how 
concepts relate to each other in the world.  
 The mechanism we propose for robust photo retrieval 
uses a world semantic resource in order to expand concepts 
in existing photo annotations with concepts that are, inter 
alia, spatially, temporally, and socially related.  More 
specifically, we automatically constructed our resource 
from a corpus of English sentences about commonsense by 
first extracting predicate argument structures, and then 
compiling those structures into a Concept Node Graph, 
where the nodes are commonsense concepts, and the 
weighted edges represent commonsense relations.  The 
graph is structured like MindNet (Dolan, 1998).  
Performing concept expansion using the graph is modeled 
as spreading activation.  Relevance of a concept is 
measured as world semantic proximity between nodes on 
the graph. 
 This paper is structured as follows:  First, we discuss the 
source and nature of the corpus of commonsense 
knowledge used by our mechanism.  Second, a discussion 
follows regarding how our world semantic resource was 
automatically constructed from the corpus.  Third, we 
show the spreading activation strategy for robust photo 
retrieval.  The paper concludes with a discussion of the 
larger system to which this mechanism belongs, potential 
application of this type of resource in other domains, and 
plans for future work. 

Open Mind: A Corpus of  
Commonsense Knowledge 

The source of the world semantic knowledge used by our 
mechanism is the Open Mind Commonsense Knowledge 
Base (OMCS) (Singh, 2002) - an endeavor at the MIT 
Media Laboratory that aims to allow a web-community of 
teachers to collaboratively build a database of “common 
sense” knowledge.  OMCS contains over 400,000 semi-
structured English sentences about commonsense, 
organized into an ontology of commonsense relations such 
as the following: 

• A is a B 
• You are likely to find A in/at B 
• A is used for B 

 By semi-structured English, we mean that many of the 
sentences loosely follow one of 20 or so sentence patterns 
in the ontology.  However, the words and phrases 
represented by A and B (see above) are not restricted.  
Some examples of sentences in the knowledge base are: 

• Something you find in (a restaurant) is (a waiter) 
• The last thing you do when (getting ready for 

bed) is (turning off the lights) 
• While (acting in a play) you might (forget your 

lines) 
 The parentheses above denote the part of the sentence 
pattern that is unrestricted.  The major limitations of 
OMCS are two-fold.  First, there is much ambiguity, such 
as the lack of disambiguated word senses, and the lack of 
ability to fully parse the more complex sentences.  Second, 
some of the knowledge is noisy in that many sentences 
don’t truly reflect common sense, and there are no claims 
made about the coverage of the commonsense in the 
knowledge base. 
 The Open Mind Commonsense Knowledge Base is 
often compared to its more famous counterpart, the CYC 
Knowledge Base (Lenat, 1998).  CYC contains over 
1,000,000 hand-entered rules that constitute “common 
sense”.  Unlike OMCS, CYC represents knowledge using 
formal logic, and ambiguity is minimized.  Unfortunately, 
the CYC corpus is not publicly available at this time. 
 Even though OMCS is a slightly noisy and ambiguous 
corpus, it is still suitable to our task because we only need 
to mine conceptual relations out of it using shallow 
techniques. 

Constructing a World Semantic Resource 

In this section, we describe how a subset of the knowledge 
in OMCS is extracted and structured to be useful to the 
photo retrieval task.  First, we apply sentence pattern rules 
to the raw OMCS corpus and extract crude predicate 
argument structures, where predicates represent 



commonsense relations and arguments represent 
commonsense concepts.  Second, concepts are normalized 
using natural language techniques.  Third, the predicate 
argument structures are read into a Concept Node Graph, 
where nodes represent concepts, and edges represent 
predicate relationships.  Edges are weighted to indicate the 
strength of the relationship. 

Extracting Predicate Argument Structures 
The first step of extracting predicate argument structures is 
to apply a fixed number of mapping rules to the sentences 
in OMCS.  Each mapping rule captures a different 
commonsense relation.  Commonsense relations, insofar as 
what interests us for constructing our world semantic 
resource for photos, fall under the following general 
categories of knowledge: 

• Classification: A dog is a pet 
• Spatial: San Francisco is part of California 
• Scene: Things often found together are: 

restaurant, food, waiters, tables, seats 
• Purpose: A vacation is for relaxation; Pets are for 

companionship 
• Causality: After the wedding ceremony comes the 

wedding reception. 
• Emotion: A pet makes you feel happy; 

Rollercoasters make you feel excited and scared. 
 In our extraction system, mapping rules can be found 
under all of these categories.  To explain mapping rules, 
we give an example of knowledge from the 
aforementioned Scene category: 

somewhere THING1 can be is PLACE1 

somewherecanbe 

THING1, PLACE1 

0.5, 0.1 
 The first line in a mapping rule is a sentence pattern. 
THING1 and PLACE1 approximately bind to a word or 
phrase, which is later mapped to a set of canonical 
commonsense concepts.  Line 2 specifies the name of this 
predicate relation.  Line 3 specifies the arguments to the 
predicate, and corresponds to the variable names in line 1.  
The pair of numbers on the last line represents the 
confidence weights given to forward relation (left to right), 
and backward relation (right to left), respectively, for this 
predicate relation.  This also corresponds to the weights 
associated with the directed edges between the nodes, 
THING1 and PLACE1 in the graph representation.   
 It is important to distinguish the value of the forward 
relation on a particular rule, as compared to a backward 
relation.  For example, let us consider the commonsense 
fact, “somewhere a bride can be is at a wedding.”  Given 
the annotation “bride,” it may be very useful to return 
“wedding.” However, given the annotation “wedding,” it 
seems to be less useful to return “bride,” “groom,” 
“wedding cake,” “priest,” and all the other things found in 

a wedding.  For our problem domain, we will generally 
penalize the direction in a relation that returns hyponymic 
concepts as opposed to hypernymic ones.  
 Approximately 20 mapping rules are applied to all the 
sentences (400,000+) in the OMCS corpus.  From this, a 
crude set of predicate argument relations are extracted.   At 
this time, the text blob bound to each of the arguments 
needs to be normalized into concepts. 

Normalizing Concepts  
Because any arbitrary text blob can bind to a variable in a 
mapping rule, these blobs need to be normalized into 
concepts before they can be useful.  There are two 
categories of concepts that can accommodate the majority 
of the commonsense knowledge in OMCS: Noun Phrases 
(things, places, people), and Activity Phrases (e.g.: “walk 
the dog,” “buy groceries.”).   
 To normalize a text blob into a Noun Phrase or Activity 
Phrase, we part-of-speech tag the blob, and use these tags 
filter the blob through a miniature noun phrase and activity 
phrase grammar.  If the blob does not fit the grammar, it is 
massaged until it does or it is rejected altogether.  The final 
step involves normalizing the verb tenses and the number 
of the nouns.  Only after this is done can our predicate 
argument structure be added to our repository.  A brief 
description of each of the aforementioned steps is given 
below. 
 The aforementioned noun phrase and activity phrase 
grammar is as follows: 
 NOUN PHRASE: 

 (PREP) (DET|POSS-PRON) NOUN 

 (PREP) (DET|POSS-PRON) NOUN NOUN 

 (PREP) NOUN POSS-MARKER (ADJ) NOUN 

 (PREP) (DET|POSS-PRON) NOUN NOUN NOUN 

 (PREP) (DET|POSS-PRON) (ADJ) NOUN PREP NOUN 

 ACTIVITY PHRASE: 

 (PREP) (ADV) VERB (ADV) 

 (PREP) (ADV) VERB (ADV) (DET|POSS-PRON) (ADJ) NOUN 

 (PREP) (ADV) VERB (ADV) (DET|POSS-PRON) (ADJ) NOUN NOUN

  
 The application of the grammar behaves like a filter.  If 
the input to a grammar rule matches any optional tokens, 
which are in parentheses, then this is still considered a 
match, but the output will filter out any optional fields.  
For example, the phrase, “in your playground” will match 
the first rule, but after the grammar is applied, the phrase 
will become just “playground”. 

Concept Node Graph 
To model concept expansion as a spreading activation task, 
we convert the predicate argument structures gathered 
previously into a Concept Node Graph shown in Figure 1. 
 



 

Figure 1. A portion of the Concept Node Graph. Nodes are 
concepts, and edges correspond to predicate relations. 

The following statistics were compiled on the 
automatically constructed resource: 

• 400,000+ sentences in OMCS corpus 
• 50,000 predicate argument structures extracted 
• 20 predicates in mapping rules 
• 30,000 concept nodes 
• 160,000 edges 
• average branching factor of 5 

Concept Expansion By Spreading Activation 
In this section, we explain how concept expansion is 
modeled as spreading activation.  We propose two 
heuristics for re-weighting the graph to improve relevance.  
Examples of the spreading activation are then given. 
 In spreading activation, the origin node is the concept 
we wish to expand and it is the first node to be activated.  
Next, all the nodes one hop away from the origin node are 
activated, then two levels away, and so on.  Nodes will 
continue to be activated so long as their activation score 
meets the activation threshold, which is a number between 
0 and 1.0. Given nodes A and B, where A has 1 edge 
pointing to B, the activation score (AS) of B is: 
   )),((*)()( BAedgeweightAASBAS =
 When no more nodes are activated, we have found all 
the concepts that expand the input concept. 

Heuristics to Improve Relevance 
One problem that can arise with spreading activation is 
that nodes that are activated two or more hops away from 
the origin node may quickly lose relevance, causing the 
search to lose focus.  One reason for this is noise.  Because 

concept nodes do not make distinctions between different 
word senses, it is possible that a node represents many 
different word senses.  Therefore, activating more than one 
hop away risks exposure to noise. Although associating 
weights with the edges provides some measure of 
relevance, these weights form a homogenous class for all 
edges of a common predicate (recall that the weights came 
from mapping rules). 
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 We identify two opportunities to re-weight the graph to 
improve relevance: reinforcement and popularity. 

 
Reinforcement 

 

Figure 2. An example of reinforcement 

As illustrated in figure 2, we make the observation that if 
node C is two hops away from the origin node A through 
path P, and also one hop away from node A through path 
Q, then node C is more likely to be relevant than if path Q 
had not existed.  This is the idea of reinforcement.  We 
define reinforcement as two or more corroborating pieces 
of evidence, represented by paths, that two nodes are 
related.  The stronger the reinforcement, the higher the 
potential relevance.  Looking at this another way, if three 
or more nodes are mutually connected, they form a cluster, 
and any two nodes in the cluster have enhanced relevance 
because the other nodes provide additional paths for 
reinforcement. Applying this, we re-weight the graph by 
detecting clusters and increasing the weight on edges 
within the cluster.  

Popularity 
 

bridesmaid

bride groom

to wedding

to weddi

to beauty 

concept

concepts
concepts

(bf = 2) 

(bf = 129) 

Figure 2.  Illustrating the negative effects of popularity 

The second observation we make is that if an origin node 
A has a path through node B, and node B has 100 children, 



then each of node B's children are less likely to be relevant 
to node A than if node B had had 10 children.  This is 
based on empirical evidence with commonsense 
knowledge, though it has also a common technique used in 
spreading activation (Salton, 1988).  

("understand musician's feelings", '0.4')  
('feel emotionally moved', '0.4') 
('hear music', '0.4') ('end silence', '0.4') 
('understand', '0.4') ('mother', '0.2') 
('feel emotion brings', '0.136')  
('get away', '0.136') ('listen', '0.136')  We refer to nodes with a large branching factor as being 

popular.  It so happens that popular nodes in our graph 
tend to be very common concepts in commonsense, or tend 
to have many different word senses, or word contexts.  
This causes its children to be in general, less relevant.   

('change psyche', '0.136') ('show', '0.1354') 
('dance club', '0.1295') ('frisbee', '0.1295') 
('scenery', '0.124') ('garden', '0.124') 
('spa', '0.124') ('bean bag chair', '0.124') 
  As illustrated in Figure 2, the concept bride may lead to 

bridesmaid and groom.  Whereas bridesmaid is a more 
specific concept, not appearing in many contexts, groom is 
a less specific concept.  In fact, different senses and 
contexts of the word can mean “the groom at a wedding”, 
or “grooming a horse” or “he is well-groomed”.  This 
causes groom to have a much larger branching factor.   

Conclusion 
In this paper, we presented a mechanism for robust photo 
retrieval through performing concept expansion on the 
photo’s annotations using a world semantic resource.  The 
resource was automatically constructed from the publicly 
available Open Mind Commonsense corpus.  Sentence 
patterns were applied to the corpus, and simple predicate 
argument structures were extracted.  After normalizing 
arguments into syntactically neat concepts, a weighted 
concept node graph was constructed.  Concept expansion 
is modeled as spreading activation over the graph.  To 
improve relevance in spreading activation, the graph was 
re-weighted according to arguments for reinforcement and 
against popularity. 

 It seems that even though our knowledge is 
commonsense, there is more value associated with more 
specific concepts than general ones.  To apply this 
principle, we visit each node and discount the weights on 
each of its edges based on the following rule (_ and _ are 
constants): 

Examples 
B  ac ual runs of the concept expansion program 
using an activati hreshol*log( α

=
branchingF

discountelow are t
on t d of 0.1. )

1
*

β+

=

actor

discountoldWeightnewWeight

 This work has not yet been formally evaluated.  Any 
evaluation will likely take place in the context of the larger 
system that this mechanism is used in, called (A)nnotation 
and (R)etrieval (I)ntegration (A)gent (Lieberman, 2001)  
ARIA is an assistive software agent which automatically 
learns annotations for photos by observing how users place 
photos in emails and web pages.  It also monitors the user 
as she types an email and finds opportunities to suggest 
relevant photos.  The idea of using world semantics to 
make the retrieval robust comes from recognizing that 
given one annotation about the situation depicted in a 
photo, it becomes possible to predict other annotations 
given some knowledge about spatial, temporal, and social 
relations about the everyday world.  While the knowledge 
extracted from OMCS does not give very complete 
coverage of many different concepts, we believe that what 
concept expansions are done have added to the value of the 
retrieval process.  Sometimes the concept expansions are 
irrelevant, but because ARIA engages in opportunistic 
retrieval, the user does not suffer as a result.  We 
sometimes refer to ARIA as being “fail-soft” because the 
user does not rely on the software to suggest photos.  But 
when the software does suggest a relevant photo, the user 
feels that ARIA has been helpful.   

 
>>> expand(“bride”) 
('wedding', '0.3662') ('woman', '0.2023') 
('ball', '0.1517') ('tree', '0.1517') 
('snow covered mountain', '0.1517') 
('flower', '0.1517') ('lake', '0.1517') 
('cake decoration', '0.1517') ('grass', '0.1517') 
('groom', '0.1517') ('tender moment', '0.1517') 
('veil', '0.1517') ('tuxedo', '0.1517') 
('wedding dress', '0.1517') ('sky', '0.1517') 
('hair', '0.1517') ('wedding boquet', '0.1517') 
 
>>> expand('london') 
('england', '0.9618') ('ontario', '0.6108') 
('europe', '0.4799') ('california', '0.3622') 
('united kingdom', '0.2644') ('forest', '0.2644') 
('earth', '0.1244') 
 
>>> expand(“symphony”) 
('concert', '0.5') ('piece music', '0.4') 
('kind concert', '0.4') ('theatre', '0.2469') 
('screw', '0.2244') ('concert hall', '0.2244') 
('xylophone', '0.1') ('harp', '0.1') 

 Robust photo retrieval is not the only IR task in which 
semantic resources extracted from OMCS have been 
successfully applied.  (Liu, 2001a) used OMCS to generate 
effective search queries by analyzing the user’s search 
goals. (Liu, 2001b) describes how story scripts can be 
generated given a seed story sentence. 

('viola', '0.1') ('cello', '0.1') 
('wind instrument', '0.1') ('bassoon', '0.1') 
('bass fiddle', '0.1') 
 
>>> expand(“listen to music”) 
('relax', '0.4816') ('be entertained', '0.4816') 
('have fun', '0.4')  



 In general, OMCS can benefit any program that deals 
with concepts of the everyday world, or assists the user in 
performing an everyday task.  However, because of such 
limitations as noise and ambiguity associated with this 
corpus, it is likely to be only useful at a very shallow level, 
such as in various IR tasks. 
 Future work is planned to improve the performance of 
the mechanism presented in this paper.  One major 
limitation that we have encountered is noise, stemming 
from ambiguous word senses and contexts.  To overcome 
this, we hope to apply word sense disambiguation 
techniques to the concepts and the query, using word sense 
co-occurrence statistics, WordNet, or LDOCE.  A similar 
approach could be taken to disambiguate meaning 
contexts, but it is less clear how to proceed.  We also hope 
to migrate from sentence patterns to a broad coverage 
parser so that we can extract more kinds of commonsense 
relations from the corpus that cannot be ordinarily parsed 
by a sentence pattern.   
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