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ABSTRACT
This paper describes an intelligent interface to assist in the
expert perceptual task of sound equalization.  This is
commonly done by a sound engineer in a recording studio,
live concert setting, or in setting up audio systems.  The
system uses inductive learning to acquire expert skill using
nearest neighbor pattern recognition. This skill is then used
in a sound equalization expert system, which learns to
proficiently adjust the timbres (tonal qualities) of brightness,
darkness, and smoothness in a context-dependent fashion.
The computer is used as a tool to sense, process, and act in
helping the user perform a perceptual task. Adjusting timbres
of sound is complicated by the fact that there are non-linear
relationships between equalization adjustments and perceived
sound quality changes. The developed system shows that the
nearest-neighbor context-dependent equalization is rated 68%
higher than the set linear average equalization and that it is
preferred 81% of the time.
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1 .  INTRODUCTION
Inductive learning can be used to perform an expert skill
using nearest neighbor (NN) pattern recognition. This is
demonstrated through a sound equalization expert system that
learns to proficiently adjust the timbres (tonal qualities) of
brightness, darkness, and smoothness in a context-dependent
fashion, creating an intelligent computer interface. This is
innovative in that it applies the established nearest-neighbor
technique to the new application area of performing a skillful
perceptual task. This combination has been made possible
through advances in computer memory and processor technol-
ogy, making previously intractable problems now feasible.
This work also demonstrates

a human-computer interaction (HCI) paradigm where the
computer is used as a tool to sense, process, and act in
helping the user perform a perceptual task.

The expert system developed here for doing sound
equalization is an example of capturing the valuable
commodity of human expertise using a computer. Computer
learning is needed to help overcome the knowledge
acquisition bottleneck for these systems.

Human expertise can be separated into expert knowledge and
expert skill. Expert knowledge consists of that which you
know how to do, such as knowing when medical symptoms
indicate a heart attack or who composed a particular piece of
music. Expert skill consists of what you are able to do, such
as being able to perform heart bypass surgery or to play a
piece of music. Skills as such do not constitute what we
think, but rather what we are. An aging professional athlete
may still know what to do, but his or her body may no longer
be able to execute the action. In our expert system the skill
consists of changing tonal qualities (timbres) of sounds
through equalization.

In the sections to follow we first discuss the nature of the
perceptual task of sound equalization and related work.  We
then discuss using the computer as a tool to capture expertise
(section 2).   In section 3 we look at the underlying
computational approach used, that of Nearest Neighbor
Inductive Inference.  Then we discuss setting up the
experiment using equalization to change timbers of sound
(section 4), with conclusions presented in section 5.

1.1  A Perceptual Task
We define a perceptual task as a task where sensory input is
processed to appropriately perform some action, e.g. riding a
bike or vocal harmonization. We differentiate between
sensing and perceiving in that perceiving takes the additional
step of incorporating the sensory input into some sort of
usable representation. Perceiving is not just observing, but
additionally apprehending. We also differentiate between an
“ordinary” perceptual task and an expert, or skillful,
perceptual task. Many people can drive a car, but few have the
skill to drive in a race. Many people can tell which of two
equalizations for a piece of music they prefer, but few have the
skill to isolate which frequency bands cause the differences.



Though early Artificial Intelligence (AI) researchers felt
sensory-rich mundane tasks such as vision or locomotion
would be easier to solve than “expert” tasks such as medical
diagnosis, the opposite has proven to be true.  We show how
a computer system can be used as a tool to aid the user in both
perceiving and performing a sensory-rich task, giving a non-
expert an expert level of performance.

1.2  Sound Equalization
Sound equalization is used in public address systems,
recording studios, movie theatres, and stereo systems. At a
very basic level it is encountered on home stereo systems as
the treble and bass tone controls. These act as amplifiers and
filters changing the amount of energy in different frequency
bands.  Equalization is used to make a sound be perceived as
more natural sounding, since audio equipment and room
acoustics change aspects of the original sound.  Secondly
equalization is used to give a sound a new property, such as
making drums sound more resonant or removing a harsh
“nasal” quality of a singer’s voice.  Bartlett [1] has a
description of terms commonly used to describe timbral
qualities.

Typically when a sound engineer is setting up a sound
system, the system as a whole is first equalized to compensate
for the equipment and the listening environment. Next
individual channels are equalized for the microphones on
particular instruments or other sound sources. Expert sound
engineers are those who have developed through experience
the ability to hear a sound and isolate exactly which one or
several frequencies (out of 31 possible bands) need to be
changed to give a desired effect.  This is complicated by the
context-dependent nature of equalization.

1.3  Related Work
Our Human-Computer Interaction (HCI) paradigm of using the
computer as a perceptive tool is related to computer
representations of sensory data used to create virtual
environments.   For instance visual, aural and tactile feedback
are used by biochemists in the pharmaceutical drug design
process through a simulation representing the atomic
interaction between molecules [5].  Users get tactile feedback
as they manipulate the image of a molecule they are building.
In this case the computer is used as a sensory tool in the
virtual environment, however it isn’t an intelligent tool in
that it doesn’t learn.  Other examples of virtual environments
are three-dimensional computer games, micro-surgery, and
remote robotic control.  Processing of sensory data is also
used for autonomous vehicle navigation [12] and speech
recognition [9].  The virtual environments described above
are used to present sensory data, though the interface is not
used interactively to enhance a user’s skill level.

There are two notable examples where a computer does learn
to perform skillfully.  The first is Lee Spector’s GenBebop
program [10] where a genetic algorithm is used to create
improvisation based on a short underlying musical segment.
The result is very interesting, though arguably not expert

performance.  Second is Harold Cohen’s AARON system
[2][2] that automatically generates paintings through the use
of an elaborate rule-based system with a flat-bed plotter.  Our
work differs in that the computer is used as a tool to aid the
user in both perceiving and performing an expert task.

2 .  USING THE COMPUTER AS A
TOOL

In order to use the computer as a perceptual tool, the user must
be an integral part of the system.  This exploits both the
memory and processing power of the machine as well as the
intuitive and synthesizing ability of the user.  Both the
machine and the user perceive and remember independently of
each other, but productive synergy can arise when they are
combined.

2.1  General Schema to Capture
Expertise

Consider the schema used to capture expertise shown in
Figure 1 , applied in this work to the expertise developed by
a sound engineer. Our goal is to externalize a sound engineer's
internal expertise, capturing it in a form which can be reused
by a non-expert.
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Figure 1:   Schema used to capture expertise.

The engineer first recognizes the features or context of the
present sound, then remembers similar sounds and
equalization changes made in the past with respect to the
desired outcome. This information is used to infer similar
equalization changes to be made in the present case. Our
intent is that this process be externalized to the point that a
user can think only about the goals and need not have the
expertise to match features or infer equalization changes. The
same schematic would apply to perceptual tasks other than
our example of sound engineering. By introducing a computer
into the loop, the stimulus, context, goal, and resulting



changes can all be remembered for later use, possibly by a
non-expert.

2.2  Capturing Expertise Using a
Computer in the Loop

      Figure 2  illustrates how the expertise-gathering
schematic from Figure 1  can be implemented in a computer
system. The system must first be trained, accumulating the
body of experience that constitutes the system’s expertise.
The second phase, performance, uses the accumulated
knowledge using inductive inference as shown by the thick
light-gray lines. In order to train the system an expert user
perceives the stimulus and is given a goal. The user
manipulates the stimulus using the computer to achieve an
aesthetically pleasing difference with respect to the goal. The
context of the original stimulus (the auditory identifying
signature), along with the new computer changes for the
selected goal are then stored in the database.
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      Figure  2:   Capturing expertise with a computer in the
loop

In our application to equalization the Stimulus is a sound. The
Context Analysis yields a representative “signature” made up
of a measurement of the average energy per frequency in each
sound. The Goals are changes in the timbres of brightness,
darkness, and smoothness. Each example’s Changes are the
equalizer settings used to implement the goal, and the
Modifications Control is an audio equalizer.

For the performance phase, we add the inferencing module. As
before, a stimulus (e.g. a sound being played) enters the
system, but this time the user selects a goal. The system does
pattern matching on the stimulus’ signature, finding the n
most similar previously recorded examples (signature-goal
pairs) in the data base, using nearest-neighbor pattern match-
ing. The system then makes the same (or very similar)
changes to the present stimulus as was made to the previously
captured stimuli (nearest neighbors) for the same goal.  The
user can provide corrective feedback, with these changes
added to the database as a new example. Note how the

computer is used as a tool to help perceive the input (Context
Analysis), induce the proper action to be taken (Inferencing),
and also cause the resulting perceptual change (Modifications
Control). The system also has the ability to change
dynamically according to user preferences by remembering
the users’ feedback in cases where the suggested change was
inadequate.

Now let us take a look in more detail at the Inferencing
module as implemented here using nearest neighbor pattern
recognition.

3 .  NEAREST NEIGHBOR INDUCTIVE
INFERENCE

Symbolic Artificial Intelligence processing is involved with
“figuring out the rules,” or coming up with the underlying
primitives and their relation to each other. Sometimes it is
not possible to figure out the rules or in fact not necessary,
particularly in cases where you are capturing a skill rather
than knowledge (e.g. riding a bicycle.) In this research we are
using knowledge without completely understanding its
primitives and their relationships. Rather than “figuring out”
or reasoning, we use pattern matching to inductively solve
new problems in analogous ways to previously seen similar
situations - an “expertise oracle,” as it were. Stated another
way, “Intelligence is as intelligence does.”  This is done
algorithmically using Nearest Neighbor inductive inference.

3.1  Related Inductive Methods

Genetic algorithms [4] are one of the most popular
inductive inference methods, though they suffer from
lengthy training time.  Modified classifier systems [3]
reduce the training time, but have great sensitivity used in
reward and punishment values. Decision trees [8] provide
efficient lookup, but suffer from a need for very large data
sets and a length set up time compared to the Nearest
Neighbor (NN) [3] approach. Although knowledge of the
relationships between examples is more opaque when
using NN, it has the advantages of being very
straightforward, sensitive to local populations, and
adaptable to dynamic changes in the data.

3.2  Nearest Neighbor Description
Nearest neighbor is an example-based pattern recognition
approach where all the data points are stored in an n-
dimensional space (hypersphere). A new example is mapped
into that space and its predicted outcome is computed from the
outcomes of it neighbors, that is the points close to it. These
points share similar characteristics.

Consider applying NN to credit-risk analysis, where
information from a credit card application is evaluated in
order to assign a credit rating to an applicant. Applicants
whose credit rating falls below some threshold will not be
given a credit card due to the risk involved.
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Figure 3:   Placing a new example by its nearest neighbors.  Outcome of credit-worthiness

is determined by outcomes of its neighbors.

This is illustrated in F i g u r e  3 ,   where we are trying to
predict the credit-worthiness of a loan applicant based on
marital status, income, and age. The outcome of credit-
worthiness  is represented by the numbers inside the boxes,
and the location of the boxes reflect the other fields’ values.
We have chosen credit-worthiness to be scaled between 1 and
10 for this example, where 10 is most credit-worthy. Placing
the new example into the hypersphere of only 3 dimensions
in this case we find that it is closest to two other points
whose outcomes are respectively 4 and 6. The new example’s
outcome is then some function of those values, either by
some sort of weighted average (“5” in this example) or the
value that occurs most frequently in cases when there are
multiple “close” values.

In our implementation applied to sound equalization, each
field (or dimension) is actually a measure of energy in one of
the frequency bands averaged over the length of the sound.
Experts’ use of the system serves to train it, populating the
NN search space.  When a non-expert uses the system, new
sounds are compared to existing ones, and new changes made
are similar to those done in the past for similar sounds the
system has already heard.

4 .  CHANGING TIMBRE USING
EQUALIZATION

The goal of the implementation was to create a trained system
usable as a tool by a non-expert to do expert sound
equalization (eq), changing the tonal quality, or timbre of a
sound using equalization through an implementation of a NN
inductive inference system.  We discovered that context needs
to be taken into account in affecting timbre through

equalization.  In other words you can’t just always “do the
same thing” to give a desired perceptual effect.  It depends on
what the underlying sound is.

4.1  Adjusting Timbres

We looked specifically at the timbres of brightness, dark-
ness, and smoothness, as illustrated in Figure 4
Brightness can be thought of as high-frequency emphasis,
with weaker low frequencies.  Darkness can be thought of
as the opposite of brightness, with lower frequency
emphasis and a decrease in high frequency energy.  A
sound is smooth if it is easy on the ears, not harsh, with a
flat frequency response, especially in the mid-range, with
an absence of peaks and dips in the response.
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Figure 4:  Equalization changes for three
timbres.



As mentioned previously, what makes this equalization task
difficult is that the equalization changes are context
dependent. What makes one sound brighter may not work for
another. Making a cymbal brighter would involve increasing
the energy in the highest frequencies available (the sliders
furthest to the right on a graphic equalizer), but doing the
same thing to an electric bass sound may not make any
difference at all.  This is because there is no energy present at
those high frequencies to begin with. When adjusting sliders
to make an equalization change, one must take into account
the characteristics of the underlying sound. It isn’t possible
to just always do the same thing to every sound for a desired
effect. Equalizations are not only context-dependent, but they
are non-linear as well. Moving certain sliders could make a
sound increasingly smooth, but after a point continuing to
move the same sliders in the same direction could give an
unpleasant quality to the sound.
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 Figure 5:  Energy per frequency band for three sounds.

For example, consider the goal of an increase in brightness
applied to the three sounds (bass, acoustic guitar, and
rainstick) whose energy graphs are shown in Figure  6 . To
make the bass sound brighter we would want to increase the
energy in the bands 500, 1K, and 2K. To make the rainstick
sound brighter, however, we would have to increase the
energy in bands 4K, and 8K, which is different.

4.2  Experiment Setup
The 17 subjects used in training and testing the system were
sound reinforcement professionals as well as some music
students.  Subjects were first given a hearing test to determine
their ability to hear the difference between different
equalizations.  Next the system was trained as users performed
equalizations using the system.  Then users evaluated the
system’s level of acquired expertise.  Each of these 3 phases (
Hearing Test, Training, Testing) is further described below.

The physical listening chamber was lined with sound baffling
panels setup to eliminate any early reflections. The graphical

user interface consisted of a 10-band1on-screen equalizer with
real-time measurement of energy per frequency band. The
sounds used were taken from unprocessed studio master tracks
of typical folk/rock music (e.g. vocals, guitars, basses,
drums, etc.). 41 stereo sound segments approximately 15
seconds long each were used for the training session. The
testing session sounds were a distinct set of 10 more sounds.
In order to be able to do pattern matching a “signature”
consisting of measurement of energy per each of the nine
frequency bands over all 15 seconds was taken for each sound,
with a filter to exclude quiet spots in the sound segment in the
averaging. For example, we did not want the measurement of
average energy in a drum sound to include the silences
between beats.  The signature of energy in the nine bands was
used to place each sound in a nine-dimensional space (nine
dimensional array) for searching using nearest neighbor.

4.3  Hearing Test
Before training the system we ran a brief hearing test.  Users
were presented with two sounds, where one of them
sometimes had an equalization change applied to it.  He or she
then indicated whether or not the two sounded the same or
different.  30 such judgements were gathered, giving an
indication as to how well the user could discern equalization
changes.  Results ranged from 60% to 90% correct judgements
for the 17 subjects.

4.4  Training Phase
The interface shown in Figure 6  was used by each of the 17
subjects in equalizing the 41 sound segments.  All examples
with “Brightness” as a goal were done first, then those for
“Darkness” and finally “Smoothness.” The system first
highlighted the desired goal, where the goal was to give an
aesthetically pleasing increase in brightness, darkness, or
smoothness. The user then made equalization changes using
the on-screen eq sliders as the sound was playing, trying to
achieve the highlighted goal.  The “Flat Eq” and “Changed
Eq” buttons allowed subjects to compare the changed sounds
to the original sounds. These controls were used in real time,
while the sound was being played. The sound could be
replayed as many times as needed. Once subjects were
satisfied that the goal had been met, selecting the “Next”
button took them to the next training example.

                                                                        
1 The sampling rate of 22.05 kHz. limited the highest

sampled frequency to 11 kHz., so the tenth band at 16 kHz.
(topmost) was disabled.



F i g u r e  6 :   Interface for training the system.  Slider
changes corresponding to the presented goal are recorded
by the system.

For each user, for each of the sound-goal combinations, the
computer then created and stored an example consisting of:

 1. Soundfile name

 2. Goal (one of 3 from the goals window)

 3. Final slider positions (scaled from 0 to 31 for each
slider)

 4. Energy-per-band “signature” for that sound.

These examples were accumulated in the database, embodying
the system’s knowledge.

4.5  Testing Phase
The 17 subjects from the training phase were evaluated to
select the best 11 subjects to continue with the testing phase.
These 11 were determined by analyzing the extent to which
they moved the sliders. Users who had to move the sliders to
an extreme in order to effect a perceptible change in the sound
were eliminated. As expected, it turned out the better the
subject’s hearing as measured by the hearing test, the less the
subject tended to move the sliders.  The accumulated data for
the 11 selected subjects became the dataset of 451 examples
per each of the three goals, for a total of 1353 examples,
embodying the “knowledge” of the system.

The interface screen for the testing phase is shown in Figure
7 . Users were asked to give a rating to each of three different
equalizations presented by the computer. These three choices
were:

1. A linear average 

2. The NN average

3.  No change

The “No change” equalization was used as a control. Each of
these equalizations was represented by one of the Eq Selection
Buttons. The linear average was the mean slider change across
all 11 users for all 41 sounds for the current goal. This
average embodied the approach of “always do the same thing”
for a desired goal, such as always increasing the rightmost
sliders to make a sound more bright.

At the other extreme the NN average was the mean slider
change of the 2 nearest neighbors from that subject’s training
session only. The nearest neighbors were computed by
comparing the example’s signature (energy per each of the 9
bands) with the signatures of the stored data. This was
essentially placing the example point in a 9-dimensional
space and finding the two closest points. The correspondence
between the above three types of equalizations and the eq
selection button positions were randomized on each
presentation.

To start the sound playing, subjects selected one of the Eq
selection buttons, “Eq A”, “Eq B”, or “Eq C,” which triggered
the sound to start being played. This selected equalization was
then compared to the original sound by clicking on the “Flat
Eq” button. Each of the equlizations was then given a rating
using the slider below it as to how good of a job it did at
giving an aesthetically pleasing increase in the highlighted
goal.  Once the user was satisfied with his or her eq ratings,
selecting the “Next” button advanced to the next example and
corresponding goal.  The eq selection button for “no change”
was actually an identical setting to the “Flat Eq” button, a fact
that was not always recognized by the subjects.

Figure  7:   Interface for testing phase.  Three possible
equalizations are rated as to how well they do in giving an
aesthetically pleasing increase in the highlighted goal.

4.6  Results
The experiment validated the hypothesis that nearest
neighbor pattern matching (context dependent) does a better
job at equalizations than does a linear average. Although the



Eq Ratings sliders are labeled on the screen from 1 to 5, they
actually mapped to values from 1 to 15.  The mean evaluation
of the “no change” equalization (the control) was 2, the linear
(non-context dependent) equalization mean rating was 6.  The
nearest neighbor (context dependent) equalization was over
10.08, which is 68% better than the linear equalization.

Brightness was the easiest timbre for subjects to identify,
followed by darkness, with smoothness being the most
difficult.  Rank ordering of which of the three equalizations
was preferred showed than NN equalizations were preferred
81% of the time.

5 .  CONCLUSIONS
The trained system developed here has been implemented as
an expert equalizer (Figure 8), where a sound is selected, and
then simply by moving a slider under the desired goal, a
context-dependent appropriate amount of equalization is
done.

One way to look at the system is that it implements a many-
to-one mapping, putting many complicated controls into a
single control that appropriately affects the outcome. The
paradigm presented here could be used to exploit the computer
as a tool in extending users' perception in the modalities of
sight or smell or other applications in hearing. Using nearest
neighbor for a perceptive task could be used by airlines in
interpreting video or x-ray data in explosives detection in
luggage [7] or by the Navy in interpreting audio signals for
submarine detection.

As illustrated in this work’s application to sound
equalization, a computer can be used as a perceptive tool to
give a user an expert level of skill.

Figure 8:  Expert equalizer interface.  Slider changes in
the “Eq Effects” window for a particular goal
automatically give a context-dependent equalization.
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