Creating an Empirical Basis for Adaptation Decisions

Anthony Jameson Barbara Grol3mann-Hutter

LeonieMarch Ralf Rummer

Departmenbf ComputerScience Departmenbf Psychology Universityof Saarbiicken
P.O.Box 151150, 66041Saarbicken, Germaly
jameson@cs.uni-sibe barbara@cs.uni-sibe r.rummer@rz.uni-shle
Fax: +49681302-4136,Phone:+49681302-2363 302-3196

ABSTRACT

How cananadaptveintelligentinterfacedecidewhatpartic-
ular actionto performin a given situation,asa function of
perceved propertiesof the userandthe situation? Ideally,
suchdecisionsshouldbe madeon the basisof an empiri-
cally derived causaimodel. In this papemwe shov how such
a model can be constructedyiven an appropriatelylimited
systemanddomain: On the basisof datafrom a controlled
experiment,aninfluencediagramfor makingadaptatiorde-
cisionsis learnedautomatically We thendiscusswhy this
methodwill oftenbeinfeasiblein practice,andhow partsof
the methodcan nonetheles$®e usedto createa more solid
basisfor adaptatiordecisions.
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INTRODUCTION

Oneway in which anintelligent userinterfacecanbe intel-

ligentis by adaptingautonomouslyto propertiesof the user
or the situation. A useradaptivesystentanbe definedasa

system(S) that (a) makesnontrivial inferencesconcerning
propertiesof the user(l/) on the basisof informationabout
U and(b) adaptsits actionsto the inferred propertiesof U

andrelevantcontectual factors(cf. [6]).

How do useradaptve systemsgo aboutchoosingtheir ac-
tions? In descriptionsof suchsystemsthe decisionproce-
duresare usually described—ifat all—in terms of if-then
rulesor formulasthatareaccompaniedby little empiricalor
theoreticaljustification. Evenwith systemghatemploy ex-
plicit decision-theoretienethods(see,e.qg., [5]; [7]; [13]),
theempiricalbasisof the decisionprocedures typically not
in thefocusof attention.

In this paper we aim to encourageand help designersof

useradaptive systemsto develop decisionproceduresn a
moreprincipledand—if possible—empiricallyustifiedway.
We addresgwo questionsn turn:

1. In an ideal situation—with a simple, restrictedsystem
aboutwhich we cancollectary empiricaldatawe like—
whatwould be an effective methodfor developinganop-
timal decisionprocedure?

2. In therealworld—in whichthe methodjustintroduceds
normally infeasible—hav canwe adoptsomeaspectof
the methodin orderat leastto improve on currentprac-
tice?

To answetthefirst questionjn thenext sectionwe introduce

a simple systemandan experimentthat we performedwith

it.

EXAMPLE DOMAIN AND EXPERIMENT
The Specific Adaptation Issue

Theexamplesystem(S) anddomainusedin our experiment
areillustratedin Figurel. S is an assistancesystemthat
presentsequencesf spoleninstructionsto the user!/ (as,
for example,a computersupporthot-line might do). One
guestionthatarisesis whetherS shouldpresentheinstruc-
tions (a) in a stepwisemanner(i.e., allowing U to execute
eachinstructionin thesequencéeforehearingthe next one)
or (b) in abundledmanner(i.e., all at once,beforel/ starts
executingthefirst instruction)(cf. Figure?2).

The main drawbackof stepwisepresentatiorns the interac-
tion overhead After executingeachinstruction(exceptthe
last onein the sequence)l/ mustsomehav confirmto S
that he is readyfor the next instruction. (We areassuming
herethat S doesnot get directinformation abouti/’s task
performance.his confirmationsignalingrequiresa certain
amountof time andeffort on{’s part?!

The main limitation of bundledpresentations that it may
requirel/ to try to storeanexcessve amountof information
in working memory(WM). If U’s availableWM capacityis
inadequate—foexample,becauseahe sequencef instruc-
tionsis especiallyiong, or becausé/ simultaneoushhasto
storeunrelatednformationin WM—U/ may fail to remem-

IMoreover, S maybe ableto formulatethe instructionsmoreconcisely
if S canbundlethemtogetherfor exampleby usingellipsis.
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Figure 1. Main screerusedfor theexperiment.

Stepwise: Bundled:

S: Set X to 3. S: Set X to 3,
U ... [OK] setMto 1,
S: SetMto 1. setVio 4.
U ... [OK] U .........[OK]
S: Set V to 4.

U ... [OK]

Figure 2. lllustration of the two presentationmodesfor in-
structions.

bertheinstructions.Theresultingerrorsin taskperformance
may far outweighthe time saved by bundling the instruc-
tions. Accordingly, we may expectbundledpresentationo
beinappropriataf the sequencef instructionsis especially
long, and/orif U’s effective WM capacityis temporarilylim-
ited becausé/ is distractedoy ervironmentalstimuli and/or
ataskthathe hasto performsimultaneously

If we were developing a full-blown, complex system,we
wouldn’t want to dwell muchlonger on this one aspectof
its behavior. It would be consistentwith currentpracticeto
implementa decisionrule more or lesslike the following
one:

« If U is significantly distracted,or if the sequenceof in-
structionscomprisesmorethan 3 stepsthenusestepwise
presentation;
otherwise usebundledpresentation.

In an effort to develop an especiallywell-foundeddecision
procedurdor this examplesystemwe took thetime to col-
lect extensive empiricaldatain a controlledsetting.

Method
Materials

Figurel shavsthescreerthatsubjectsvorkedwith through-
out the experiment. They useda mouseto click on the but-
tonslabeledwith digits andonthelarge OK button.

Their primary taskwasto executesequencesf spolenin-

structions,eachsequence&omprising2, 3, or 4 steps Each
sequencavaspresentedy the systemin either stepwiseor

bundledmode(seeFigure2).? In stepwisemode,after ex-

ecutinga singleinstruction,the subjecthadto signalcom-
pletion by clicking on the OK buttonin orderto receve the
instructionfor the next step. Eachindividual instructionfor

a stepwasplayedfrom a separatesoundfile; the soundfiles

playedfor a givensequencén stepwiseandbundledmodes
wereidentical,the only differencebetweerthe modesbeing
theorderingof the actionsof subjectandsystem.

On half of the trials, the large rectangleat the top of the
screerprovideda situationaldistractionwhich wasintended
to reducethe amountof working memorycapacitythat the
subjecthad availablefor the primary task. At moreor less
regularintenvals,therectangl@¢ook onacolorthatalternated
betweerredandgreenin randomorder Whenererthe same
color appearedwice in successionthe subjectwasto press
thespacebar.

Design
Therewerethreeindependentariables:

= Presentation Mode: stepwiseor bundled
= Distraction?: nooryes
= Number of Steps: 2, 3,0r 4

Twelve specific experimental conditions were created
throughorthogonalkombinationof thesefactors.

Two dependenvariableswill bediscussedhere?

= Execution Time
In bothconditionsthe executiontime wasthetotal time re-
quiredfor theprocessingf aninstructionsequenceminus
thetime requiredoby the systemto play the instructions?
Specifically: In bundled mode, this was the duration of
the interval between(a) the momentthe systemfinished
playing the instructionsequencend (a) the momentthe
subjecttompletedhefinal stepin thesequencéy pressing
one of the numberedbuttons. In stepwisemode, it was
the sumof the correspondinglurationsfor the individual
steps,wherebythe time requiredto pressthe OK button
(not relevant in bundled mode)was alsoincludedin the
executiontime.

= Error
This variablehad the value 0 for a particularinstruction

2The original Germanformulation of aninstructionwas“Setze[letter]
auf[number]”.

SFurtherdependentariablesareanalyzecby [10], but theresultsarenot
relevantenoughhereto warrantdiscussiorin this paper

“Note that it would just aswell have beenpossibleto include the to-
tal time for the playing of the instructions sincethis time wasidenticalin
stepwiseandbundledmode.



sequencd thesubjectpressedll of theinstructedouttons
in the correctorder, thevaluel otherwise.

Subjects

Subjectswere 24 studentsfrom variousdepartmentst the
University of Saarbiicken, who recevedfinancialcompen-
sationfor theirtime.

Procedure

For eachsubject the experimentbeganwith a practicephase
thatwasintendedo familiarizesubjectswith theexperimen-
tal environmentandminimize learningduringthe main part
of theexperiment.Fourblocksof instructionsequencewere
introducedandpracticedn turn, eachinvolving onecombi-
nationof the independentariablesPresentation Mode and
Distraction?.

In the main phaseof the experiment, the instruction se-
guenceswere againpresentedn four blocks, whoseorder
wassystematicallyariedacrosssubjects.In eachblock, 18
instructionsequencesvere presentedin 3 subblocksgeach
of which comprised sequencesf eachlength. Half of the
subjectsstartedwith the shortersequenceandmovedon to
the longerones,while for the other half the orderwas re-
versed.Thusin all, dataon 72 sequencewereobtainedrom
eachsubjectwith eachspecificconditionbeingrepresented
by 6 sequences.

Results

Most interestingfor our purposesarethe resultsfor the 12
specific combinationsof independentvariables,showvn in
Figure3. But to give anideaof the statisticalreliability of
theresultswe alsoreportonstatisticalanalyse®f theeffects
of individualindependentariables.

For eachof the two dependentariables,a three-vay (3 x
2 x 2) analysisof varianclANOVA) wasconductec

Execution Time

With respecto executiontime, main effectswerefound for
all three independentvariables: Executiontime is on the
whole longerif thereare morestepsin the sequenceif the
presentations stepwiseandif thereis a distractiontask®

The increasewith the length of the instructionsequenceés
easilyunderstandablii view of thelargernumberof actions
thatneedto be performed.

The differencebetweenthe two presentatiormodesis due
mainly to theadditionalinteractionoverheacdhssociateevith
stepwisepresentation.This overheadconsistsin 1, 2, or 3
extra clicks onthe OK button,respectiely, for sequencesf
length2, 3, and4. Sincethis extra overheads greaterfor
longersequencest is understandabléhat thereis a signif-
icanttwo-way interactionbetweersequencéengthandpre-
sentatiormode.

SPraviously conductednultivariateanalysef variancehad confirmed
thatit wasappropriateo conducttheseseparatéANOVASs.

SExceptwherestatedotherwise all reporteddifferencesarestatistically
significantatleastatthelevel of p < .01.
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Figure 3. Mean executiontimes and error ratesfor each
combinationof valuesof theindependentariables.

(Dashedinesrepresenstepwisepresentationsolid linesbundledpresenta-
tion.)



The longerexecutiontimeswhenthereis a distractiontask
areexplainableatleastin partsimply in termsof thegreater
numberof keypressesequiredin this condition.

Thereare no othersignificantinteractionsinvolving execu-
tion time.

In sum, the resultsfor the variable Execution Time canbe
understoodairly straightforvardly in termsof the number
of physicalactionsthat/ hasto executein the variouscon-
ditions.

Errors

With respecto errors,main effectswereagainfoundfor all
threeindependenvariables: The probability of an erroris
greateiif therearemorestepsin thesequenceif the presen-
tationis bundled;andif thereis a distractiontask.

The ANOVAs alsorevealedsereraltwo-way interactionsn-

volving pairs of independenvariables;but sincetheseare
mosteasilyinterpretablén termsof resultsfor specificcom-
binationsof threeindependentariableswe will notdiscuss
them.

Most relevant for our purposesds the significantthree-vay
interactionof the independentariables. The most salient
specificfeaturesof the resultsarethe high errorratesunder
bundledpresentationvhenthereis a distractiontask(except
with two-stepsequencesyherethe error ratesare too low
to be of muchinterest).For four-stepsequenceéseethetop
right-handgraphin Figure3), a Schefé testshavs that this
error rate is significantly higher than the other three error
ratesshawvn. For three-stesequenceshe correspondingr
ror rateis significantly higherthanthe lowesterror rate in
thesamegraph(p = .02), but the differencedrom the other
two error ratesarenot significant(p = .065 andp = .287,
respectrely).

In sum, eventhoughthe lasttwo differencesdo not (quite)

reachacceptedevelsof statisticalsignificancethe analyses
of varianceshaw thatthe overall patternof resultsfor errors

representstableunderlyingregularitiesthatcanbeexpected
to reoccurin similar situations.

Brief Discussion

In sum,acorventionalanalysisof thedataconfirmsthequal-
itative hypothesedormulatedat the beginning of this sec-
tion: Stepwisepresentatiorof instructions,unlike bundled
presentationis a slow but safemethodwhich is essentially
invulnerableto situationaldistractions.

USING THE RESULTS IN A LEARNED INFLUENCE
DIAGRAM

Theexperimentustreportedontells usmorethanwe would
normally have time to find out aboutthe causakelationships
that arerelevant to S’s adaptationdecisions. But we still
don't have a decisionprocedurehat specifiesexactly when
S shouldpresenits instructionsin a stepwise(vs. bundled)
mode. We will now presentandmotivatea way of deriving
suchadecisionprocedure.

Number of Steps Presentation Mode | Distraction?
Four 0 Bundled 100 Yes 40.0
Three 100 Stepwise 0 No 60.0
Two

Execution Time
s9 065 g v
s8 0.65 Error
s7 1.57 Yes 10.0
s6 0.92 No 90.0
s5 3.79
- 77 0.1+0.3
s3 31.8
s2 48.8
sl 4.18

27+12

Figure 4. Bayesiannetwork learnedon the basisof the
experimentaldata,shaving a predictionmadeunderuncer
tainty abouttheindependentariableDistraction?.

Learning a Bayesian Network

Thefirst thing we needis amodelthatwill helpS to predict
U’s executiontime anderrorsin eachspecificsituation. For

this purposewe defineda Bayesiametwork (BN) with the
structureshonvn in Figure4. Eachnodein thisnetwork is ob-

senable: For eachobsenationin the datasetesultingfrom

the experiment(describinghow a particularsubjecthandled
a particularsequencef instructions) a precisevalueof the
correspondingariableis available.

Learning a Bayesiannetwork that containsonly observ-
ablevariablesandwhosestructurehasbeenspecifiedin ad-
vanceis straightfornard’ We usedthe NETICA® built-in-
algorithmfor learningBNs. This algorithm,which presup-
poseghatall variablesareobsenable,computeghe (condi-
tional) probabilitieson the basisof frequenciesn thedata?

Thepropertieof thedatathataresummarizedn Figure3 are
reflectedin the conditionalprobability tables(CPTs)of the
learnedBN andin thespecificinferencesnadeby the BN. In
particular the basicuncertainty-managemenapabilitiesof
BNs allow thefollowing generallyusefultypesof inference:

1. Predicting the dependentvariables given uncertainty
aboutthe valuesof the independenvariables: S maywant
to make a prediction(andanadaptatiordecision)evenwith-
out knowing the valuesof all of the independentariables
shown in Figure4. For example,S may not know whether

7In amodelingeffort thatis in somewayscomparablégo thepresenbne,
Lau andHorvitz ([9]) useddataon users’"WWW searchbehaior to learn
BN modelsthatcanbe usedto predictandinterpretsuchbehaior.

8NETICA is a commercialtool from Norsys Software Corp. (see
http://wwwnorsys.comjor working with Bayesiametworks andinfluence
diagrams.

9We have also usedthesesamedatato learn considerablymore com-
plex Bayesiannetworks, whoseadditionalnodesrepresen{a) other vari-
ablesmeasuredn the experiment,suchaserrorson thedistractiontask;(b)
a variablerepresentindhe averageexecutionspeedof the currentsubject,
which malesit possibleto take individual differencesnto account;and(c)
anunobserable noderepresenting{’s currentworking memoryload (see
[3]). To focus attentionon the centralmethodologicaissueswe discuss
hereonly the simplestpossiblenetwork thatcouldbe definedfor this exper
iment.



Number of Steps Presentation Mode | Distraction?
Bundled 100 Yes 92.3
Stepwise 0 No 7.72
Execution Time
s9 0 é \ 4
s8 0 Error
s7 0 Yes 100
s6 0 No 0
s5 0 1
s4 100 |—
s3 0
s2 0
sl 0
4

Figure 5. The samenetwork asin Figure 4, showving the
interpretatiorof anobsenationof ¢/’s performance.

U is currentlydistracted As Figure4 shaws, if a probability
distribution for eachof thesevariablesis specified the net-
work will still generatea predictionfor /’s executiontime.

2. Learningaboutl/ or the currentsituation: Wheni/’s per
formancein performinga taskis obsered, the correspond-
ing node(s)Execution Time and/orError) canbeinstantiated
with theobsenedvalues.Evaluationof thenetwill thenlead
to updatedbeliefsaboutary variablesthatwerenot already
known with uncertainty For example,Figure5 shavs how
the network infers that S was probablydistractedafter ob-
servingthatl/ madeanerror. Thislearningaboutthecurrent
U canenhancehe quality of S’s future predictionsandde-
cisionsaboutthis particular/.° In termsof the original
experimentthis type of inferenceis like choosingarandom
obsenationabouta subjectandtrying to guessvhatspecific
conditionthe subjectwasin whenhe or shegeneratedhat
obsenation—atype of inferencewhich is not supportecy
theusualtechniquegor analyzingexperimentaldata.

Extending the BN to an Influence Diagram

Beforethe systemcanactuallymake decisionswe have to
extend this network to an influencediagram(Figure 6), in
two steps:

1. Add a value nodethat expresseghe systems$ evaluation
of a particularcombinationof valuesof the dependentari-

ablesError andExecution Time. Notethattherelative impor-

tanceof thesetwo criteriacanvary greatlydependingn the

natureof thetask(e.g.,settingfont preferencess. control-

ling a power plant) andthe situation. If this relative impor-

tancewerefixedonceandfor all, it couldbeencodedlirectly

into the CPT of the utility node.Insteadto make it possible
to usedifferentimportanceweights,we introducea chance
variableWeight of Error. S caninstantiatethis variableto

variousvaluesto take into accountshifting priorities. For

example,a valueof 16 meanghatavoiding 1 erroris justas
importantassasing 16 second®f executiontime.

10if this type of learningaboutthe useris to be donerepeatedlythe BN
hasto be extendedto becomea dynamicBN—see e.qg.,[7].

TTiten i Siigs Presentation Mode | Distraction?

Bundled -eoe79§“ Yes 100
Stepwise 0 No 0
Y

Execution Time
s9 065 v
s8 0.65
s7 1.96 Weight of Error Error
s6 1.31 w28 0 Yes 183
s5  8.50[ w25 0 No  81.7 L
s4 14.4m w22 0 0.18 £ 0.39
s3 39.2 mmm wi9 0
s2  30.7mm wi6 100 |EE—
sl 2.61 wi3
3.1+1.3 w10

Figure 6. An influencediagramdefinedasan extensionto
the BN of the previousfigures.

2. Make Presentation Mode into a decisionnode Thethree
links pointinginto this nodefrom othervariablesexpresshe
factthatthevaluesof theseothervariablesnaybeknown ex-
actly atthetime whenadecisionis made.Oncethecomplete
influencediagramhasbeenspecifiedandsolved!! S knows
theutility of eachactionit might take in eachsituation. For
example,Figure6 shavsthatthe utility of bundledpresenta-
tion in thesituationdescribedy the othernodess —6.0679.
By comparingthis utility with thatof stepwisepresentation,
S candecidewhich modeto use.

In additionto having S make decisionsin individual cases,
the designerwill probablywantto have an overall picture
of the decisionsthat S will make. For example,it’'s con-
ceivablethat, for ary reasonablealueof Weight of Error, S
would always decideto use stepwisepresentation.In that
casethedesignercouldprobablysare alot of troubleby not
implementingbundledpresentationn the first place. Tools
for evaluatinginfluencediagramsffer away of gettingsuch
anoverview withoutiteratingthroughall possiblesituations
and seeingwhat decisionis recommendedby the influence
diagram: Associatedvith eachdecisionnodeis a tablethat
describeghe decisionpolicy for thatnode—i.e.,whatdeci-
sion shouldbe madefor eachpossiblecombinationof the
valuesof the variablesthat may be known preciselyat the
time of thedecision.The policy for the preseninfluencedi-
agramis summarizeaonciselyin Tablel onthebasisof the
actualpolicy tablegeneratecutomaticallyfor theinfluence
diagram.

Notethatthetypeof informationprovidedby thepolicy for a
decisionnodecanhave asimilarfunctionto theresultsof the
sensitvity analyseghatare sometimegerformedwith pre-
dictive modelsof interfacedesigns For example,[1] (Chap.
7) includesa sensitvity analysiswhich determinedn what
situationsa new methodfor correctingtyping mistalesin

11For discussion®f solutionalgorithms,see[12] and[8]; the algorithm
usedby NETICA is basednthelatterwork.



Table 1. Summaryof the policy for the decisionnodePre-
sentation Mode

Steps Distraction? = “No” Distraction? = “Yes”
Four Stepwisdff w > 9 Stepwisdff w > 3
Three Stepwisaff w > 21 Stepwisdff w > 6
Two Alwaysbundled Stepwisdff w > 9

an editor would be more effective thanthe alreadyexisting
methodslt is acornvenientfeatureof influencediagramtools
thatthey produceinformationof this sortasa sideeffectin
situationssuchasthe oneconsideredere.

In sum, the idealizedmethodjust proposedis straightfor

ward, in thatit combineswell-known methodsfrom exper

imental psychologywith someof the simpler functions of

readilyavailabledecision-theoretisoftwaretools. Yetit per

mits a moreeffective useof the experimentaldatafor adap-
tation decisionghanwould be possiblethroughthe useof a
corventionaldataanalysis.

PARTIAL APPLICATIONS OF THE IDEALIZED
METHODOLOGY

Unfortunately this methodologywill be infeasiblein most
practicalsituations. The main problemis thatit is usually
impossibleto obtainexperimentaldatain a situationthatis
identicalto the situationsin which the systemis actuallyto
beused.

But againstthe backgrouncbf the discussiorsofar, we can
identify several fallbacksthat enablethe designerto derive
adaptatiorpoliciesin aprincipledway, possiblywith anem-
pirical basis.

Fallbac k 1: Modify the Learned Model by Hand

In arelatively favorablesituation,we may have developeda
modellik e the one describedabore andwantto apply it to
a systemor domainthat differsin just a few specificways
from theonefor whichtheexperimentabatawerecollected.

Hereareexamplef relatively simpledifferenceghatmight
arise:

« The individual task stepsmight be longer and/or cogni-
tively moredemandingor shorterand/orsimpler).

« Different types of situational distractions might arise,
which might be lessor moredistractingthanthe distrac-
tion taskstudiedin our experiment.

Obviously, if exactly the samedecisionprocedurds usedin
the new situation,the decisionswill in generalbe basedon
falsepremisesandthereforeoftenbeinappropriate.

Sometimesit may be possibleto modify the originally
learnedinfluencediagramby handon the basisof a theo-
reticalanalysisof the changesn the contet. To take aclear
examplewherethis approachseemsattractve, supposehat
the only differencebetweenthe original context C' andthe

new context C’ is thatin C', understepwisepresentationthe
operationthati/ hasto performin orderto confirmcomple-
tion of a steptakesabout300 mseclongerthanit did in C'.
The only necessarghangein the influencediagramwould
seemto concerrthe conditionalprobabilities(in the CPTfor
thenodeExecution Time) thatpredictthe executiontime un-
derstepwisepresentationSpecifically the predictionshould
beincreasedy (n — 1)300 msecwheren is the numberof
stepsn thesequenceSinceerrorshave negligible frequengy
understepwisepresentationthereis noreasorto expectthat
thefrequeng of errorswould be affectedby this change.

Engineering-orientedognitive modelsthathave beendevel-
opedin human-computemteractionresearchsuchas the
GOMS modeland Model HumanProcessof[1]) andtheir
descendantgreintendedto supportthis type of prediction.
Still, anobviouslimitation of thisapproachs thattheconse-
gquence®f achangen context maynotalwaysbepredictable
onthebasisof theoreticahnalysisalone.Supposefor exam-
ple,thatit’s notthe confirmationoperatiorthatis lengthened
but ratherthe executionof atypical taskstep(e.g.,insteadof
justclicking onabutton,i/ now hasto adjustthepositionof a
slider). Thischangewill presumablyotjustlengtherexecu-
tion times: Underblocked presentationit will alsolengthen
thetime duringwhich &/ hasto remembethe remainingin-
structions therebyincreasinghe errorrate. The sizeof the
increasen errorrateis hardto predictreliablyin theabsence
of additionaldata.

Fallbac k 2: Collect Real Usage Data

A designemightthink thatany controlledexperimentwould
be so far removed from the reality of actual systemuse
thateventhe sort of theoreticalextrapolationjust discussed
would not yield a useful adaptationpolicy. Or theremay
simply beinsufficientresourceswvailablefor acontrolledex-
periment.

An alternative may be to employ dataon actualsystemuse
instead. While dataare beingcollected,S might be acting
nonadaptiely or applyingsomesuboptimaladaptatiorpol-
icy. But this type of datais likely to have someimportant
limitations relative to experimentaldata, including various
typesof missingdata,uncontrolledcontectual factors,and
biasintroducedby whatever decisionpolicy S is applying
duringthe learningphase.Evenif statisticallearningmeth-
ods are employed that deal as well as possiblewith such
complicationgsee e.g.,[4]), it maybeimpossibleto learna
BN whichis accurateenoughto be useful.

Fallbac k 3: Do the Analysis Without Data

The problemsmentionedso far will be so seriousin mary

casesthat the whole idea of collecting empirical dataand
learningfrom it appeardo be infeasible. But eventhen, it

may be usefulto apply the samebasiclogic of theidealized
methodology replacingthe empirical datawith qualitatve
educatedjuesses:

1. Specifythe structuee of the influencediagramthat could



in principle be learnedwith empirical data,using what-
ever information, experience,or theoreticalinsight you
have available.

2. Describeat leastqualitatively the relationshipsthat you
think exist amongthe nodesin theinfluencediagram.

3. Formulatea policy thatseemsappropriaten the light of
thequalitative analysis.

The threeinfluencediagramsshawn in Figure 7 aretypical
of the kinds that a designermight be able to draw with-
out the benefitof empirical data, as a way of making ex-
plicit his or herbeliefs!? They illustratethe potential—and
limitations—ofattemptdo arrive atadaptatiorpolicieswith-
outempiricaldatal®

1. One User Property, One Criterion Variable

Diagraml shows the caseof a training systemthatmustde-

cide whetherto explain a particularapplication(e.g.,an e-

mail system)with referenceto a concrete,analogical con-

ceptualmodel(e.g.,oneinvolving afiling-cabinetmetaphor)
or with referencdo anabstracimodel. Here,the adaptation
decisionis the simplestpossibletype, sinceonly one user
propertyandonecriterionvariableareinvolved.

The graphto the left of the influencediagramshows a re-
lationshipthat would justify adaptation:a crosswer inter-
action suchthatthe analogicaimodelleadsto betterperfor
mancefor userswith low visual ability, while the abstract
modelis betterfor thosewith high ability. This qualitative
relationshipis not only a necessarpnefor justifying adap-
tation, it is alsosufficientin this case.lt is not necessaryo
know theexactquantitatve natureof theinteraction.Soeven
if adesignerchosenotto conductanempiricalstudyon this
guestionthey couldjustify thepolicy just mentionedf they
couldarguethata cross@erinteractionmustexist.

2. Two User Properties, One Criterion Variable

In Diagram2, a seconduserpropertyis taken into account
aswell: the learning mode which may be concrete or ab-
stract Onemight be ableto predicton theoreticalgrounds
thecrossweerinteractionthat SeinandBostrom([11]) found
(shown in the graphto the right of the influencediagram).
Unfortunately merely qualitative knowledgeof the two in-
teractionshown for Diagram2 doesnot provide groundsfor
formulatingan adaptatiorpolicy: It's obvious enoughwhat
to dowith userswho have high visualability andanabstract
learningmode; but what aboutthosewho combinehigh vi-
sualability with a concretdearningmode?Without empir
ical dataon this specificgroup,onecanonly guesswhether
their visual ability or their learningmodeshouldpredomi-
natein determiningthe decision. So a theoreticallybased
policy for thistypeof decisionwould be partly well-founded
andpartly essentiallyarbitrary

12The useof influencediagramsandrelatedformalismsto help clarify a
decisionmaler’s assumptionandvaluesis commonpracticein thefield of
decisionanalysig(see e.g.,[2]).

Bactually, to ensurerealism,thefirst two diagramsarebasedon an ex-
perimentof SeinandBostrom([11]).
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Figure7. lllusrative influencediagrams.
(Explanationin text.)

3. One User Property, Two Criterion Variables

In Diagram3, we supposethat for some reasonthe only
choiceavailableto the systemis between(a) presentingnly
theabstracttonceptuamodelor (b) presentinghoththe ab-
stractandtheanalogicaimodelin successionAlthoughSein
andBostrom([11]) didn’t investigatehis questionwe could
predictontheoreticalyroundghattheadditionof theanalog-
ical modelwouldbenefitall userdo someextent—especially
thosewith low visualability. Sotheres no crossaerthatin
itself would justify any adaptationSimilarly, if we alsocon-
sideronly theseconctriterionvariableof trainingspeedus-
ing only theabstracimodelis betterfor all users.Thejustifi-
cationfor treatinguserdifferentlycanbeseeronly whenthe
overall value of the decisionis consideredFor someusers,



theinclusionof the secondnodelmay be worth the decline
in trainingspeedwhile for othersit maynotbe. Soto justify

adaptationwe would have to make someassumptiorabout
the relative importanceof performanceandtraining speed;
and even thenthe formulation of a policy would involve a
good deal of guesswrk unlessthe relevant empirical data
wereavailable.

In sum,asthe numberof relevantvariablesincreasesit be-
comesincreasinglydifficult to justify a particularadaptation
policy solely on the basisof qualitatve beliefsaboutthere-
lationshipsamongthe variables—egenif it canbe assumed
that thesebeliefs are correct. But even if usefulempirical
datacant be collected,the type of analysisproposechere
may helpin the formulationof a coherenfpolicy andin the
identificationof theaspect®f the policy thataremostlikely
to bewrong.

SUMMARY OF CONTRIBUTIONS

The content-specifianessageof this paperconcernssome
tradeofs that needto be takeninto accountwhena system
decideshow to presenta sequencef instructionsto auser

The more generalmessagas methodological. In shaving
how designersnightin principlecreatea solid empiricalba-
sis for adaptationdecisions,we have mainly succeededn
shaving how difficult it usuallyis to do soin practice. But
still, we hopeto have contributeda clearerunderstandin@f
the problem, so that designerqa) “know what they don'’t
know” whenconsideringadaptatiorpoliciesand(b) cantake
whatever stepsarepracticallyfeasiblein their particularsit-
uationtowardderiving a solid basisfor theiradaptatiorpoli-
cies.
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