
Mining Navigation History for Recommendation
Xiaobin Fu, Jay Budzik, Kristian J. Hammond

Infolab, Northwestern University
1890 Maple Avenue
Evanston, IL 60201

1(847) 467-1265

fu, budzik, hammond@ils.nwu.edu

ABSTRACT
Although a user’s navigation history contains a lot of hidden
information about the relationship between web pages and
between users, this information is usually not exploited. The
information hidden in the history can be an invaluable source of
knowledge in assisting a user to better surf the Web. We presented
a system which actively monitors and tracks a user’s navigation.
Once a user’s navigation history is captured, we apply data
mining techniques to discover the hidden knowledge contained in
the history. The knowledge is then used to suggest potentially
interesting web pages to users.

Keywords
Data mining, Collaborative Information Recommendation,
Intelligent User Interface.

1. MOTIVATION
Although a user’s navigation history contains a lot of hidden
information about the relationship between web pages and
between users, this information is usually not exploited. Some
collaborative information recommending systems require users to
rate a web page, store these ratings and make recommendations
based on the ratings[7, 9]. While this method is a good approach
in capturing a user’s reading experience, it requires extra work on
the part of the user. The performance of such systems depends on
how well users use them.

Another method of reusing a user’s reading experience is to ask a
user to input related web pages to the page being read. The user’s
recommended pages will then be used by other users. For
example, a system called “Alexa” [3], employs such a method.

These methods are onerous to many users. In fact, the footprints a
user leaves while surfing the Web contain enough information for
us to discover hidden knowledge about interesting pages, even
without user’s explicit ratings or inputs. Our research goal
reported in this paper is to actively but quietly keep tracks of what

a user has read, to collect that user’s navigation history in a
central repository, and apply data mining techniques to discover
hidden information from user’s navigation history. There are two
types of hidden knowledge discovered:

1. What sets of URLs are read together by many users?
Statistically, there must be some relationship between such a
set of URLs, whether they are similar to each other, or if they
are separate components of a major topic.

2. What sets of users read many of the same web pages? If two
users have read a lot similar page, we can conclude these two
users have similar interests.

These kinds of knowledge are then used to make
recommendation. The knowledge is gained directly from the
user’s navigation history, without any extra work on the part of
the users. As we will discuss in later sections, this offers another
method of collaborative information filtering.

We implement a system called “SurfLen” to use this method.
SurfLen is an information recommendation system which suggest
interesting web pages to users. The underlying data mining
technique of SurfLen is “Association Rules” .

2. ASSOCIATION RULES
One of the more well studied problems in data mining is the
mining of association rules [1, 2, 4, 5] in market basket data,
which was first introduced by Argawal, Imielinski and Swami [1,
2]. Market basket data stores items purchased on a per-transaction
basis for a sales organization. Basket data type transactions do not
necessarily consist of items bought at the same time. The data may
be aggregated from items bought by a customer over an interval.
The goal is to discover buying patterns in the form of rules like
“90% of transactions that included purchasing bread and butter
also included purchasing milk” . Such rules can then be used for
decision support, e.g., price promotion and store layout. This
technique has proven highly successful for extracting useful
information from large databases. Especially in recent years, a
number of efficient algorithms such as “a-priori” [1, 2] have been
presented for fast discovery of associations in large databases.

To place our work in the context of earlier work, we introduce
some basic concepts of mining association rules to market basket
data, using the formalism presented by Agrawal et al. Let I = { i1,
i2, …ik} be a set of binary attributes, called items. Each transaction
T is represented as a set of items such that T ⊆ I. Let D be a set of
such transactions. Let X be a set of s items such that X ⊆ I, called
an s-itemset. We say that a transaction T contains X, if X ⊆ T. An

association rule is an expression of the form X ⇒ Y , where X ⊂ I,
Y ⊂ I, and X ∩ Y = ∅.

We define Support(X ⇒ Y) as the percentage s% if s% of
transactions in D contain X ∪ Y, and Confidence(X ⇒ Y) as the
percentage c% if c% of transactions in D that contain X also
contain Y. An association rule X ⇒ Y holds for D if Support(X ⇒
Y) > minsup and Confidence(X ⇒ Y) > minconf, where minsup
and minconf are two threshold values set in the system. Support
and Confidence are two important measures of association. We
can also represent these two measures as Support(X ∪ Y) and
Confidence(X ∪ Y). Usually we are only interested in those
association rules that have high support or confidence.

An association rule captures item dependency in a transaction set
D. Essentially, it answers a question: what items do customers
often buy together? Interestingly enough, one grocery store
observed that people who buy diapers also buy beer. The
association rule diapers ⇒ beer has high support and confidence
because large fractions of all customers who buy diapers also buy
beer. Once association rules like this are found, they can be used
in a variety of ways. For example, knowledge of the rule diapers
⇒ beer could enable the store to put diapers on sale, and keep
beer at regular price and consequently predict the volume of sales
for both diapers and beer would be increased during the sale
period.

To find all the association rules X ⇒ Y with Support(X ⇒ Y) >
minsup, the algorithm we use performs two steps. First, all
itemsets with minsup (called large itemsets) are generated from
the database. This is a computationally expensive step. In the
second step, association rules are generated from these large
itemsets. This step is very straightforward. For a given large
itemset X = { i1, i2, …ik } , K ≥ 2, the antecedent of each
association rule will be a subset Y of X, and the consequent will
be the subset X – Y. These rules can be further constrained. For
example, one can specify that the number of items in a rule
consequent is 1.

Most current algorithms for the discovery of large itemsets work
iteratively. They first query the database to find all the large 1-
itemsets. Then the large s-itemsets are generated from the large (s-
1)-itemsets of the previous pass. Since the process of discovering
large itemsets is expensive over large databases, various
techniques have been proposed to speed up the search for large
itemsets. One of the important optimizations is called “a-priori” .

2.1 A-Priori Optimization
When generating candidate itemsets, one of the most important
observations is that any subset of a large itemset must be large [2].
Therefore, the candidate itemsets having k items can be generated
by joining large itemsets having k-1 items. This can result in much
smaller number of candidate itemsets. For example, if we are
looking for pairs of items with minsup, we can only consider
those items that appear in the database having minsup. Provided
minsup is high enough, the number of items for the next joining
step will be small enough to speed up the computation
significantly.

3. COLLABORATIVE
RECOMMENDATION SYSTEM
The World Wide Web provides a vast resource of information and
services that continues to grow rapidly. The heterogeneity and the

lack of structure have made it very difficult for users to discover
new interesting information. In an effort to alleviate people’s
information overload, many searching and indexing tools such as
Yahoo and Lycos [10, 11] have emerged. Unfortunately,
searching has been problematic due to many users’ difficulty in
constructing search queries. Because of this difficulty, the number
of results returned by a search engine is often huge, making it
nearly impossible to locate appropriate information. Furthermore,
discovery is different from searching in that searching is goal-
directed, i.e., it is an activity users engage in when they have a
specific information need, while discovery is often accidental.

Recently systems that recommend information to users have
gained much attention. A recommender system suggests new
information to a user based on that user’s preferences and past
behavior. Such systems can help users discover new information
relating to their areas of interest. One popular technique is to
build collaborative information recommender systems [7, 9]. The
basic idea behind these systems is that people will tend to agree
with the evaluation of a certain information item if they have
displayed a pattern of past agreements over other information
items. It makes use of the opinions of people who have already
seen a piece of information for people who have not yet seen it. In
fact, we use collaborative recommendation everyday in an
informal way: we often forward an article to a friend; we suggest a
new type of car to a colleague, etc.

A system employing this technique usually requires users to
explicitly input ratings about a piece of information. These ratings
are then used to compute pairwise correlation coefficients among
existing users. The correlation coefficient is the measure of how
similar two users are. The system can make predictions or
recommendations based on the correlation coefficients: if User A
and User B have a high correlation coefficient, then it is highly
possible that User A’s rating of an item can be used to predict
User B’s interest in it as well.

The current popular algorithm to compute correlation coefficients
is Pearson r Correlation Coefficient. Given two users’ list of
ratings as X = [x1, . . . , xt]

T and Y = [y1, . . . yt]
T, the standard

Pearson r correlation coefficient is used to measure the similarity
(Sr) between two lists of ratings. It is calculated as:

()()
() ()

 −

 −

−−

∑∑
∑

==

=

2

1

2

1

1

t

i avgi

t

i avgi

t

i avgiavgi

yyxx

yyxx

Our research extends association rule mining to collaborative
recommender systems. Instead of evaluating similarity between
users, we compute dependencies among all the information items
that a user has seen. There are several advantages of this method
over the above method. First, it can handle a user’s multiple and
varied interests. The Pearson r Correlation Coefficient works best
when the information space contains stable homogeneous
information contents. Second, it does not require users to input
ratings explicitly. This is a great benefit because rating requires
extra effort on the part of the users.

4. SURFLEN: OVERVIEW AND
IMPLEMENTATION

Our system SurfLen works as follows. It watches over a user’s
shoulder. Each URL browsed by the user is stored as a part of the
user’s browsing history. As soon as a user accesses a new Web
page, SurfLen connects to a central recommender engine, and gets
a list of related web pages. A popup window displays links to
these pages.

Given the browsing history database D, each row of records is a
<u, p> pair, where u is a numeric identifier of the corresponding
user, and p is a numeric identifier of the corresponding URL.
Each user U can be represented as a set of URLs { p1, p2, …, pm } ,
and each URL can be represented as a set of users { u1, u2, …, um

} . Using the proven algorithm “a-priori” , we can find association
rules like { p1, p2, …, pm } ⇒ p, p will then be recommended to
users who have read { p1, p2, …, pm } but not p.

Suppose a set of 2-item URL sets { { p, p1 } , { p, p2 } , …, { p, pn } } ,
and a user is reading p, then, unread items in { p1, p2, …, pn} will
be recommended to this user. Again, the algorithm runs iteratively
through each 2-item URL set and gets the list of
recommendations.

Straightforward application of the above method poses several
problems in a space as large as the web. One problem is dealing
with sparse datasets: if users browsing histories intersect
infrequently, the system on its own cannot make
recommendations. To alleviate this problem, we introduce an
algorithm for ranking the association rules generated by the
system. This allows it to provide recommendations even when the
degree of intersection between a user’s history and a given set of
rules is small. The idea is to rank each itemset based on the
number of intersecting URLs between the itemset and the user’s
browsing history, and use the best k itemsets for recommendation.
Given itemsets S, and a collection of user browsing histories U,
for each history Ui = { p1, p2, p3, …, pm } ∈ U, and itemset Sj =
{ p1’ , p2’ , p3’ , …, p’m } ∈ S, we define rank(Sj, Ui) = |Sj ∩ Ui|.
Itemsets are then stored in a heap sorted by this rank, and the top
k can be used for making recommendations.

Another solution to this problem is to find large 2-item user sets
{ u1, u2} . Given this, URLs that have been read by user u1 can be
recommended to user u2, and vice versa. The user u1 and user u2

are called close neighbors. In addition, work on extending the
above algorithm to include continuous-valued document
comparison functions based on content is in progress.

The heart of SurfLen is the SurfLen Recommendation Engine
(SRE), which continuously searches for association rules. Each
SurfLen client installed at an end user’s machine connects to SRE
and updates the user’s browsing history. In return, SRE
recommends potentially interesting URLs. The SurfLen client
displays the list of URLs in a popup dialog box. The architecture
is outlined in figure 1.

4.1 Surflen Client
The SurfLen client interfaces between SRE and Microsoft Internet
Explorer. It is implemented as a Microsoft Browser Helper Object
(BHO) [12], a COM component that Internet Explorer loads each
time it starts up. A BHO can intercept the browser’s typical
events, such as the “Download Complete” event and monitor a
user’s action. As a BHO, SurfLen does not change to the user’s
browser interface significantly. Due to architectural limitations,

we have not implemented the same type of client for other
browsers, i.e. Netscape Navigator and NCSA Mosaic, though
access to the source code of these browsers does make this a
possibility. Figure 2 shows a snapshot of the system integrated
into Internet Explorer as a user is reading a web page on Distance
Learning. SurfLen is recommending related web sites.

A simple protocol is established for the SurfLen Client to
communicate with SRE. The protocol allows the client to
communicate history information as well as retrieve
recommendations from the system. There are three primary
communication primitives:

• ini: Open an account with the SRE. This communication
primitive is normally used when a user installs a SurfLen
Client. The SRE will generate a unique user ID for the each
new user which will be stored in the registry on the client
machine.

• put: Send a URL to the SRE and get URLs related to the
current page. Every time a user accesses a URL, the SurfLen
client sends “put” command to the SRE.

• get: Get a list of recommended URLs. This command is used
when the SurfLen Client is loaded by Internet Explorer.

The following algorithm describes the SurfLen Client’s workflow
when loaded by Internet Explorer. It ensures the recommendations
made by the system are synchronized with the user’s interactions
in their browser:

1. Detect if SurfLen is being used for the first time by a user. If
yes, read the user’s bookmarks, parse into separate URLs and
send these URLs to the SRE as the user’s initial browsing
history, using the communication primitive “ ini” .

2. After the SurfLen client is loaded by Internet Explorer, query
the SRE to get a list of recommended URLs, and display them
in a popup window, using the communication primitive “get” .

3. Intercept the “Download Complete” event for each URL that a
user accessed, send this URL to the SRE to update the user’s
browsing history, in return, get a list of recommended URLs
related to this URL, using the communication primitive “put” .

IE (user 1)

SurfLen Client

Connection Manager

SurfLen Recommendation Engine

Data Manager Association Rules Generator

IE (user n)

SurfLen Client

Figure 1: System Architecture

The following components of the system work in concert to
manage incoming and outgoing information in the form of a
user’s browsing history, as well as new recommendations.

4.2 Other Components
Connection Manager: The Connection Manager handles
incoming requests from the SurfLen Clients, and forks a new
thread for each request The SurfLen client interfaces between
SRE and Microsoft.

Data Manager: The Data Manager is responsible for storing
URLs accessed by users. The underlying database management
system is Microsoft SQL Server 7.0. The Database Manager
connects the SQL server through ODBC.

Association Rules Generator: The Association Rules Generator
implements the “a-priori” algorithm. SRE calls the generator on
two different occasions. One is at midnight to generate n-itemsets,
since generating n-itemsets is often time consuming (see the
“association rules” section for a discussion of how itemsets are
generated). The other is to generate 2-itemsets when a user’s
client requests related URLs for a particular URL being read.
Given a minimum support threshold that is high enough, this step
can be real-time.

SurfLen Recommendation Engine(SRE): SRE works like a
broker. It coordinates activities of all the components of SurfLen.
The following steps describe how SRE works.

1. Invoke the association rule generator to generate all the
large URL itemsets and user itemsets at midnight, and
store these itemsets.

2. Switch (incoming command):

2.1. case “ ini” : Store the history URLs. Search the stored
URL itemsets to find possible recommended URLs.
Generate a user ID. Store the User ID into user table.
Send the user ID and all the recommended URLs back
to the SurfLen Client.

2.2. case “put” : Store the URL. Search the stored URL
itemsets to find URLs related to this URL. If no URL
found, call the association rule generator with a lower
minimum support threshold. Send all the recommended
URLs back to the SurfLen Client.

2.3. case “get” : Match the list of browsed URLs against the
stored URL itemsets to find all the recommended
URLs. If the number of the list is too small, get some
possible URLs from the user’s close neighbors (see the
beginning of this section for the definition of close
neighbor). Send these URLs back to the SurfLen client.

5. EVALUATION
The empirical evaluation of any large-scale collaborative
recommender system is difficult because the system’s
performance is so highly dependent on broad usage patterns over

Figure 2: SmartLens is recommending URLs as a user is browsing.

large groups of users. In light of this, and as a preliminary step in
a full-scale empirical evaluation, we chose the following
evaluation methodology. To evaluate the recommendations made
by the system, we gathered three non-intersecting sets of URLs
from Yahoo! [11]: one in Distance Learning, one in Finance, and
the other a random set. We then used these URLs to construct
groups of simulated users with specific interests (represented by
the URLs in their history) by randomly choosing a percentage of
URLs from each semantic category. For example, one test set
attempted to simulate users interested in Distance Learning. These
users’ browsing histories were constructed by choosing 25% of
the URLs from the Distance Learning pool, and the other 75%
from the random pool.

We ran two experiments. The first was to determine the effect of
noise on recommendations. Given that users have ephemeral
interests, as well as the fact that viewing a page may not always be
predictive of interest in the subject of that page (i.e., when a user
clicks on the wrong link, or is mislead by a link label). The aim of
this experiment therefore was to show that the accuracy of
recommendations increases as the amount of noise decreases. This
experiment shows first that if there is sufficient intersection across
user browsing history, the system will produce valid suggestions.
Furthermore, given the assumption that over time a user’s
browsing history tends to converge on an accurate representation
of their interests, this experiment shows that the more a user
interacts with the system, the better its recommendations will be.

For this experiment, we built browsing histories for an aggregate
of 100 simulated users by drawing a fixed percentage from the list
of URLs on Distance Learning, and the rest from a random pool
of fixed size. The set of URLs on Distance Learning contained

100 URLs, while the random pool contained 400. At each
iteration, the system made recommendations for each user. A
recommendation was deemed relevant if it was new to the user
and was from the set of Distance Learning URLs. The results of
this experiment are shown in Figure 3. The graph shows that as
the user’s browsing history becomes more representative of their
interests, the number of good recommendations per user increases.

The second experiment was aimed at studying the effect of
common noise among interest groups. In this experiment, we
constructed two aggregates of users: one interested in Distance
Learning, the other in Finance. For each user, a fixed percentage
of URLs was drawn randomly from the list of URLs from their
interest group. The rest was drawn at random from a fixed pool of
other URLs. This “other” group was kept constant for both groups
of users, regardless of their interest. Each pool of interest
(Distance Learning or Finance) contained 100 URLs, while the
“other” pool contained 400 URLs, as before. There were 100
users of each type. The percentage of URLs in a given user’s
history drawn from the list of their interest area was varied. The
results of this experiment are shown in Figure 4. The graph shows
(as above) that as the user’s browsing history becomes more
representative of their interests, the number of good
recommendations per user increases. It also shows that although
there was significant overlap in noise across the two groups of
users, the system was able to make good recommendations after
each of the users’ browsing history became sufficiently
representative of their interests.

The above two experiments show that the system is successful in
performing recommendations in a controlled setting, like those
described above. This gives us a good indication that these results

Experiment 1: One Interest Group

0

5

10

15

20

25

30

35

40

45

50

0.1 0.15 0.2 0.25 0.3 0.35 0.4
Percent browsing history representative of interest

N
u

m
b

er
 o

f
su

g
g

es
ti

o
n

s
p

er
 u

se
r

Bad Suggestions

Good Suggestions

Figure 3: Results of Experiment 1. The number of good suggestions per user increases as their browsing
history becomes more representative of their interests.

will be consistent with the performance of the system once it is
deployed. However, an empirical user study is in progress to
verify the results presented here in a more naturalistic setting,
over longer periods. Moreover, we are working on performing a
study that compares our system with other collaborative
recommender systems.

5.1 Interestingness And Relativeness
During the evaluation, we ran into a problem of how to decide
whether a recommendation is related to a user’s interests. While a
user may visit a certain page, that page may or may not actually be
of interest. While this is a valid concern, we argue that this would
not be an issue. Remember, association rules capture the
dependency among items, and if a set of URLs is read by a large
group of users, there must be some relationship among this set of
URLs. That is the underlying foundation of statistics. Our
evaluation has shown that as users read more about a particular
topic, the system’s performance gets better. while we can not as
yet prove our assumption true in a formal way, we are confident
that applying association rules to navigation history would
provide good recommendation.

6. RELATED WORK
Since the introduction of association rules, many algorithms have
been proposed to improve their performance [1, 2, 4, 5]. While
our work builds heavily on previous work, our research has its
root in navigation history tracking and information recommender
systems. Although not many systems have been built for
navigation history collection, many research systems for

recommending information have been built using various
techniques. Most recently, the collaborative recommender systems
have gained much attention. Among these systems are Alexa,
GroupLens and Ringo.

Alexa. SurfLen has very similar system architecture and user
interface as Alexa [3]. Unfortunately, there is no documentation
about the working mechanism of Alexa. We can just guess from
its help file. We surmise that the underlying mechanism of
SurfLen is different from Alexa. Alexa’s recommendation is
largely based on a user’s rating and explicit recommendations,
while SurfLen gets its recommendation knowledge from mining
users’ navigation histories. We believe SurfLen’s method is more
natural to users. Furthermore, we make use of navigation history
for other usage. One of the examples is community building on
the Internet.

GroupLens. GroupLens [7] is a recommender system in the
Usenet news domain that uses collaborative filtering. It requires
users to enter ratings and then uses those ratings in two ways.
First, it determines similarity between users using Pearson r
correlation coefficients. Then it predicts how well users will like
new articles based on ratings from similar users.

Ringo. Ringo [9] makes personalized recommendations for music
albums and artists. The system maintains a dynamic profile of
each user’s interests (a list of items of previously liked or
disliked), and then it computes the similarity of profiles using
Pearson r correlation coefficient. Finally, it considers a set of the

Experiment 2: Two Interest Groups

0

10

20

30

40

50

60

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Percent browsing history representative of interest

N
u

m
b

er
 o

f
re

co
m

m
en

d
at

io
n

s
p

er
 u

se
r

Bad Recommendations

Good Recommendations

Figure 4: Results of experiment 2. The number of good suggestions per user increases as their browsing
history becomes more representative of their interests.

most similar profiles, and uses information contained in them to
recommend items to the users.

Our research differs from these systems in that our underlying
recommender mechanism is different. Mining association rules
has provided several advantages. First, it does not require the user
to explicitly rate an article, thereby making it is easier to use.
Second, it offers a more robust way to make recommendations.
Mining association rules allow us not only to group a set of
related items, but also to group a set of close users.

7. FUTURE WORK AND CONCLUSION
We are doing comparison studies of performance between
conventional collaborative information filtering method and
methods based on data mining. We are also exploring ways to
combine these two. In fact, some of our research on association
rules has investigated the quality-based mining of association
rules.

A common problem facing collaborative information
recommender systems is “system bootstrapping” . A collaborative
filtering system requires a large group of users who have
overlapping interests and that these users have interacted with the
system for some time. The system will not be useful if it is
sparsely used. Even if two users have agreed often on similar
items, these two would not necessarily end up being nearest
neighbors. This makes it difficult for the system to start making
recommendations.

This problem can be alleviated by integrating other techniques.
For example, we can combine collaborative recommendation with
techniques for recommending based on content analysis, to find
content-based connections between information items. For
example, the system could keep a content representation for each
of the documents encountered, and compute document similarity
using the cosine measure [8]. In addition, the system could use
statistical clustering techniques based on these content vectors to
represent groups of similar documents as a single unit when
computing association rules as above. Alternately, URL clustering
based on heuristic URL similarity could be employed to help
reduce the number of URLs considered. We can also embed our
mining of a user’s browsing history into a centralized system such
as a search engine.

The implicit use of browsing information also brings up several
issues with respect to the privacy of users. Further exploration is
necessary to determine the severity of these issues and their
effects on the system’s use.

Information recommender systems extend access to information to
more people. Collaborative recommender systems allow users to
form virtual communities in which human knowledge can be
reused automatically. Mining association rules provides a sound
foundation for such systems. SurfLen allows people to share their
Web browsing experiences to the mutual benefit of all of the
users. SurfLen is the first step in an effort to apply association rule
mining to real world problems.

8. ACKNOWLEDGMENTS
We would like to thank Julie Dubiner and David Wilson for their
valuable suggestions. We are also grateful to three anonymous
reviewers for their constructive comments and suggestions.

9. REFERENCES
[1] Agrawal, R. Imielinski, T. and Swami A. Mining

association rules between sets of items in large
databases. In Proceedings of the ACM SIGMOD
Conference on Management of Data(Washington D.C.,
1993), 207-216.

[2] Agrawal, R. and Srikant R. Fast Algorithm for Mining
Association Rules. In Proceedings of the 20th VLDB
Conference (Santiago, Chile, 1994).

[3] Alexa. Available at http://www.alexa.com.

[4] Fukuda, T., Morimoto Y., Morishita, S., and
Tokuyama T. Data mining using two-dimensional
optimized association rules for numeric data: scheme,
algorithms, visualization. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data (Montreal, Canada, 1996), 13-23.

[5] Holsheimer, M., Kersten M., Mannila, H., and
Toivonent H. A perspective on database and data
mining. In Proceedings of the First International
Conference on Knowledge Discovery and Data Mining
(Montreal, Canada, 1996).

[6] Pattie M. Agents that Reduce Work and Information
Overload. Software Agents (eds. Jeffrey M.B.). AAAI
Press, Menlo Park CA, 1997.

[7] Resnick P., Neophytos, I., Miteth, S., Bergstrom, P.,
and Riedl, J. GroupLens: An Open Architecture for
Collaborative Filtering of Netnews. In Proceedings of
CSCW94: Conference on Computer Supported
Cooperative Work (Chapel Hill NC, 1994), Addison-
Wesley, 175-186.

[8] Salton, G., Wong, A., and Yang, C. S. A vector space
model for automatic indexing. Communications of the
ACM 18(11), ACM Press, 613-620.

[9] Shardanand, U. and Maes, P. Social Information
Filtering: Algorithms for Automating ‘Word of
Mouth’ . In Proceedings of CHI95 (Denver CO, 1994),
ACM Press, 210-217.

[10] Lycos. Available at http://www.lycos.com.

[11] Yahoo!. Available at http://www.yahoo.com

[12] Microsoft. Available at http://msdn.microsoft.com.

