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ABSTRACT 
Our central claim is that user interactions with everyday 
productivity applications (e.g., word processors, Web browsers, 
etc.) provide rich contextual information that can be leveraged to 
support just-in-time access to task-relevant information.  We 
discuss the requirements for such systems, and develop a general 
architecture for systems of this type.  As evidence for our claim, 
we present Watson, a system which gathers contextual 
information in the form of the text of the document the user is 
manipulating in order to proactively retrieve documents from 
distributed information repositories.  We close by describing the 
results of several experiments with Watson, which show it 
consistently provides useful information to its users.  

Keywords 
Intelli gent information access, resource discovery, context, 
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1. INTRODUCTION: THE PROBLEM OF 
CONTEXT  
Traditional information retrieval systems [29] have become the 
cornerstone of information access on the Internet (e.g., [2, 14, 
19]) and virtually all other settings in which people access 
information via the computer.  Such systems process requests in 
the form of query consisting of natural language search terms, and 
provide the user with a list of links to those documents the system 
determines are relevant to the query.  

From the perspective of the user interface, natural language seems 
ideal. Users need only express their request in terms of a few 
search terms.  What could be easier? Unfortunately, even if 
information retrieval systems attempted to understand and 
represent the concepts being expressed in the documents they 
index or the requests they process, they are divorced from critical 
information that is necessary to understand them.  Namely, 
traditional information systems are isolated from the context in 
which a request occurs.  Information requests occur for a reason, 
and that reason grounds the request in contextual information 
necessary to interpret and process it.  Without access to this 
context, requests become highly ambiguous, resulting in 
incoherent results, and unsatisfied users. 

1.1 A Query and Three Scenarios  
Consider the request “ information about cats” and observe how 
drastically the utilit y of various results changes as we manipulate 
the context of the request in the following scenarios. 

Scenario 1: Veterinary student writing a term paper on animal 
cancer. In this case, the most appropriate resources probably have 
to do with feline cancer, its diagnosis, treatment, etc. 

Scenario 2: Contractor working on a proposal for a new building.  
The contractor is most likely referring to Caterpill ar Corporation, 
a major manufacturer of construction equipment, usually 
shortened to “cat” by people in the construction business. 

Scenario 3:  Grade-school student writing a paper about Egypt.  
In this case, we would like to see information about cat mummies, 
laden with pictures and descriptions that are appropriate for a 
grade school student. 

These scenarios ill ustrate three kinds problems associated with 
interpreting a request out of context.  

Problem 1: Relevance of active goals.  The active goals of the 
user contribute significantly to the interpretation of the query and 
to the criteria for judging a resource relevant to the query.   

Problem 2: Word-sense ambiguity.  The word sense of “cat” is 
different from the others in scenario 2.  The context of the request 
provides a clear choice of word sense.   

Problem 3: Audience appropriateness.  The audiences in each of 
the scenarios also constrain the choice of results.  Sources 
appropriate for a veterinarian probably will not be appropriate for 
a student in grade school. 

The above examples uncover several major problems with current 
information retrieval systems that attempt to process requests out 
of context. Moreover, a recent study of search engine queries 
showed that on average, users’ queries were 2.21 words long [31]. 
Needless to say, a two-word query most likely does not contain 
enough information to discern the active goals of the user, or even 
the appropriate senses of the words in the query.  These problems 
are not new to researchers in information retrieval. The following 
section outlines previous work in this area.  

2. PREVIOUS EFFORTS IN 
ESTABLISHING CONTEXT FOR 
INFORMATION REQUESTS 
Previous efforts in establishing context for information access can 
be classified into four categories: relevance feedback in 
information retrieval, systems that use user profiles, approaches 

 

 

 



based on implicit and explicit techniques for word-sense 
disambiguation, and knowledge engineering approaches.   

2.1 Relevance Feedback 
The technique of acquiring relevance feedback [28] to narrow the 
search space can be seen as a method of discerning context.  In 
systems that support relevance feedback, the user begins with a 
standard query and then evaluates the results returned (usually by 
judging a result as relevant or not relevant).  The evidence 
gathered as a result of the user’s evaluation is used to modify the 
original query by adding positive or negative search terms.   

In the vector space model of information retrieval [29], queries 
and documents are represented as vectors in a high dimensional 
space, where each dimension represents a word or word stem.  
Given a query Q, a vector in this space, documents D for which 
the measure d(Q, D) is minimized are first retrieved, where d is 
some measure of distance (usually the cosine of the angle between 
the vectors Q and D, or the dot product of the two vectors if the 
space is normalized).  When the user performs a judgment on a 
document D, the query Q is modified by adding the judged 
document’s terms.  E.g., Q := Q + �  D, where �   is a scalar and  
|� | < 1, with a positive value when D is judged relevant, and a 
negative value when D is judged irrelevant [28]. 

Few commercial search engines currently support relevance 
feedback.  However, a recent study of Excite [14], one of the only 
major search engines that did support relevance feedback at the 
time, showed that users hardly ever took advantage of it [31].  
Unfortunately, a different study of the same system [21] showed 
that users were generally dissatisfied with their results, suggesting 
that the reason users did not use relevance feedback was not 
because the information in their initial short query of about two 
words was suff icient to retrieve relevant results.  In addition, this 
study showed that search sessions did not typically include query 
refinements (e.g., the addition or deletion of terms), suggesting 
that users may not be willi ng to spend the time and effort 
necessary to use manual or automated refinement techniques.  
These results argue strongly for methods that automatically 
perform refinement up-front, instead of requiring explicit user 
intervention. 

2.2 User Profiles 
Efforts in building user profiles representing a user’s interests can 
also be seen as a method of gathering contextual information.  

User profiles can be collected by gathering terms based on rating 
documents as in relevance feedback, which was described above.  
Unlike the relevance feedback techniques, the information 
gathered in a profile persists across retrieval sessions where it may 
be automatically added to the user’s query [9, 4].   

Other systems use machine learning algorithms to induce a 
classifier for documents based on training examples gathered as a 
result of a user rating documents [25].  These systems typically 
learn binary text classifiers that classify documents documents as 
relevant or irrelevant. Systems that learn Naïve Bayes or Support 
Vector Machine classifiers are common (see [12] for a good 
survey). 

Systems such as Letizia [24] use implicit feedback in the form of 
user interactions such as bookmarking a page, to learn a user 
profile.  Letizia uses its user profile to perform lookahead search 
in the locus of the page the user is currently viewing and 
recommend links accessible on the current page.  Implicit 
feedback techniques seem particularly promising given that the 

results of the study discussed above suggest that users are 
unwilli ng to provide explicit feedback.   

Unfortunately, these kinds of systems have the disadvantage that 
while they do address the issue of communicating general 
interests to information systems, they lack access to the user’s 
active goals1.  In our view, the current goals of the user are more 
important than long-term interests, especially for providing just-
in-time access to relevant information. 

2.3 Word-Sense Disambiguation 
Some systems attempt to reduce ambiguity by requiring explicit 
word-sense disambiguation on the part of the user [10], or by 
using popularity information intrinsic in the structure of hypertext 
documents [5, 11, 15, 30]. 

Unfortunately, the disambiguation of word senses only addresses 
part of the problem of discerning context in an isolated setting.  In 
addition, requiring the user to perform explicit disambiguation   
may fall prey to the same user interaction problems encountered 
by explicit relevance feedback techniques. That is, users may be 
unwilli ng to choose among multiple senses.   

Systems that use reference text to index documents do have an 
advantage in that they require no intervention on the part of the 
user, yet they are limited by the fact that they typically use 
popularity as a metric for ordering results and fall short in taking 
an analysis of context any deeper.  For example, when Google! 
[15], a system which uses the text of links to index documents, 
processes the query “gas plasma displays,” it will return a long list 
of documents about blood plasma, because the system has found 
references which include the word “plasma” most frequently point 
to documents which discuss blood plasma.  Returning to our 
earlier example, then, just because the most common sense of the 
word “cat” is a noun representing feline mammals, doesn’ t mean 
that this meaning is always what users want. 

2.4 Knowledge Engineering Approaches 
Knowledge engineering approaches [16, 17, 18, 22] model user 
behavior in a particular application and explicitl y associate 
queries (or simply a user’s actions) in a particular state of the task 
they are executing with resources that support that task.  For 
example, Argus [22] observes users interacting with a 
performance support tool and uses a task model in the form of a 
finite state automaton to detect opportunities to retrieve stories 
from an organizational memory system. 

While the performance of these systems is impressive, they can be 
diff icult to construct and are also usually limited in scope.  In 
essence, they suffer the same problems as designing good 
hypertext documents:  since related documents must be linked 
explicitl y, the designer must have a prior knowledge of the 
documents to be linked.  In settings in which the collection of 
documents is large and changing (e.g., the Internet) this kind of 
approach is impractical. 

On the other hand, for situations in which user interactions are 
limited and regular, lexical representations of interface artifacts 
are unavailable, or in cases where the resources the user is able to 
access are fixed and limited in number, hand-crafted approaches 

                                                                 
1 Letizia is an exception because it operates on the page the user 

is currently viewing and attempts to offer assistance in the task 
of exploring the links on that page by recommending links that 
are related to the user’s interests. 



are appropriate.  In addition, we see an important opportunity for 
synergy between knowledge-based approaches and the approach 
we will describe in the next section that leverage the benefits of 
both.  We will develop this position further in Section 6.   

3. INFORMATION MANAGEMENT 
ASSISTANTS 
Our work on Information Management Assistants (IMAs) [6, 8] is 
strongly motivated by the avenues the above approaches leave 
unexplored, and by what is known about the behavior of users in 
information systems.  

IMAs observe users interact with everyday applications and 
attempt to anticipate their information needs using a model of the 
task at hand.  IMAs then automatically fulfill t hese needs using 
the text of the document the user is manipulating and a knowledge 
of how to form queries to traditional information retrieval systems 
(e.g., Internet search engines, abstract databases, etc.).  IMAs 
embody a just-in-time information infrastructure in which 
information is brought to users as they need it, without requiring 
explicit requests.  IMAs automatically query information systems 
on behalf of users as well as provide an interface by which the 
user can pose queries explicitl y.  Because IMAs are aware of the 
user’s task, they can augment the user’s explicit query with terms 
representative of the context of this task.  In this way, IMAs 
provide a framework for bringing implicit task context to bear on 
servicing explicit information requests, in an attempt to address 
the problems associated with processing queries out of context.   

The conceptual architecture for an IMA is displayed graphically 
in Figure 1.  An Information Management Assistant observes 
users as they interact with everyday applications.  The 
ANTICIPATOR uses an explicit task model to interpret user actions 
and anticipate a user’s possible information need.  The CONTENT 

ANALYZER employs a model of the content of a document in a 
given application in order to produce a content representation of 
the document the user is currently manipulating.  This 
representation is fed to the RESOURCE SELECTOR, which selects 
information sources on the basis of the perceived information 
need and the content of the document at hand, using a description 
of the available information sources.  In most cases, this results in 
an information request being sent to external sources. A result list 
is returned in the form of an HTML page, which is interpreted and 
filtered by the RESULT PROCESSOR using a set of result analysis 
procedures, which may eliminate irrelevant results, or direct the 
result processor to pose a new request.  The resulting list is 
presented to the user in a separate window.   

When the user inputs an explicit query, an IMA uses its 
knowledge of the user’s task context to generate an information 
request, which is sent appropriate sources, as above.  In cases in 
which it is inappropriate to automatically query information 
systems and filter the results, information requests can be 
presented to the user in the form of a button which, when pressed, 
executes the search and presents the results on-demand. 

4. IMPLEMENTATION OF WATSON: AN 
INFORMATION MANAGEMENT 
ASSISTANT 
A preliminary version of this architecture is realized in Watson, 
the first IMA we have built [6, 8].  Watson has several 
application adapters, which are used to gain access to an 
application’s internal representation of a document.  The adapters 
produce a document representation, which is sent to the Watson 
application when deemed necessary.  Documents are represented 
as sequences of words in one of four styles: normal, emphasized, 
de-emphasized or li st item.   

 
Figure 2:  Watson is suggesting documents as a user is writing 

a paper. 
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Figure 1: IMA Conceptual Architecture 
 

 

 

 

 

 

 

 



Next, using a knowledge of the kind of information need 
anticipated, Watson transforms the original document 
representation into a query, and selects appropriate sources.  This 
query takes the form of an internal query representation, which is 
then sent to selected information adapters.  Each information 
adapter translates the query into the source-specific query 
language, and executes a search.  Information adapters are also 
responsible for collecting the results, which are gathered and 
clustered using several heuristic result similarity metrics, 
effectively eliminating redundant results (due to mirrors, multiple 
equivalent DNS host names, etc.).  Figure 2 demonstrates the 
interface associated with the execution of these two processes in 
sequence. 

In parallel, Watson attempts to detect conceptually atomic, 
lexically regular structures in the document. Once such objects are 
detected, Watson presents the user with a common action for the 
item in the form of a button they can press.  For example, if a page 
contains an address, Watson will present a button allowing the 
user to access a map for the address. 

The following sections describe heuristics for the analysis of the 
gross structure of documents (e.g., word emphasis, or li st 
membership) to the end of automatically constructing queries to 
information sources, as well as fine-level analysis aimed at 
detecting conceptually atomic, lexically regular structures.  We 
also describe an algorithm for filtering search results aimed at 
eliminating redundant results and detecting broken links.   

4.1 Term Weighting for Query Construction 
In order to retrieve related documents as the user is writing or 
browsing, Watson must construct a query based on the content of 
the document at hand that will eventually be sent to external 
information sources in real time.  Text retrieval systems typically 
require queries in the form of a sequence of search terms or 
keywords. The following heuristics were useful in constructing an 
algorithm that extracts search terms from a document to be 
included in such a query. 

Heuristic 1: Remove stop words.  Words included in a stop list are 
not good search terms.  They will be automatically removed by 
the information systems themselves. 

Heuristic 2: Value frequently-used words.  Words used frequently 
are representative of the document’s content.  

Heuristic 3: Value emphasized words.  Emphasized words are 
more representative of the document’s content than other words.  
Emphasized words are used in titles, section headings, etc., and 
also draw more attention to the document’s reader.  

Heuristic 4:  Value words that appear at the beginning of a 
document more than words that occur at the end. Because reading 
is a linear process, words that occur earlier on tend to be 
descriptive of the rest of the document. 

Heuristic 5:  Punish words that appear to be intentionally de-
emphasized.  Words in small fonts (de-emphasized words) are 
exempt from Heuristic 4.   

Heuristic 6:  Ignore the ordering of words in lists.  Words found 
in li sts are a special case, because they are intentionally ordered, 
and are therefore exempt from Heuristic 4.   

Heuristic 7: Ignore words that occur in sections of the document 
that are not indicative of content. Words that occur in the 
navigation bar of Web page are only marginally useful, and tend 
to get in the way of text analysis. 

The above heuristics were used to construct the following 
document representation and term weighting algorithm.  

Documents are represented in terms of an ordered list of words in 
one of three styles. Words can either be normal, emphasized, de-
emphasized, or li st items.  Words are classified into these groups 
(or omitted, per heuristic 7) by detecting the appropriate structures 
in HTML documents (for Internet Explorer), or by using the word 
properties provided by Microsoft Word.  Each of Watson’s 
application adapters sends a typed message containing a sequence 
of words of that type, represented as a string, to the Watson 
application.  Watson then tokenizes the string using a basic lexical 
analyzer, removes stop words, and sends each term through the 
following weighting algorithm.  Simultaneously, Watson sends 
tokens to an array of conceptual unit detectors described later in 
this paper. 

The pseudocode displayed in Figure 3 describes the term 
weighting algorithm.  A first pass through the terms has 
eliminated the stop words, and computed general statistics.  At 
this point, maxCount is defined as the maximum number of times 
any one word has appeared in the document, numTerms, is 
defined as the total number of terms that were not stop words in 
the document, 2  is constant factor, usually defined as 0.2, and 
pos(w) contains a list of position-style pairs for a given word w.  

Intuitively, the preliminary weight of a term varies inversely with 
the square of its position on a page.  This metric improves as the 
document length increases, prompting the addition of the 
numerator (which is proportional to a fraction of the square of the 
total number of terms) to reflect this fact. The term’s final weight 
is the sum of the preliminary weights that are less than maxCount, 
unless the term is a list item or de-emphasized.  If a term occuring 
in a given position is a li st item or de-emphasized, its preliminary 
weight is 1.  If a term is emphasized, its preliminary weight is 
double the original preliminary weight.  

The resulting term-weight pairs are sorted, and the top 20 terms 
are reordered in the order in which they originally occurred in the 
document.  This ordered list is then used to form a query that is 
sent to selected information sources.  

4.2 Result Clustering 
Because the results returned from traditional information systems 
often contain copies of the same page or similar pages from the 
same server, an IMA must filter the results so as not to add to a 
user’s feeling of information overload. If these similarities are not 
accounted for, some of the more useful pages returned by the 
traditional information systems may be missed. Moreover, we 
constantly face the risk of annoying the user instead of helping 
her. As a result, we actively attempt to reduce the amount of 

 for each word w collected 
        for each (position p, style s) in pos(w)  
  weight := 1 + (numTerms2 2 )/p2 
  if  (weight > maxCount) or  
      (s is the list item style) or 
      (s is the de-emphasized style)  then 
   weight := 1 
  else if  (s is the emphasized style) then 

    weight := 2 weight 
  weight(w) := weight(w) + weight 

Figure 4: Term Weighting Algorithm 



irrelevant information presented. To this end, Watson collects 
search engine results and clusters similar pages, displaying a 
single representative from each cluster for the user to browse. 

For the task of clustering redundant results, Watson uses two 
pieces of information that sources return for each document: the 
document’s title, and its URL. It employs the following heuristic 
similarity metrics for each of these pieces of information: 

Heuristic 1: Title similarity.  Two titles are similar if they have a 
large percentage of words in common.  The certainty of similarity 
increases as a function of the square of the length of the title in 
words. 

Heuristic 2:  URL similarity.  Two URLs are similar if they have 
the same internal directory structure.  The certainty of similarity 
increases proportionally as a function of the square of the length 
of the URL in directory units. 

The combination of these similarity metrics is generally suff icient 
for approximating the uniqueness of the documents returned.  
Note that we do not perform a clustering based on the full text of 
the document, as this would be far too bandwidth intensive given 
the goal of producing results in real-time. 

The clustering algorithm we use is incremental.  That is, when a 
new response arrives from the network, it is immediately 
processed, and the resulting list of suggestions is updated and 
presented.  The aim is to minimize the delay between receiving a 
response and updating the user interface.  In general, the idea is to 
allow the user to access updated information as soon as it is 
available.  As a result, the user is able to access a site in the 
middle of the clustering process, even if the system is waiting for 
further results to be returned from the information sources.  As the 
suggestion list is being collected and incrementally computed, 
more detailed and expensive processing of the list (such as URL 
validity checking) is performed in the background, as a separate 
thread.  We call this approach Present First, Process Later in the 
tradition of Riesbeck’s “Shoot first, ask questions later” paradigm 
of anytime reasoning [27]. 

4.3 Detecting Opportunities to Provide 
Special-Purpose Information  
Watson must be able to reason about the contents of a document 
well enough to provide helpful suggestions.  The previous section 
described an algorithm for computing a query that will be sent to 
online information sources, based on the text of a document.  
While this is helpful, it is only one of several things an Internet 
browsing or document composition assistant might do.  In 
particular, we would like our assistant to be able to recognize 
opportunities to provide assistance by completing queries to 
special-purpose information repositories.  To this end, Watson has 
a facilit y for detecting lexically regular, conceptually atomic items 
(such as addresses or company names) and providing the user 
with an interface to useful special-purpose information resulting 
from a query to specific kinds of online information sources.  

In order to detect conceptual units for special purpose search, 
Watson runs an array of simple detectors in parallel.  Each 
detector is a finite state automaton accepting a sequence of tokens 
representing a conceptual unit. When a conceptual unit is 
detected, Watson presents the user with a common action for the 
item in the form of a button they can press.  For example, when 
Watson detects an address, it presents a button which, when 
pressed, will display a web page with a map for that address using 
an automated map generation service. 

Watson also detects opportunities for performing special-purpose 
search in the context of document composition. For example, 
when a user inserts a caption with no image to fill it i n their 
Microsoft Word document, Watson uses the words in the caption 
to form a query to an image search engine.  Users can then drag 
and drop the images presented directly into their document.   

4.4 Processing Explicit Queries in Context 
Watson processes explicit queries in the context of the document 
the user is currently manipulating. Watson’s li st of collected 
results makes its representation of the task context visible to the 
user.  This kind of visibilit y is usually absent from most systems 
based on user profiles, yet it is extremely valuable because it 
allows users to form coherent expectations about the system’s 
performance.  It is important to note that this representation not 
only provides the user with valuable information about otherwise 
hidden system states instrumental in forming expectations about 
their next interaction with the software, but it also represents 
information that useful in and of itself.   

When a user submits a query to Watson, it combines the new 
query terms with the previously constructed contextual query by 
concatenating them to form a single query.  In this way, Watson 
brings the previously gathered context information to bear directly 
on the process of servicing a user’s explicit query.  The addition 
of the terms Watson has gathered serves to make the user’s active 
goals explicit to the information service, reduce word-sense 
ambiguity, as well as ensure audience-appropriateness. 

For example, if a user is viewing a construction equipment 
vendor’s page and enters the query “ toy” , Watson will return a list 
of pages for companies selli ng model construction equipment. 

In addition to interfacing Watson with traditional information 
systems, we have also experimented with Watson as a context-
bearing interface to Q&A [7].  Q&A is a system for capturing, 
organizing, and accessing a memory of questions and answers.  
When a user poses a question to the system, Q&A attempts to 
answer it by retrieving similar questions.  If the question is 
unanswered, it is forwarded to an appropriate expert, who then 
answers the question.  The user is then notified, and the resulting 
question and answer are captured and indexed in the system.  
Watson adds value to a system like Q&A by grounding incoming 
questions in the context of the document they are writing and the 
user’s browsing history.  Given this contextual information, the 
expert responsible for answering an incoming question is more 
likely able to grasp the meaning of a possibly ambiguous query 
and, li kewise, is better able to answer the question. 

5. EVALUATION OF WATSON 
An evaluation was performed in order to determine whether or not 
the sources returned by Watson were useful in the context of a 
particular task.  Because Watson is intended to work alongside the 
user as she is completing a task, evaluating the utilit y of the 
information provided is more appropriate than the relevance-
based judgments that are typical of most other evaluations of 
information retrieval systems.   

For this evaluation, we asked 10 researchers in the Computer 
Science department to submit an electronic version of the last 
paper they wrote.  Each paper was loaded into Microsoft Word 
while Watson was running.  The results Watson returned were 
then sent back to the authors of the paper.  Subjects were asked to 
judge whether or not the references would have been useful to 
them when they were preparing the paper.  8 out of 10 subjects 



indicated that at least one of the references returned would have 
been useful to them.  In addition, 4 of the subjects indicated the 
references Watson provided were completely novel to them, and 
would be cited or used in their future work.  At the same time, 
some of the pages returned were mere-appearance matches:  they 
were lexically similar, but generally off-topic.  Future work on 
improving query construction as well as result filtering is aimed at 
addressing the failure modes uncovered in this and other studies. 

A comparison study was also performed in order to evaluate the 
recommendation portion of Watson.  For this study, we collected 
a list of pages from other researchers at Northwestern.  We then 
asked users to choose a page from the list, look at it in a Web 
browser and then use Alta Vista to find similar pages.  The users 
then judged the top 10 pages returned as relevant or irrelevant to 
their search task.  Next, the users were asked to judge the sites 
Watson returned from the same page in the same way.  In this 
experiment, Watson used Alta Vista as well .  For our initial group 
of subjects, we drew from local computer science graduate 
students.  All of the volunteers considered themselves expert-level 
searchers.  This was evident in their query behavior, as most of 
them used long queries ( 3 4 words), laden with advanced features.  
We gathered 19 samples from a pool of 6 users.  Using Alta Vista, 
our group of expert searchers was able to pose queries that 
returned, on average, 3 relevant documents out of 10.  Watson 
was able to do considerably better at the same task, returning, on 
average, 5 relevant documents out of 10.  In the samples gathered, 
Watson was able to do as well or better than an expert user 15 out 
of 19 times. 

A further comparison was performed of Watson and Alexa [1] in 
order to determine whether or not Watson provided a significant 
improvement over the recommendations currently available in 
commercial systems.  Alexa is a system that recommends Web 
pages given a URL as input, and is freely available to Internet 
users.  It is unclear how Alexa works, because a detailed 
description of the system is not available.  It is important to note, 
however, that we can only compare Alexa as a system with 
Watson using other information sources as a system.  We cannot 
make claims, here, about the effectiveness of particular algorithms 
because we do not have control over the contents of the systems’ 
databases.   

This said, for this experiment, we gathered a collection of URLs 
from a volunteer’s bookmarks.  We then had a volunteer evaluate 
the relevance of the recommendations returned by Alexa and by 
Watson on a 5-point scale.  The version of Watson used in this 
experiment was using both Alta Vista and the Google [15] search 
engine.  The volunteer judged recommendations from 15 URLs, 
which resulted in performing 316 ratings altogether.  For the 
following summary statistics, ratings of 3 and above were 
considered relevant.  Using this criterion for relevance, Alexa 
returned on average 4 relevant documents out of 10.  Watson, was 
able to do significantly better, returning on average more than 7 
relevant documents out of 10.  In addition, Watson was able to 
return 118 relevant documents, while Alexa only returned 54. The 
data from this study are summarized in Figure 5.  As the chart 
indicates, this experiment showed that as the definition of 
relevance increases in strictness, the gap between Watson and 
Alexa’s performance widens. 

A summary of both of the comparison studies is displayed in 
Figure 6.  This graph should be taken with a grain of salt, as the 
data displayed are gathered from two different experiments, using 
two different survey methodologies.  However the data suggest 
that Watson significantly outperforms both Alexa and expert users 
in providing relevant recommendations for the URLs in the 
experiments.  The improvement in the second version of Watson 
indicates that Watson’s performance is related to the information 
source it queries, and that the inclusion of Google seems to 
improve the recommendations it gives.  

While this initial evaluation is promising, an expanded evaluation 
of this and the other features is needed. Moreover, some of the 
pages used in the evaluation contained structures that Watson 
currently does not handle very well .  For example, some of the 
pages in the evaluation pool were frame sets—collections of pages 
that should be treated as a unit.  Watson currently treats each 
frame as a separate page.  Despite this limitation, Watson 
performed quite well .   

6. CLOSELY RELATED WORK 
Software that recommends Web pages and learns user preferences 
has been an intense focus of must recent research.  Closely related 
work that has not been discussed previously in the present paper 
includes Metasearcher [3] a system which uses a collection of 
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Figure 5: Relevance ratings for suggestions provided by each 

system were given on a 5-point scale.  Shown above is the ratio 
of relevant results as a function of the threshold above which a 

document is considered relevant. 
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Figure 6: Comparison of Expert searchers, Alexa and two 

versions of Watson.  Data for expert searchers and Watson 1 
was gathered using a binary scale, while data for Alexa and 

Watson 2 was gathered using a 5-point scale. In the latter case, 
references given a rating >2 were counted as relevant. 



browser caches gathered from users working in collaboration on a 
common research task to form queries that are sent to search 
engines, the results of which are analyzed using LSI [12]; and The 
Remembrance Agent [26], a system that suggests similar 
documents as a user composes a new document by performing IR 
search against a local corpus of previously written text.   

Watson is different from Metasearcher in that it works online and 
focuses on providing just-in-time access to relevant information, 
whereas Metasearcher performs compute- and network-intensive 
analyses that are inapplicable in this context.  Watson is different 
from the Remembrance Agent in that it uses external information 
repositories and in its techniques for selecting representative 
terms.  Finally, Watson goes a step beyond either by providing an 
interface for communicating explicit requests to the system that 
are processed in the context of current activity, as well as by 
providing an architecture for recognizing opportunities to provide 
special-purpose information.  Both of these functionaliti es 
represent a fundamental belief underlying our approach:  that 
while it is a good start, similar information is not necessarily 
useful or even relevant information.  We will return to this point 
in the next section. 

7. DISCUSSION AND FUTURE WORK 
Watson’s representation of a task context is a collection of words 
associated with the user’s current document.  Future work will 
include augmenting this representation to include task and 
document models, as well as a user profile that could allow 
Watson to process ambiguous requests in the absence of a 
discernable task.   

In addition, we are working on incorporating semantic knowledge 
of particular tasks with the aim of improving query construction 
and source selection.  Underlying this effort is the view that 
similar information is not always the most relevant information.  
For example, in collaboration with Larry Birnbaum and Marko 
Krema, the Watson framework was used to build a prototype 
system called Point-Counterpoint, which assists users in 
supporting their point of view while they are developing a written 
argument.  The system is based on the idea that when formulating 
an argument in support of a particular point, other documents 
which represent arguments both for and against that point are 
useful references. Point-Counterpoint uses knowledge of 
opposing experts in particular domains to recognize opportunities 
to retrieve examples of contrary points of view.  For example, 
when a user cites Marx’s idea of an ideal economic state, Point-
Counterpoint will retrieve two sets of articles:  one set 
representing Marx’s point of view, and another set representing 
Adam Smith’s opinion. The queries Point-Counterpoint forms are 
composed of two distinct sets of terms—expert terms and issue 
terms.  These queries are formed by modifying the result of the 
Watson query generation algorithm described above by 
substituting the name of an expert with his opposite while 
retaining the terms that represent the general topic of the 
argument. 

This view exempli fies the notion that queries should be treated as 
first class representational objects that can be modified and 
transformed by knowledge-based systems in service of a user’s 
information need.  Vector space representations of documents are 
particularly good for computing document-to-document similarity 
in large collections.  We believe coupling such representations 
with semantic knowledge of a particular task or theme is an 
exiting avenue of future investigation.  The Information 
Management Assistant architecture provides for such a coupling.    

8. CONCLUSION 
In summary, we have outlined several problematic issues 
associated with contemporary information access paradigms, the 
first and foremost of which is that information systems are 
divorced from contextual information necessary to coherently 
process a short request.  In response to this, and in light of 
previous attempts, we presented an architecture for a class of 
systems we call Information Management Assistants.  These 
systems observe user interactions with everyday applications, 
anticipate information needs, and automatically fulfill t hem using 
Internet information sources. An IMA’s query is grounded in the 
context of the user’s tasks.  IMAs effectively turn everyday 
applications into intelli gent, context-bearing interfaces to 
conventional information retrieval systems.  We presented an 
overview of our work on Watson, a prototype of this kind of 
system.  We then described an evaluation that underscored the 
effectiveness of our approach.  Finally, we closed with directions 
for future research.  

Information Management Assistants embody a vision of a future 
in which users hardly ever form a query to request information.  
When an information need arises, a system like Watson has 
already anticipated it and provided relevant information to the 
user before she is even able to ask for it.  Faili ng this, a user could 
explicitl y express information needs to the system, which would 
service her request within the context of the current task. 

By providing a framework for leveraging the context of a user’s 
task, we believe IMAs provide a compelli ng new framework for 
research in intelli gent information systems.  
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