
User Interactions with Everyday Applications as
Context for Just-in-time Information Access

Jay Budzik and Kristian J. Hammond

Intelligent Information Laboratory
Northwestern University

1890 Maple Ave.
Evanston, IL 60201 USA

{budzik, hammond}@infolab.nwu.edu

ABSTRACT
Our central claim is that user interactions with everyday
productivity applications (e.g., word processors, Web browsers,
etc.) provide rich contextual information that can be leveraged to
support just-in-time access to task-relevant information. We
discuss the requirements for such systems, and develop a general
architecture for systems of this type. As evidence for our claim,
we present Watson, a system which gathers contextual
information in the form of the text of the document the user is
manipulating in order to proactively retrieve documents from
distributed information repositories. We close by describing the
results of several experiments with Watson, which show it
consistently provides useful information to its users.

Keywords
Intelli gent information access, resource discovery, context,
information agent.

1. INTRODUCTION: THE PROBLEM OF
CONTEXT
Traditional information retrieval systems [29] have become the
cornerstone of information access on the Internet (e.g., [2, 14,
19]) and virtually all other settings in which people access
information via the computer. Such systems process requests in
the form of query consisting of natural language search terms, and
provide the user with a list of links to those documents the system
determines are relevant to the query.

From the perspective of the user interface, natural language seems
ideal. Users need only express their request in terms of a few
search terms. What could be easier? Unfortunately, even if
information retrieval systems attempted to understand and
represent the concepts being expressed in the documents they
index or the requests they process, they are divorced from critical
information that is necessary to understand them. Namely,
traditional information systems are isolated from the context in
which a request occurs. Information requests occur for a reason,
and that reason grounds the request in contextual information
necessary to interpret and process it. Without access to this
context, requests become highly ambiguous, resulting in
incoherent results, and unsatisfied users.

1.1 A Query and Three Scenarios
Consider the request “ information about cats” and observe how
drastically the utilit y of various results changes as we manipulate
the context of the request in the following scenarios.

Scenario 1: Veterinary student writing a term paper on animal
cancer. In this case, the most appropriate resources probably have
to do with feline cancer, its diagnosis, treatment, etc.

Scenario 2: Contractor working on a proposal for a new building.
The contractor is most likely referring to Caterpill ar Corporation,
a major manufacturer of construction equipment, usually
shortened to “cat” by people in the construction business.

Scenario 3: Grade-school student writing a paper about Egypt.
In this case, we would like to see information about cat mummies,
laden with pictures and descriptions that are appropriate for a
grade school student.

These scenarios ill ustrate three kinds problems associated with
interpreting a request out of context.

Problem 1: Relevance of active goals. The active goals of the
user contribute significantly to the interpretation of the query and
to the criteria for judging a resource relevant to the query.

Problem 2: Word-sense ambiguity. The word sense of “cat” is
different from the others in scenario 2. The context of the request
provides a clear choice of word sense.

Problem 3: Audience appropriateness. The audiences in each of
the scenarios also constrain the choice of results. Sources
appropriate for a veterinarian probably will not be appropriate for
a student in grade school.

The above examples uncover several major problems with current
information retrieval systems that attempt to process requests out
of context. Moreover, a recent study of search engine queries
showed that on average, users’ queries were 2.21 words long [31].
Needless to say, a two-word query most likely does not contain
enough information to discern the active goals of the user, or even
the appropriate senses of the words in the query. These problems
are not new to researchers in information retrieval. The following
section outlines previous work in this area.

2. PREVIOUS EFFORTS IN
ESTABLISHING CONTEXT FOR
INFORMATION REQUESTS
Previous efforts in establishing context for information access can
be classified into four categories: relevance feedback in
information retrieval, systems that use user profiles, approaches

based on implicit and explicit techniques for word-sense
disambiguation, and knowledge engineering approaches.

2.1 Relevance Feedback
The technique of acquiring relevance feedback [28] to narrow the
search space can be seen as a method of discerning context. In
systems that support relevance feedback, the user begins with a
standard query and then evaluates the results returned (usually by
judging a result as relevant or not relevant). The evidence
gathered as a result of the user’s evaluation is used to modify the
original query by adding positive or negative search terms.

In the vector space model of information retrieval [29], queries
and documents are represented as vectors in a high dimensional
space, where each dimension represents a word or word stem.
Given a query Q, a vector in this space, documents D for which
the measure d(Q, D) is minimized are first retrieved, where d is
some measure of distance (usually the cosine of the angle between
the vectors Q and D, or the dot product of the two vectors if the
space is normalized). When the user performs a judgment on a
document D, the query Q is modified by adding the judged
document’s terms. E.g., Q := Q + � D, where � is a scalar and
|� | < 1, with a positive value when D is judged relevant, and a
negative value when D is judged irrelevant [28].

Few commercial search engines currently support relevance
feedback. However, a recent study of Excite [14], one of the only
major search engines that did support relevance feedback at the
time, showed that users hardly ever took advantage of it [31].
Unfortunately, a different study of the same system [21] showed
that users were generally dissatisfied with their results, suggesting
that the reason users did not use relevance feedback was not
because the information in their initial short query of about two
words was suff icient to retrieve relevant results. In addition, this
study showed that search sessions did not typically include query
refinements (e.g., the addition or deletion of terms), suggesting
that users may not be willi ng to spend the time and effort
necessary to use manual or automated refinement techniques.
These results argue strongly for methods that automatically
perform refinement up-front, instead of requiring explicit user
intervention.

2.2 User Profiles
Efforts in building user profiles representing a user’s interests can
also be seen as a method of gathering contextual information.

User profiles can be collected by gathering terms based on rating
documents as in relevance feedback, which was described above.
Unlike the relevance feedback techniques, the information
gathered in a profile persists across retrieval sessions where it may
be automatically added to the user’s query [9, 4].

Other systems use machine learning algorithms to induce a
classifier for documents based on training examples gathered as a
result of a user rating documents [25]. These systems typically
learn binary text classifiers that classify documents documents as
relevant or irrelevant. Systems that learn Naïve Bayes or Support
Vector Machine classifiers are common (see [12] for a good
survey).

Systems such as Letizia [24] use implicit feedback in the form of
user interactions such as bookmarking a page, to learn a user
profile. Letizia uses its user profile to perform lookahead search
in the locus of the page the user is currently viewing and
recommend links accessible on the current page. Implicit
feedback techniques seem particularly promising given that the

results of the study discussed above suggest that users are
unwilli ng to provide explicit feedback.

Unfortunately, these kinds of systems have the disadvantage that
while they do address the issue of communicating general
interests to information systems, they lack access to the user’s
active goals1. In our view, the current goals of the user are more
important than long-term interests, especially for providing just-
in-time access to relevant information.

2.3 Word-Sense Disambiguation
Some systems attempt to reduce ambiguity by requiring explicit
word-sense disambiguation on the part of the user [10], or by
using popularity information intrinsic in the structure of hypertext
documents [5, 11, 15, 30].

Unfortunately, the disambiguation of word senses only addresses
part of the problem of discerning context in an isolated setting. In
addition, requiring the user to perform explicit disambiguation
may fall prey to the same user interaction problems encountered
by explicit relevance feedback techniques. That is, users may be
unwilli ng to choose among multiple senses.

Systems that use reference text to index documents do have an
advantage in that they require no intervention on the part of the
user, yet they are limited by the fact that they typically use
popularity as a metric for ordering results and fall short in taking
an analysis of context any deeper. For example, when Google!
[15], a system which uses the text of links to index documents,
processes the query “gas plasma displays,” it will return a long list
of documents about blood plasma, because the system has found
references which include the word “plasma” most frequently point
to documents which discuss blood plasma. Returning to our
earlier example, then, just because the most common sense of the
word “cat” is a noun representing feline mammals, doesn’ t mean
that this meaning is always what users want.

2.4 Knowledge Engineering Approaches
Knowledge engineering approaches [16, 17, 18, 22] model user
behavior in a particular application and explicitl y associate
queries (or simply a user’s actions) in a particular state of the task
they are executing with resources that support that task. For
example, Argus [22] observes users interacting with a
performance support tool and uses a task model in the form of a
finite state automaton to detect opportunities to retrieve stories
from an organizational memory system.

While the performance of these systems is impressive, they can be
diff icult to construct and are also usually limited in scope. In
essence, they suffer the same problems as designing good
hypertext documents: since related documents must be linked
explicitl y, the designer must have a prior knowledge of the
documents to be linked. In settings in which the collection of
documents is large and changing (e.g., the Internet) this kind of
approach is impractical.

On the other hand, for situations in which user interactions are
limited and regular, lexical representations of interface artifacts
are unavailable, or in cases where the resources the user is able to
access are fixed and limited in number, hand-crafted approaches

1 Letizia is an exception because it operates on the page the user

is currently viewing and attempts to offer assistance in the task
of exploring the links on that page by recommending links that
are related to the user’s interests.

are appropriate. In addition, we see an important opportunity for
synergy between knowledge-based approaches and the approach
we will describe in the next section that leverage the benefits of
both. We will develop this position further in Section 6.

3. INFORMATION MANAGEMENT
ASSISTANTS
Our work on Information Management Assistants (IMAs) [6, 8] is
strongly motivated by the avenues the above approaches leave
unexplored, and by what is known about the behavior of users in
information systems.

IMAs observe users interact with everyday applications and
attempt to anticipate their information needs using a model of the
task at hand. IMAs then automatically fulfill t hese needs using
the text of the document the user is manipulating and a knowledge
of how to form queries to traditional information retrieval systems
(e.g., Internet search engines, abstract databases, etc.). IMAs
embody a just-in-time information infrastructure in which
information is brought to users as they need it, without requiring
explicit requests. IMAs automatically query information systems
on behalf of users as well as provide an interface by which the
user can pose queries explicitl y. Because IMAs are aware of the
user’s task, they can augment the user’s explicit query with terms
representative of the context of this task. In this way, IMAs
provide a framework for bringing implicit task context to bear on
servicing explicit information requests, in an attempt to address
the problems associated with processing queries out of context.

The conceptual architecture for an IMA is displayed graphically
in Figure 1. An Information Management Assistant observes
users as they interact with everyday applications. The
ANTICIPATOR uses an explicit task model to interpret user actions
and anticipate a user’s possible information need. The CONTENT

ANALYZER employs a model of the content of a document in a
given application in order to produce a content representation of
the document the user is currently manipulating. This
representation is fed to the RESOURCE SELECTOR, which selects
information sources on the basis of the perceived information
need and the content of the document at hand, using a description
of the available information sources. In most cases, this results in
an information request being sent to external sources. A result list
is returned in the form of an HTML page, which is interpreted and
filtered by the RESULT PROCESSOR using a set of result analysis
procedures, which may eliminate irrelevant results, or direct the
result processor to pose a new request. The resulting list is
presented to the user in a separate window.

When the user inputs an explicit query, an IMA uses its
knowledge of the user’s task context to generate an information
request, which is sent appropriate sources, as above. In cases in
which it is inappropriate to automatically query information
systems and filter the results, information requests can be
presented to the user in the form of a button which, when pressed,
executes the search and presents the results on-demand.

4. IMPLEMENTATION OF WATSON: AN
INFORMATION MANAGEMENT
ASSISTANT
A preliminary version of this architecture is realized in Watson,
the first IMA we have built [6, 8]. Watson has several
application adapters, which are used to gain access to an
application’s internal representation of a document. The adapters
produce a document representation, which is sent to the Watson
application when deemed necessary. Documents are represented
as sequences of words in one of four styles: normal, emphasized,
de-emphasized or li st item.

Figure 2: Watson is suggesting documents as a user is writing

a paper.

 � � � � � � � � 	
 �

� � �
 � 	 � � �

� � � � � � � � � � �

�
 � 	 � � � � � 	

 � � � �

� 	
 � �
 �
 � 	 � � �
 �

	 � � � �
 �

� � � � � �� � � ! " # �

� 	
 � �
 �
 $ � % � � � �
 � � � � 	

� & � ' � � & ! � � � �() % � � � � �
 $ � * � � � �

�
 � 	 � � � � � 	

 + 	 � � � �

�

� � � � � % � � 	
 �

�
 � 	 � � � � � 	

 $ � * � � � �

() � � �
 � �
 �
 � 	 � � � � � 	

 + 	 � � � � �

$ � , + � � � � -
 $ � � � � � �

� & ' ! � � � � � & & � �
$ � � � � ��
 � � . � � �

/ � 	 � � � � � � �

$ � � � � �
 0 � � �

' & �� � � � 1 � �

Figure 1: IMA Conceptual Architecture

Next, using a knowledge of the kind of information need
anticipated, Watson transforms the original document
representation into a query, and selects appropriate sources. This
query takes the form of an internal query representation, which is
then sent to selected information adapters. Each information
adapter translates the query into the source-specific query
language, and executes a search. Information adapters are also
responsible for collecting the results, which are gathered and
clustered using several heuristic result similarity metrics,
effectively eliminating redundant results (due to mirrors, multiple
equivalent DNS host names, etc.). Figure 2 demonstrates the
interface associated with the execution of these two processes in
sequence.

In parallel, Watson attempts to detect conceptually atomic,
lexically regular structures in the document. Once such objects are
detected, Watson presents the user with a common action for the
item in the form of a button they can press. For example, if a page
contains an address, Watson will present a button allowing the
user to access a map for the address.

The following sections describe heuristics for the analysis of the
gross structure of documents (e.g., word emphasis, or li st
membership) to the end of automatically constructing queries to
information sources, as well as fine-level analysis aimed at
detecting conceptually atomic, lexically regular structures. We
also describe an algorithm for filtering search results aimed at
eliminating redundant results and detecting broken links.

4.1 Term Weighting for Query Construction
In order to retrieve related documents as the user is writing or
browsing, Watson must construct a query based on the content of
the document at hand that will eventually be sent to external
information sources in real time. Text retrieval systems typically
require queries in the form of a sequence of search terms or
keywords. The following heuristics were useful in constructing an
algorithm that extracts search terms from a document to be
included in such a query.

Heuristic 1: Remove stop words. Words included in a stop list are
not good search terms. They will be automatically removed by
the information systems themselves.

Heuristic 2: Value frequently-used words. Words used frequently
are representative of the document’s content.

Heuristic 3: Value emphasized words. Emphasized words are
more representative of the document’s content than other words.
Emphasized words are used in titles, section headings, etc., and
also draw more attention to the document’s reader.

Heuristic 4: Value words that appear at the beginning of a
document more than words that occur at the end. Because reading
is a linear process, words that occur earlier on tend to be
descriptive of the rest of the document.

Heuristic 5: Punish words that appear to be intentionally de-
emphasized. Words in small fonts (de-emphasized words) are
exempt from Heuristic 4.

Heuristic 6: Ignore the ordering of words in lists. Words found
in li sts are a special case, because they are intentionally ordered,
and are therefore exempt from Heuristic 4.

Heuristic 7: Ignore words that occur in sections of the document
that are not indicative of content. Words that occur in the
navigation bar of Web page are only marginally useful, and tend
to get in the way of text analysis.

The above heuristics were used to construct the following
document representation and term weighting algorithm.

Documents are represented in terms of an ordered list of words in
one of three styles. Words can either be normal, emphasized, de-
emphasized, or li st items. Words are classified into these groups
(or omitted, per heuristic 7) by detecting the appropriate structures
in HTML documents (for Internet Explorer), or by using the word
properties provided by Microsoft Word. Each of Watson’s
application adapters sends a typed message containing a sequence
of words of that type, represented as a string, to the Watson
application. Watson then tokenizes the string using a basic lexical
analyzer, removes stop words, and sends each term through the
following weighting algorithm. Simultaneously, Watson sends
tokens to an array of conceptual unit detectors described later in
this paper.

The pseudocode displayed in Figure 3 describes the term
weighting algorithm. A first pass through the terms has
eliminated the stop words, and computed general statistics. At
this point, maxCount is defined as the maximum number of times
any one word has appeared in the document, numTerms, is
defined as the total number of terms that were not stop words in
the document, 2 is constant factor, usually defined as 0.2, and
pos(w) contains a list of position-style pairs for a given word w.

Intuitively, the preliminary weight of a term varies inversely with
the square of its position on a page. This metric improves as the
document length increases, prompting the addition of the
numerator (which is proportional to a fraction of the square of the
total number of terms) to reflect this fact. The term’s final weight
is the sum of the preliminary weights that are less than maxCount,
unless the term is a list item or de-emphasized. If a term occuring
in a given position is a li st item or de-emphasized, its preliminary
weight is 1. If a term is emphasized, its preliminary weight is
double the original preliminary weight.

The resulting term-weight pairs are sorted, and the top 20 terms
are reordered in the order in which they originally occurred in the
document. This ordered list is then used to form a query that is
sent to selected information sources.

4.2 Result Clustering
Because the results returned from traditional information systems
often contain copies of the same page or similar pages from the
same server, an IMA must filter the results so as not to add to a
user’s feeling of information overload. If these similarities are not
accounted for, some of the more useful pages returned by the
traditional information systems may be missed. Moreover, we
constantly face the risk of annoying the user instead of helping
her. As a result, we actively attempt to reduce the amount of

 for each word w collected
 for each (position p, style s) in pos(w)
 weight := 1 + (numTerms2 2)/p2
 if (weight > maxCount) or
 (s is the list item style) or
 (s is the de-emphasized style) then
 weight := 1
 else if (s is the emphasized style) then

 weight := 2 weight
 weight(w) := weight(w) + weight

Figure 4: Term Weighting Algorithm

irrelevant information presented. To this end, Watson collects
search engine results and clusters similar pages, displaying a
single representative from each cluster for the user to browse.

For the task of clustering redundant results, Watson uses two
pieces of information that sources return for each document: the
document’s title, and its URL. It employs the following heuristic
similarity metrics for each of these pieces of information:

Heuristic 1: Title similarity. Two titles are similar if they have a
large percentage of words in common. The certainty of similarity
increases as a function of the square of the length of the title in
words.

Heuristic 2: URL similarity. Two URLs are similar if they have
the same internal directory structure. The certainty of similarity
increases proportionally as a function of the square of the length
of the URL in directory units.

The combination of these similarity metrics is generally suff icient
for approximating the uniqueness of the documents returned.
Note that we do not perform a clustering based on the full text of
the document, as this would be far too bandwidth intensive given
the goal of producing results in real-time.

The clustering algorithm we use is incremental. That is, when a
new response arrives from the network, it is immediately
processed, and the resulting list of suggestions is updated and
presented. The aim is to minimize the delay between receiving a
response and updating the user interface. In general, the idea is to
allow the user to access updated information as soon as it is
available. As a result, the user is able to access a site in the
middle of the clustering process, even if the system is waiting for
further results to be returned from the information sources. As the
suggestion list is being collected and incrementally computed,
more detailed and expensive processing of the list (such as URL
validity checking) is performed in the background, as a separate
thread. We call this approach Present First, Process Later in the
tradition of Riesbeck’s “Shoot first, ask questions later” paradigm
of anytime reasoning [27].

4.3 Detecting Opportunities to Provide
Special-Purpose Information
Watson must be able to reason about the contents of a document
well enough to provide helpful suggestions. The previous section
described an algorithm for computing a query that will be sent to
online information sources, based on the text of a document.
While this is helpful, it is only one of several things an Internet
browsing or document composition assistant might do. In
particular, we would like our assistant to be able to recognize
opportunities to provide assistance by completing queries to
special-purpose information repositories. To this end, Watson has
a facilit y for detecting lexically regular, conceptually atomic items
(such as addresses or company names) and providing the user
with an interface to useful special-purpose information resulting
from a query to specific kinds of online information sources.

In order to detect conceptual units for special purpose search,
Watson runs an array of simple detectors in parallel. Each
detector is a finite state automaton accepting a sequence of tokens
representing a conceptual unit. When a conceptual unit is
detected, Watson presents the user with a common action for the
item in the form of a button they can press. For example, when
Watson detects an address, it presents a button which, when
pressed, will display a web page with a map for that address using
an automated map generation service.

Watson also detects opportunities for performing special-purpose
search in the context of document composition. For example,
when a user inserts a caption with no image to fill it i n their
Microsoft Word document, Watson uses the words in the caption
to form a query to an image search engine. Users can then drag
and drop the images presented directly into their document.

4.4 Processing Explicit Queries in Context
Watson processes explicit queries in the context of the document
the user is currently manipulating. Watson’s li st of collected
results makes its representation of the task context visible to the
user. This kind of visibilit y is usually absent from most systems
based on user profiles, yet it is extremely valuable because it
allows users to form coherent expectations about the system’s
performance. It is important to note that this representation not
only provides the user with valuable information about otherwise
hidden system states instrumental in forming expectations about
their next interaction with the software, but it also represents
information that useful in and of itself.

When a user submits a query to Watson, it combines the new
query terms with the previously constructed contextual query by
concatenating them to form a single query. In this way, Watson
brings the previously gathered context information to bear directly
on the process of servicing a user’s explicit query. The addition
of the terms Watson has gathered serves to make the user’s active
goals explicit to the information service, reduce word-sense
ambiguity, as well as ensure audience-appropriateness.

For example, if a user is viewing a construction equipment
vendor’s page and enters the query “ toy” , Watson will return a list
of pages for companies selli ng model construction equipment.

In addition to interfacing Watson with traditional information
systems, we have also experimented with Watson as a context-
bearing interface to Q&A [7]. Q&A is a system for capturing,
organizing, and accessing a memory of questions and answers.
When a user poses a question to the system, Q&A attempts to
answer it by retrieving similar questions. If the question is
unanswered, it is forwarded to an appropriate expert, who then
answers the question. The user is then notified, and the resulting
question and answer are captured and indexed in the system.
Watson adds value to a system like Q&A by grounding incoming
questions in the context of the document they are writing and the
user’s browsing history. Given this contextual information, the
expert responsible for answering an incoming question is more
likely able to grasp the meaning of a possibly ambiguous query
and, li kewise, is better able to answer the question.

5. EVALUATION OF WATSON
An evaluation was performed in order to determine whether or not
the sources returned by Watson were useful in the context of a
particular task. Because Watson is intended to work alongside the
user as she is completing a task, evaluating the utilit y of the
information provided is more appropriate than the relevance-
based judgments that are typical of most other evaluations of
information retrieval systems.

For this evaluation, we asked 10 researchers in the Computer
Science department to submit an electronic version of the last
paper they wrote. Each paper was loaded into Microsoft Word
while Watson was running. The results Watson returned were
then sent back to the authors of the paper. Subjects were asked to
judge whether or not the references would have been useful to
them when they were preparing the paper. 8 out of 10 subjects

indicated that at least one of the references returned would have
been useful to them. In addition, 4 of the subjects indicated the
references Watson provided were completely novel to them, and
would be cited or used in their future work. At the same time,
some of the pages returned were mere-appearance matches: they
were lexically similar, but generally off-topic. Future work on
improving query construction as well as result filtering is aimed at
addressing the failure modes uncovered in this and other studies.

A comparison study was also performed in order to evaluate the
recommendation portion of Watson. For this study, we collected
a list of pages from other researchers at Northwestern. We then
asked users to choose a page from the list, look at it in a Web
browser and then use Alta Vista to find similar pages. The users
then judged the top 10 pages returned as relevant or irrelevant to
their search task. Next, the users were asked to judge the sites
Watson returned from the same page in the same way. In this
experiment, Watson used Alta Vista as well . For our initial group
of subjects, we drew from local computer science graduate
students. All of the volunteers considered themselves expert-level
searchers. This was evident in their query behavior, as most of
them used long queries (3 4 words), laden with advanced features.
We gathered 19 samples from a pool of 6 users. Using Alta Vista,
our group of expert searchers was able to pose queries that
returned, on average, 3 relevant documents out of 10. Watson
was able to do considerably better at the same task, returning, on
average, 5 relevant documents out of 10. In the samples gathered,
Watson was able to do as well or better than an expert user 15 out
of 19 times.

A further comparison was performed of Watson and Alexa [1] in
order to determine whether or not Watson provided a significant
improvement over the recommendations currently available in
commercial systems. Alexa is a system that recommends Web
pages given a URL as input, and is freely available to Internet
users. It is unclear how Alexa works, because a detailed
description of the system is not available. It is important to note,
however, that we can only compare Alexa as a system with
Watson using other information sources as a system. We cannot
make claims, here, about the effectiveness of particular algorithms
because we do not have control over the contents of the systems’
databases.

This said, for this experiment, we gathered a collection of URLs
from a volunteer’s bookmarks. We then had a volunteer evaluate
the relevance of the recommendations returned by Alexa and by
Watson on a 5-point scale. The version of Watson used in this
experiment was using both Alta Vista and the Google [15] search
engine. The volunteer judged recommendations from 15 URLs,
which resulted in performing 316 ratings altogether. For the
following summary statistics, ratings of 3 and above were
considered relevant. Using this criterion for relevance, Alexa
returned on average 4 relevant documents out of 10. Watson, was
able to do significantly better, returning on average more than 7
relevant documents out of 10. In addition, Watson was able to
return 118 relevant documents, while Alexa only returned 54. The
data from this study are summarized in Figure 5. As the chart
indicates, this experiment showed that as the definition of
relevance increases in strictness, the gap between Watson and
Alexa’s performance widens.

A summary of both of the comparison studies is displayed in
Figure 6. This graph should be taken with a grain of salt, as the
data displayed are gathered from two different experiments, using
two different survey methodologies. However the data suggest
that Watson significantly outperforms both Alexa and expert users
in providing relevant recommendations for the URLs in the
experiments. The improvement in the second version of Watson
indicates that Watson’s performance is related to the information
source it queries, and that the inclusion of Google seems to
improve the recommendations it gives.

While this initial evaluation is promising, an expanded evaluation
of this and the other features is needed. Moreover, some of the
pages used in the evaluation contained structures that Watson
currently does not handle very well . For example, some of the
pages in the evaluation pool were frame sets—collections of pages
that should be treated as a unit. Watson currently treats each
frame as a separate page. Despite this limitation, Watson
performed quite well .

6. CLOSELY RELATED WORK
Software that recommends Web pages and learns user preferences
has been an intense focus of must recent research. Closely related
work that has not been discussed previously in the present paper
includes Metasearcher [3] a system which uses a collection of

Ratio of Relevant Results vs. Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

Threshold of relevance judgment

Watson

Alexa

Figure 5: Relevance ratings for suggestions provided by each

system were given on a 5-point scale. Shown above is the ratio
of relevant results as a function of the threshold above which a

document is considered relevant.

Ratio of Relevant R esults

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Expert
Searchers

Alexa W atson 1 W atson 2

Figure 6: Comparison of Expert searchers, Alexa and two

versions of Watson. Data for expert searchers and Watson 1
was gathered using a binary scale, while data for Alexa and

Watson 2 was gathered using a 5-point scale. In the latter case,
references given a rating >2 were counted as relevant.

browser caches gathered from users working in collaboration on a
common research task to form queries that are sent to search
engines, the results of which are analyzed using LSI [12]; and The
Remembrance Agent [26], a system that suggests similar
documents as a user composes a new document by performing IR
search against a local corpus of previously written text.

Watson is different from Metasearcher in that it works online and
focuses on providing just-in-time access to relevant information,
whereas Metasearcher performs compute- and network-intensive
analyses that are inapplicable in this context. Watson is different
from the Remembrance Agent in that it uses external information
repositories and in its techniques for selecting representative
terms. Finally, Watson goes a step beyond either by providing an
interface for communicating explicit requests to the system that
are processed in the context of current activity, as well as by
providing an architecture for recognizing opportunities to provide
special-purpose information. Both of these functionaliti es
represent a fundamental belief underlying our approach: that
while it is a good start, similar information is not necessarily
useful or even relevant information. We will return to this point
in the next section.

7. DISCUSSION AND FUTURE WORK
Watson’s representation of a task context is a collection of words
associated with the user’s current document. Future work will
include augmenting this representation to include task and
document models, as well as a user profile that could allow
Watson to process ambiguous requests in the absence of a
discernable task.

In addition, we are working on incorporating semantic knowledge
of particular tasks with the aim of improving query construction
and source selection. Underlying this effort is the view that
similar information is not always the most relevant information.
For example, in collaboration with Larry Birnbaum and Marko
Krema, the Watson framework was used to build a prototype
system called Point-Counterpoint, which assists users in
supporting their point of view while they are developing a written
argument. The system is based on the idea that when formulating
an argument in support of a particular point, other documents
which represent arguments both for and against that point are
useful references. Point-Counterpoint uses knowledge of
opposing experts in particular domains to recognize opportunities
to retrieve examples of contrary points of view. For example,
when a user cites Marx’s idea of an ideal economic state, Point-
Counterpoint will retrieve two sets of articles: one set
representing Marx’s point of view, and another set representing
Adam Smith’s opinion. The queries Point-Counterpoint forms are
composed of two distinct sets of terms—expert terms and issue
terms. These queries are formed by modifying the result of the
Watson query generation algorithm described above by
substituting the name of an expert with his opposite while
retaining the terms that represent the general topic of the
argument.

This view exempli fies the notion that queries should be treated as
first class representational objects that can be modified and
transformed by knowledge-based systems in service of a user’s
information need. Vector space representations of documents are
particularly good for computing document-to-document similarity
in large collections. We believe coupling such representations
with semantic knowledge of a particular task or theme is an
exiting avenue of future investigation. The Information
Management Assistant architecture provides for such a coupling.

8. CONCLUSION
In summary, we have outlined several problematic issues
associated with contemporary information access paradigms, the
first and foremost of which is that information systems are
divorced from contextual information necessary to coherently
process a short request. In response to this, and in light of
previous attempts, we presented an architecture for a class of
systems we call Information Management Assistants. These
systems observe user interactions with everyday applications,
anticipate information needs, and automatically fulfill t hem using
Internet information sources. An IMA’s query is grounded in the
context of the user’s tasks. IMAs effectively turn everyday
applications into intelli gent, context-bearing interfaces to
conventional information retrieval systems. We presented an
overview of our work on Watson, a prototype of this kind of
system. We then described an evaluation that underscored the
effectiveness of our approach. Finally, we closed with directions
for future research.

Information Management Assistants embody a vision of a future
in which users hardly ever form a query to request information.
When an information need arises, a system like Watson has
already anticipated it and provided relevant information to the
user before she is even able to ask for it. Faili ng this, a user could
explicitl y express information needs to the system, which would
service her request within the context of the current task.

By providing a framework for leveraging the context of a user’s
task, we believe IMAs provide a compelli ng new framework for
research in intelli gent information systems.

9. ACKNOWLEDGEMENTS
This work benefited from the efforts of Andrei Scheinkman,
Cameron Marlow, and Justin Ramos who helped in the
implementation of Watson. In addition, we thank Larry
Birnbaum, Shannon Bradshaw, Louis Gomez, Jim Jansen, Chris
Riesbeck, Amanda Spink, and anonymous reviewers for candid
discussions and helpful suggestions regarding this work.

10. REFERENCES
[1] Alexa. http://www.alexa.com/

[2] Alta Vista. http://www.altavista.com/

[3] Badue, C., Vaz, W., and Albuquerque, E. Using an
Automatic Retrieval System in the Web to Assist Co-
operative Learning. In Proc. 1998 World Conference
of the WWW, Internet and Intranet. AACE Press, 1998.

[4] Bill sus, D. and Pazzani, M. A Personal News Agent
that Talks, Learns and Explains. In Proceedings of the
Third International Conference on Autonomous
Agents. ACM Press, 1998.

[5] Bradshaw, S., and Hammond, K. J. Mining Citation
Text as Indices for Documents. In Proceedings of the
ASIS 1999 Annual Conference. Information Today,
Inc., Medford NJ, 1999.

[6] Budzik, J, Hammond, K., Marlow, C., and
Scheinkman, A. Anticipating Information Needs:
Everyday Applications as Interfaces to Internet
Information Sources. In Proceedings of WebNet-98,
Conference of the WWW, Internet and Intranet. AACE
Press, 1998.

[7] Budzik, J., and Hammond K. Q&A: A system for the
Capture, Organization and Reuse of Expertise. In
Proceedings of the ASIS 1999 Annual Conference.
Information Today, Inc., Medford NJ, 1999.

[8] Budzik, J., and Hammond, K. Watson: Anticipating
and Contextualizing Information Needs. In
Proceedings of the ASIS 1999 Annual Conference.
Information Today, Inc., Medford NJ, 1999.

[9] Chen, L., and Sycara, K. WebMate: A Personal Agent
for Browsing and Searching. In Proceedings of Agents-
98, the Second International Conference on
Autonomous Agents. ACM Press, 1998.

[10] Cheng, I., and Wilensky, R. An Experiment in
Enhancing Information Access by Natural Language
Processing. Technical Report CSD-97-963, Computer
Science Division, University of Cali fornia, Berkeley,
1997.

[11] Dean, J., and Henzinger, M. R. Finding related pages
in the World Wide Web. In Proceedings of WWW-8,
the Eighth International World Wide Web Conference.
Fortec Seminars, 1999.

[12] Dumais, S. T., G. W. Furnas, T. K. Landauer, S.
Derrwester, and R. Harshman. Using latent semantic
analysis to improve access to textual information. In
Proceedings of CHI-98, Conference on Human
Factors in Computing Systems. ACM Press, 1988.

[13] Dumais, S. T., Platt J., Heckerman, D., and Sahami,
M. (1998). Inductive Learning Algorithms and
Representations for Text Classification. In Proceedings
of ACM-CIKM98. ACM Press, 1998.

[14] Excite. http://www.excite.com/

[15] Google. http://www.google.com/

[16] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K.
Rommelse. The Lumiere Project: Bayesian User
Modeling for Inferring the Goals and Needs of
Software Users. In Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence.
AAA I Press, 1998.

[17] T. Lau and E. Horvitz, Patterns of Search: Analyzing
and Modeling Web Query Refinement. In Proceedings
of the Seventh International Conference on User
Modeling. ACM Press, 1998.

[18] D. Heckerman and E. Horvitz. Inferring Informational
Goals from Free-Text Queries. In Proceedings of the
Fourteenth Conference on Uncertainty in Artificial
Intelligence. AAA I Press, 1998.

[19] Lycos. http://www.lycos.com/

[20] Jaczynski, M., and Trousse, B. WWW Assisted
Browsing by Reusing Past Navigations of a Group of
Users. In Proceedings of EWCBR-98, European
Workshop on Case-Based Reasoning. Springer, 1998.

[21] Jansen, B., Spink, A., and Bateman, J. Searchers, the
Subjects they Search, and Suff iciency: A Study of a
Large Sample of EXCITE Searches. In Proceedings of
WebNet-98, World Conference of the WWW, Internet
and Intranet. AACE Press, 1998.

[22] Johnson, C., Birnbaum, L., Bareiss, R., and Hinrichs,
T. Integrating Organizational Memory and
Performance Support. In Procedings of IUI-99. ACM
Press, 1999.

[23] Joachims, T., Freitag, D., and Mitchell , T.
WebWatcher: A Tour Guide for the World Wide Web.
In Proceedings of the Fourteenth National Conference
on Artificial Intelligence. AAA I Press, 1996.

[24] Lieberman, H. (1995). Letizia: An Agent That Assists
Web Browsing. In Proceedings of IJCAI-95,
International Joint Conference on Artificial
Intelligence. July 1995.

[25] Pazzani, M., Muramatsu J., & Bill sus, D. Syskill &
Webert: Identifying interesting web sites. Proceedings
of the Fourteenth National Conference on Artificial
Intelligence. AAA I Press, 1996.

[26] Rhodes, B., and Starner, T. A continuously running
automated information retrieval system. In Proceedings
of The First International Conference on The Practical
Application of Intelligent Agents and Multi Agent
Technology. April 1996.

[27] Riesbeck, C. What Next? The Future of Case-based
reasoning in Post-Modern AI. In Leake, ed., Case-
Based Reasoning: Experiences, Lessons, and Future
Directions. New York, NY: AAA I/MIT Press, 1996.

[28] Salton, G., and Buckley, C. Improving Retrieval
Performance by Relevance Feedback. In Spark Jones
and Will et, (Eds.) Readings in Information Retrieval.
San Francisco, CA: Morgan Kauffman, 1990.

[29] Salton, G., Wong, A., and Yang, C. S. A vector space
model for automatic indexing. Communications of the
ACM 18(11):613-620, 1971.

[30] Spertus, E. Parasite: Mining Structural Information on
the Web. In Proceedings of the Sixth International
World Wide Web Conference, 1997.

[31] Spink, A., Bateman, J., and Jansen, B. Users’
Searching Behavior on the EXCITE Web Search
Engine. In Proceedings of WebNet-98, World
Conference of the WWW, Internet and Intranet. AACE
Press, 1998.

