Computation and Construction Kits:
Toward the Next Generation of
Tangible Building Media for Children

Michael Eisenberg, Leah Buechley, Nwanua Elumeze
Department of Computer Science
University of Colorado, Boulder CO USA 80309-0430

ABSTRACT

Construction kits represent a venerable, creative, and
(occasionally) even beautiful genre of educational toys for
children. Nonetheless, traditional construction kits have
limitations as educational media. In the past decade, a
number of research efforts have attempted to address these
limitations by augmenting construction kit design with
various types of computational media. This paper describes
two new prototypes of “computationally-enhanced
construction kits”’; unlike previous efforts, these newer kits
allow for large numbers of mutually-interacting,
computationally complex, geometrically innovative, and
user-programmable pieces. We describe the current (still-
early) state of these systems, and discuss plausible
directions for future development and research.

Keywords
Construction Kkits,
computing.

educational technology, embedded

INTRODUCTION

In the history of educational design, construction kits (i.e.,
building toys comprised of multiple pieces) occupy an
important and respectable place. Such toys date back at
least to the eighteenth-century philosopher John Locke and
his set of alphabet blocks (“Locke’s blocks” [7, p. 119]),
and the tradition has continued in a variety of guises
through the nineteenth century and into the present day.
(Harley [4] offers a brief summary of this tradition; while
Watson [8] presents a thoughtful biography of A.C.
Gilbert, the most prominent and inventive American
designer of such toys in the twentieth century.)

Construction kits, viewed “in the large” as a genre of
educational design, have marvelous strengths. They offer
children a tangible medium for the creation of models in
domains such as geometry (e.g., Zometool [PW2]),
engineering (e.g., Erector sets [8]), and architecture, among
others. (Widening our view a bit, we might also classify
chemical modeling sets as relatively advanced construction
kits that provide chemistry students with an indispensable
aid to visualization; and likewise, modeling kits—such as
anatomical kits—could be included in this genre as well.)
By engaging children’s visual and tactile senses,
construction kits exhibit affordances that other sorts of
children’s artifacts (notably, video games) cannot match: a
construction can be handed around from one child to

another, or kept as a souvenir, or placed on a shelf for long-
term viewing or exhibition, or built in such a way that it
occupies a compellingly large area of a child’s room.
Nonetheless, there are, at the same time, profound
limitations of “traditional” construction kits when viewed
in the light of a more recent tradition of educational
computing. The objects produced by traditional kits are
typically static, or at most capable of a very limited range
of behavior; as a consequence, traditional constructions run
the risk of losing a child’s interest after a short time. At the
same time, the absence of complex behavior implies that
traditional kits exhibit intellectual, content-related
limitations as well. For instance, a molecular model cannot
display to a student which particular atoms in a molecule
of water have a slight excess of positive charge; an
anatomical model cannot show a student the dynamics of
neural signals between brain and hand; a geometrical model
of an icosahedron cannot display which vertices are
equivalent under a particular set of symmetry operations.
(For a more extensive discussion, see [1].)

In recent years, a number of research efforts have augmented
the design of construction kits with computational
capabilities of various sorts. The most influential and
prominent such example is the “programmable Lego brick”
created by Resnick and his colleagues at the MIT Media
Lab [6]. The brick can be programmed in Logo and can be
combined with a variety of sensors and actuators to make
dynamic Lego constructions; and it has given rise to a
highly successful (though somewhat less versatile)
commercial product, Lego Mindstorms. Other projects
include the design of the ActiveCube [5], a set of cubical
building blocks with embedded computers that can be
combined into three-dimensional structures that can then be
communicated to a desktop computer; “tangible
programming” blocks created by P. Wyeth and G. Wyeth
[9], a set of blocks that represent simple computational
operations and that can be combined into (e.g.) wheeled
vehicles with interesting behaviors; and a set of mutually-
communicating triangular tiles created by Gorbet, Orth, and
Ishii [3].

This paper describes two recent prototype systems,
developed in our laboratory, that (in combination) explore a
variety of novel directions in the creation of
computationally-enhanced construction kits. In both cases,
these kits can be seen as tangible media for the construction
of cellular automata (a brief definition of cellular automata

will be presented shortly). More pertinently for this
discussion, however, the two kits represent a certain style
of “computationally-enhanced construction kit” design that
includes elements of wuser programmability (like the
programmable Lego brick); large numbers of
intercommunicating pieces (like the Active Cube and
tangible programming block examples); and geometric
innovation (like the triangular tiles). As we will discuss,
neither kit, in its current instantiation, individually
encompasses all these elements; but between them, they
illustrate a style of design that eventually should permit
more complex behaviors than those of (e.g.) the tangible
programming blocks, larger sets of computing elements
than are typical of programmable brick projects, and greater
user customizability than the ActiveCube or triangular
tiles.

The following section begins by presenting a brief
summary description of cellular automata; in the third
section, we explain the implementation and behavior of the
two prototype systems. The fourth and concluding section
describes plausible directions for future development of
both prototypes, and discusses research directions for the
design of next-generation computationally-enhanced
construction kits.

CELLULAR AUTOMATA (IN BRIEF)

Before introducing our two prototypes, it is worthwhile to
describe (as telegraphically as we can manage) the basic
ideas behind cellular automata. Cellular automata are large
collections of regularly-arranged simple computers; for
example, the individual computers could be arranged in a
square grid with each computer occupying a single square
(or “cell”). Each computer communicates with a specified
set of local neighbors (in our “typical” square-grid case,
each computer might communicate only with its eight
surrounding neighbors on the grid), and the cells generally
operate in synchronized fashion, each running a simple
program that operates from a global clock signal.

The most famous instance of a cellular automaton program
is the celebrated “Game of Life” system, invented by John
Conway and discussed in several delightful essays by
Martin Gardner. [2] In the Game of Life, cells are arranged
on a square grid; each cell communicates only with its
eight surrounding neighbors; each cell has a simple one-bit
state value (0 or 1, which can be thought of as “not alive”
and “alive”); and each cell runs a simple program in which
a cell at time T is alive at time T+1 if it is surrounded by
exactly three surrounding live neighbors at time T, or if it
is currently alive and surrounded by two live neighbors at
time T. (Otherwise, the cell is not alive at time T+1.)
Space does not permit a discussion of the marvelous
properties of this simply-described system; for more detail,
see the references cited above.

There are many possible variants on this basic description.
In general, cellular automata are arranged in a plane (such as
the Game of Life square grid), but this needn’t always be
the case, as we shall illustrate. Likewise, some models
communicate in asynchronous fashion; some make use of
far more complex programs (and far more elaborate internal

state descriptions) than the Life example above; and so
forth. For the purposes of this paper, however, the crucial
point is that cellular automata illustrate a kind of
“construction kit” of computational elements: large
numbers of geometrically arranged, mutually-
communicating computers are capable of fascinating
collective behaviors. Our two prototypes make use of this
aspect of cellular automata, as both permit the user to create
cellular automaton models out of tangible pieces.

TWO PROTOTYPE
CONSTRUCTION KITS
In this section, we describe our two prototype systems;
though we cannot include extensive details about the
systems here, we will concentrate on those aspects relevant
to the larger subject of construction kit design.

CELLULAR-AUTOMATON

Smart Tiles

Smart Tiles may be thought of as computational elements
that can be programmed by the user and arranged into a
plane, each tile communicating with its immediate
neighbors. Figure 1 provides a view of a four-by-four set of
tiles. In our current prototype, each tile is associated with a
circular light that reflects its current state (“lit” versus
“unlit”); and the tiles, once programmed, are placed on a
fabric that acts as the background surface for the tiles, and
that contains connections for power and communications.
Each tile is able to communicate with its eight surrounding
neighbors in the fabric, and each tile’s individual program
dictates the state of the tile (lit/unlit) over time in
accordance with programmed rules that can access the tile’s
own state and that of its neighbors.

Figure 1. A four-by-four array of Smart Tiles.

In essence, then, each tile can be thought of as a single
individually-programmable “piece” in a larger array of
pieces that can be assembled into an array form, as shown
in Figure 1. In the scenario shown in the figure, we happen
to have programmed the tiles to act according to the Game
of Life rules given above; thus, all tiles are running the
same program. Importantly, though, it is possible to
remove a single tile from the fabric, connect it to a desktop
machine, and reprogram it so that it can run its own

particular rule; the tile may then be reinserted into the
fabric, from which point on it will run its own customized
rule. The programming interface for the tiles is currently
rather simple, and is shown in Figure 2; essentially, the
user may choose (in menu-driven fashion) among certain
“Life”-type rules. (A much more expressive tile-
programming interface is currently in the works.) One other
feature of the Smart Tiles system deserves mention here:
namely, that tiles may have their state changed
interactively, while a simulation is running, by pressing on
a tile (this effectively toggles the current lit-versus-unlit
state of the tile in the simulation). Thus, users may “play”
interactively with an automaton program as it runs.

‘868 Tile Mosalc

l Life ‘ Pattern .’ Diagnostics]

Tell this tile 5]
Become active if |3 [4) neighbors are active

Remain active if [2 J§) to [3 [§] neighbors are active

Be affected only by: @ nearest neighbors
=
_idistant neighbors
O any neighbors

W Change when touched

M Treat edge of fabric as a loop
@ Eecoma active whan attachad

art mosaic like this:

& Connecting to the tile..

£ Te)

Figure 2. The Smart Tile programming interface.

Triangular Prism Automaton Kit

The Smart Tiles system described above can be used to
create planar cellular automata in which pieces are arranged
on a square grid. In contrast, the Triangular Prism Kit
allows a user to build three-dimensional cellular automata.
Here, the “pieces” are computational cells, each in the shape
of a triangular prism; the pieces are connected (both
physically and electronically) via struts. Figure 3 shows a
sample construction built from the prisms; any such
construction can be disconnected, and the pieces rearranged
into myriad three-dimensional structures (or, on occasion,
two-dimensional structures: Figure 4, for instance, shows
six prisms arranged in a planar ring). A single designated
“global” piece (visible toward the right of Figures 3 and 4)
provides the overall construction with power and with a
synchronizing clock signal; it thus plays the role of the
“background fabric” in the Smart Tiles prototype. Again, in
standard cellular-automaton fashion, each individual piece
runs its own program, setting a state value (represented by
a lit or unlit red light) in accordance with rules that depend
on the cell’s own state and that of its directly-connected
neighbors.

Figure 4 illustrates a particular automaton rule for our
triangular prisms: here, each prism is executing a rule that

tells it to light up at time T+1 if and only if it has exactly
two lit neighbors at time T. In the figure, three of the cells
are lit; at the subsequent time step, these three cells will go
dark, while the other three cells (in accordance with the
stated rule) will light up. The overall ring will thus
oscillate between two configurations, with alternating sets
of three prisms lighting up and going dark at each time-
step.

Figures 3 (above) and 4. Two running Triangular Prism
constructions.

Both prototypes—Smart Tiles and Triangular Prisms—are
implemented by using PIC microcontrollers as embedded
computers within individual pieces. Currently, the user
programming interface for the prisms is far more primitive
than that for the tiles; the prisms are programmed before
assembly in Jal, a Pascal-like language created by W. van
Ooijen.[PW1] Likewise, the interactivity of the prisms is
less advanced than that of the tiles: essentially, the user
first sets up the initial state of a running system by setting
switches on the prisms, after which the overall automaton
construction begins running.

Future Directions for
Research

Both prototypes described here can be regarded as works-in-
progress, and both are the subjects of continuing
development. In the case of Smart Tiles, we have already
largely implemented a second, much smaller version of the
tile (see Figure 5), and we are working (as noted earlier) on
a new generation of programming interface. In the case of
the prisms, one direction for future development involves
experimentation with different geometric forms for the
pieces. Figure 6, for instance, shows a (non-working)
model for pieces in the form of rhombic dodecahedra; these
could be assembled into structures different from those of
the prisms.

Development and

Figure 5. A smaller Smart Tile prototype (a “toadstool”).
The figure shows the user toggling the tile’s state by
tapping on its surface; the tile has been made sensitive to
this sort of input by the inclusion of a piezoelectric disk
underneath the surface.

Figure 6. A construction kit design based on rhombic
dodecahedra.

In addition to continued technical development, both
prototypes have yet to be pilot-tested with children (or even
with adult users!). Our first such tests (employing the tiles)
are planned for early fall. Our initial focus in these tests
will be to see whether students can understand the behavior
of overall constructions; whether they can make use of a
programming interface to customize their constructions in
interesting or meaningful ways; and how (and whether)
they interact with their constructions (e.g., by toggling
tiles during a running simulation). While these projects are
undeniably still at a relatively early stage, then, we believe
that they afford fertile ground for the development of
innovative, behaviorally complex construction kits; and we
intend to use these systems as exemplars for our own
continuing development of still other construction Kkits
focusing on a variety of specific scientific and mathematical
domains.

Acknowledgments
This work was supported by NSF ROLE grant EIA-
0326054.

References

1. Eisenberg, M., et al. [2002] Computationally-Enhanced
Construction Kits for Children: Prototype and
Principles. In Proceedings of ICLS (International
Conference on the Learning Sciences), Seattle, WA.

2. Gardner, M. [1985] Wheels, Life, and other
Mathematical Amusements. NY: W. H. Freeman.

3. Gorbet, M.G. et al. [1998] Triangles: Tangible
Interfaces for Manipulation and Exploration of Digital
Information Topography. In Proceedings of CHI 98,
pp- 49-56.

4. Harley, B. [1990]
Publications: UK.

5. Kitamura, Y. et al. [2001] Real-time 3D Interaction
with ActiveCube. In Proceedings of CHI 2001
(Extended Abstracts), Seattle, WA, pp. 355-356.

6. Resnick, M. et al. [1996] Programmable Bricks: Toys
to Think With.. IBM Systems Journal, 35:3, pp. 443-
452.

7. Sutton-Smith, B. [1986] Toys as Culture. NY: Gardner
Press.

8. Watson, B. [2002] The Man Who Changed How Boys
and Toys Were Made. Viking Press.

9. Wyeth, P. and Wyeth, G. [2001] Electronic Blocks:
Tangible Programming Elements for Preschoolers. In
Proceedings of the Eighth IFIP TC13 Conference on
Human-Computer Interaction (INTERACT 2001).

Constructional Toys. Shire

Products and Websites:

[PW1] Jal website: http:/jal.sourceforge.net/
[PW2] Zometool. Zometool, Inc. (www.zometool.com)

