
Agile Development: Overcoming a Short-Term Focus
in Implementing Best Practices

Karthik Dinakar

School of Information Systems & Management, Carnegie Mellon University
923 S Aiken Avenue
Pittsburgh PA 15232

Phone: +001 781-354-5564
karthikdinakar@cmu.edu

Abstract
Agile development deemphasizes long-term planning in favor of
short-term adaptiveness. This is a strength in a rapidly changing
development environment. However, this short-term focus
creates a temptation to neglect best practices that are essential to
long-term success. This report outlines my experience as a
software developer in a leading internet portal that thrives on
agile development using SCRUM. It describes the problems that
arose when best practices were ignored and how our team
overcame them.

Categories and Subject Descriptors D.2.9 [Management]: life
cycle, productivity, programming teams, time estimation,
software psychology.

General Terms Management

Keywords Agile development, SCRUM, sprint planning, agile
infrastructure, agile teams.

1. Introduction
That agile development has an affinity towards the short term,
with minimal planning is well known. But this does not mean
that planning is antagonistic to agile development. When short-
term goals limit the adoption of agile best practices that prove to
be highly beneficial to the development of the product in the
long run, it causes problems in the team that are cumulative and
often irreversible. By using the phrase short-term goals, I refer
to the pressures that managers and developers face from the top
management with respect to tight release deadlines and
overlapping developmental cycles that leave little room for the
adoption of necessary best practices.

Often, a particular best practice which can reap rich benefits in
the long run is delayed either because of the immediacy of more
pressing issues or because of the tendency to not look beyond
the short-term. In most cases, the reason given is the former

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
OOPSLA 2009, October 25-29, 2009, Orlando, FL, USA.
Copyright © 2009 ACM 978-1-60558-768-4/09/10…$10.00..

while the real reason is the latter. Agile teams that don’t adapt
according to their own post-release recommendations will
eventually have to deal with the cumulative effects of
postponing the adoption of each of those best practices.

If the developers in an agile project intend to incorporate a set of
best practices that they deem necessary, but are constrained from
limitations and expectations set by the upper management, there
are significant interrelated implications for team morale [CM00]
and the quality of the product itself.

To avoid this quagmire, it is essential that the stakeholders in an
agile-driven project understand the importance of implementing
best practices and recommendations that surface after a post-
release or an interim review. In particular, teams embarking on a
new product should invest heavily in the early adoption of agile
best practices, given the constraints and limitations that they are
likely to encounter if they chose to adopt them at some point in
the future.

1.1 Background: Agile Principles
Agile development relies on the collaborative efforts of
everyone involved in the development of the product. Working
software is underlined as the most tangible yardstick of the state
of the product. Agile teams are self-directed and continuously
improve the team’s processes based on a cycle of self-feedback.

Each agile team is expected to tailor its own processes and
informal rules, and improve them iteratively after collective
retrospection.

Based on the original twelve principles of the agile manifesto
[AM01], I now discuss important lessons that are relevant to
problems that I discuss later.

Changing requirements are an integral part of agility.
Developers and testers should be cognizant of the fact that
requirements can be added, removed or modified even near the
end of a release cycle. Agility implies being able to respond
swiftly and effectively to changing requirements.

To deliver working software frequently, each team conforms to a
set of coding and code-review standards that ensure the
robustness of the code lying in the version control system at any
given time.

579

Developers form the core of an agile team. Without them, the
product will never reach fruition. To give each developer a sense
of ownership, and for product managers to understand the
technical limitations of a feature, it is essential that business
people and developers work together throughout the project.
Program and product managers are often so tied to the business
side of producing software that they sometimes cannot
comprehend why a particular product feature needs more time
for development than they would like. Developers must be
involved during discussions about requirements. The rationale
behind every requirement needs to be explained to them, and
they must be free to suggest better alternatives. Once the
developer is aware of why a certain requirement is needed, he is
in a better position to anticipate the scope of the requirement. He
can then design and write his code keeping in mind the larger
picture of the product and the direction that is headed towards. I
describe the positive effects of involving developers in product
backlog discussions in section two.

At the heart of the concept of agility is early and continuous
delivery of software. Minimal agile infrastructure, such as an
automated build system that gels with version control is a must
if there ought to be clean, early and continuous delivery of
software to customers. An automated build system not only frees
developers from making the builds manually, it aids in test-
driven development, ensuring release-quality code at every
major point in the development cycle. Continuous delivery of
software implies the ability to have releasable code at every
point during the development cycle. I discuss the essentiality of
fundamental agile infrastructure in section three.

Product and program managers must strive to give developers
the environment conducive for healthy development.
Micromanaging of developer task estimation is indicative of a
lack of trust. People doing the actual fine grain tasks must be
free to estimate them in a rationalized manner, and this is
particularly important for developers. When the time required to
code a particular feature that is assigned to a developer is
estimated by the engineering manager, it says ‘I do not think you
know what this task is all about. It’ll take you x hours to
complete it’. Developers can estimate their own tasks better, and
must be encouraged to be good estimators of the features that
they implement. In sections four and five, I discuss how sprint
planning can reach maturity and become very effective when
developers and QA are empowered to estimate their own tasks.

Communication between UI, development and QA teams are
best done when they are face-to-face. Developers ought to
understand that working software is the only real measure of
progress in an agile-driven project.

Decision discussions and meetings must have a place for
developers. A good design enhances agility and the developer
ought to involved in this process from the word go. If a
developer designs and writes code in isolation, oblivious to the
larger architectural goals of the product, subsequent
development cycles are likely to incur a lot of code refactoring,
which can be avoided. Hence it is a good practice to involve the
developer in design discussions. Work overload and team work-
load distribution are managerial issues that can either have a
positive or negative effect on team morale and cohesion. In
section six, I describe the negative effects of sprint overloads

and skewed work-load distributions on team morale and how
this can be overcome.

It is also essential that the team reflects on how to become more
effective and then tune and adjust its behavior accordingly. This
is a vital aspect of agile development. Action based on self-
feedback and retrospection is essential in ensuring that the
development process and the people involved in it work
synergistically to produce high quality software. This allows an
agile team to concentrate on the technical and process related
problems of the current release cycle that was just completed.
What were issues confronting the team and what can be done to
avoid them in the future? Were code reviews effective in
preventing regression bugs? Why were there so many code
integration problems? Why were tasks overshooting their
allotted time and extending beyond a sprint cycle? Answers to
such questions are very helpful – they help teams to improve
iteratively after each release cycle.

Lessons drawn from the original principles of the agile
manifesto give us a framework to examine the dilemmas and
challenges of overcoming near-sightedness and the value gained
by early induction of agile best-practices.

1.2 Project overview
I started my work as an intern in a new, startup web platform
that was to allow the rapid designing and publishing of websites
with minimal human intervention. The platform was to be used
across the company for many of its existing properties, and
utilized a lot of web-services that the company offered.

Since this was a new product which was to be created by a
newly formed team, the bare essentials of agile software
development infrastructure had to be established. Each team in
the company was free to choose its own suite of developmental
tools and define their own standards in the spirit of agility.

Fundamental software development infrastructure such as source
control, coding standards, processes for code reviews and check-
ins, informal rules for design discussions and team meetings
were drawn out before the start of the project. Key infrastructure
elements which bear special significance for agile development,
particularly in the web domain, such as an automated build
system, a unit test framework and automated QA sanity checks
were not a part of the initial development infrastructure. Instead,
it was decided that these were to be implemented in small
increments alongside the development work of the platform.

As development of the platform got underway, these key
infrastructure elements were not given much of a priority. In
fact, they were not implemented even after the third release of
the platform. The repercussions were felt heavily by developers.
Task estimates began slipping and the number of regression
bugs was on the rise. Repeated appeals by developers for
adoption of these key elements were de-prioritized by the upper
management who faced their own pressures for newer and faster
releases of the product. Faced with decreasing confidence in the
product that they were coding and steadily declining team
morale, the developers reached a tipping point and decided that
they would work overtime to implement these key elements.

580

A new automated build system was built using CruiseControl,
and a unit testing framework was adopted. Adherence to coding
guidelines was made a part of the automated test-case
framework. Sanity tests were automated and performed at
frequent intervals, thereby saving valuable time for both the
development and QA teams. A case was made to the
engineering and product managers to align the process of task
estimation more closely with the principles of agile
development. Guidelines were drawn for the length and scope of
sprint meetings, and developers sought a greater involvement in
design discussions and product backlog meetings. In brief, the
team introduced a set of agile best practices into the building of
the product.

The benefits of implementing these key changes were gradual
but highly significant. Design discussions were increasingly
more fruitful. Task estimations were more accurate and sprint
task spillages – the moving of incomplete tasks to the next sprint
cycle, were on the decline. More importantly, there was a
marked decrease in the number of regression bugs, and the
product was increasingly more stable. The team morale steadily
improved and subsequent releases were of higher quality.

The gist of these experiences is that managers and developers of
agile teams must recognize the long term benefits of adopting
agile best practices. The early adoption of fundamental agile
infrastructure, preferably before the developmental work gets
underway, is crucial.

2. Product Backlog: Involving Developers in
Decision Making
Defined in simple terms, a product backlog is a list of to-do
things. They normally contain both the functional and non-
functional requirements of a product. Each feature or
requirement is prioritized with a view to adding value for the
customer. Features that have a higher priority are listed first and
described in greater detail. The product backlog forms the basis
for determining the list of tasks to be performed during each
sprint cycle.

In this section, I discuss the role of the product manager and his
responsibility to involve developers and QA in the discussion
and prioritization of the product backlog. I argue that if not
allowed to participate in the building and prioritization of the
product backlog, developers and QA are likely to view changing
requirements less favorably.

Since changing requirements is one of the cornerstones of agile
development, an agile team must position itself to supporting
this vital capacity of being able to respond to changing
requirements. The product backlog is an important agile artifact
from this principle of agility.

2.1 Role of the product manager in fostering
developer involvement
During the initial releases of the platform, the product backlog
was written by a product manager in close consultation with the
team’s engineering manager. Prior to the injection of best-
practices mentioned above, the task of formulating and refining
the product backlog was an exercise done in isolation by a
couple of people, to the total exclusion of the developers. The

product and the engineering managers hardly consulted or
involved developers during the prioritization of features. No
rationale was given to developers regarding the need or urgency
of a feature.

As a result, developers were put in a position where they had to
code a feature because they were simply asked to. If a particular
feature of the platform was urgently needed, the reason behind
the urgency was not conveyed to developers. This created a
perception that the act of formulating the product backlog was
somehow the sole privilege of a select few and that developers
were simply viewed as ‘resources’ that should be told what they
ought to be doing.

There was a definite lack of ownership on the part of developers,
which is in direct contradiction to the agile principle of building
software collaboratively. This lack of ownership meant that
developers were coding features without fully understanding
them. It was not very clear why certain features were regarded
as more important than others. As a direct result, designs of the
code changed in almost every release cycle. The code was
refactored in almost every release cycle. Most developers in the
team considered code refactoring to be a dull and boring
activity. This further added to the decrease in team morale.

Developers need to understand what they are building and why
they are building a product. They should be able to say ‘I was
involved in the discussion of this feature. This feature is my
responsibility. I own this feature. I am in charge of it’.

2.1.2 Product backlog prioritization
Another bane of the lack of visibility of the product backlog was
the effect that it had on QA. The QA team was simply asked to
test a feature without understanding the relative importance and
customer value that a feature carried. This resulted in QA testing
all the features with roughly the same priority, until they were
explicitly told much later that some features were critical and
needed exhaustive testing. Exhaustive testing conducted at a
later point unearthed significant regression bugs that could have
been caught earlier.

As a part of best-practices adoption, a case was made to involve
developers and QA in the explication and prioritization of the
product backlog. Meetings to discuss product requirements were
initiated and an effort was made to involve both the
development and QA teams in the discussions.

Developers now had a much better idea on why a particular
feature was deemed important. QA could now prioritize the
strength of their tests for a particular feature; critical bugs were
few and caught early. There was clarity across everyone
involved in building the platform as to what was important and
why it was important, which underscores the importance of
close collaboration across agile teams for producing high-quality
software.

The lesson drawn from this experience is that product managers
should be very aware that whilst they are in charge of leading
the product towards a certain goal, it becomes critically
important to communicate the rationale behind a feature with
developers and QA folks involved in building a product.

581

2.2 Agility of the product backlog
There were a number of instances during my work in building
the platform where the product backlog was readjusted
according to new and changing customer requirements.
Although most customers of the platform were internal
properties within the company, requests to change or add a new
feature were made both during and after sprint cycles.

These changes and new features were viewed less favorably by
developers, who were distraught when they were told that a
feature completed by them either had to be changed or a new
one had to be coded in its place. Developers felt that they had no
control over the development process.

Even the QA team was resistant to these changing requirements,
and was reluctant to re-adjust their schedules and test-plans to
accommodate the change. The incorporation of the change or the
feature was done grudgingly. This meant that the code written or
modified was done half-heartedly and within a very short period
of time, with the immediate result of less than satisfying and
buggy code.

This issue was discussed at length during the adoption of best-
practices and it was decided that everyone involved in agile
development, including developers and QA, needed to welcome
changing requirements, even if they crop up at the last moment.
It also ties well with the earlier point that developers need to be
involved in the product-backlog prioritization. Being able to
produce quality software in the face of changing requirements is
one of the cornerstones of agility.

This change in perspective on the part of developers and QA
was gradual, but a very positive one. Features that were added
during and after sprint cycles were not met with resistance.
Having participated well in the prioritization of the product
backlog, developers readjusted their task estimations and QA
readjusted their test-plans. The focus was now on the feature
asked by a customer.

This kind of customer-fixation is essential in agile development.
The lesson drawn here is that the product backlog, as with any
agile artifact, must be in sync with what this fundamental
principle of agility espouses.

3. Essentiality of Fundamental Agile
Infrastructure
An agile approach to developing software requires a basic,
minimal set of development tools and processes. A wiki to share
information seamlessly between various stakeholders, choosing
an appropriate version control, a unit testing framework and
automated build and deploy systems are some of the bare
essentials that are needed for agile development [SH05].

In this section, I discuss why unit testing frameworks and
automated build systems are important in agile development.

3.1 Adherence to coding guidelines and unit
testing
Prior to the adoption of best practices, the team had a coding
standard that had to be followed. It included naming conventions

and coding styles for functions, classes and guidelines for
writing code comments. These coding standards were more or
less followed for the first few releases. The only checks for these
coding standards were code reviews. Given that most code
reviews were one-on-one meetings between two developers,
adherence to coding standards decreased over time. In fact, the
same person typically reviewed a developer’s code most of the
time, with the result that other developers had a difficult time in
getting used to a coding style that was different from the type
that they were accustomed to.

Unit testing was a highly individualized effort without a formal
unit testing framework. As the platform increased in its
complexity, the lack of a unit testing framework meant that the
number of bugs caught by QA was increasing and the bug-fixing
cycles were longer and more frustrating. The number of bugs
unearthed by QA had a significant impact on team morale, as I
shall indicate later.

During the team’s discussions on adopting best practices, it was
decided that a unit testing framework ought to be implemented
as soon as possible. PHPUnit was chosen for the frontend code
and JUnit was adopted for the backend. Coding standards were
strengthened and formalized as a part of the unit tests that each
piece of code had to have. Two coding standards checking tools
that had already been developed within the company were used.
It was simply astounding that there were so many tools that were
readily available and yet the team had not thought of using them.

The benefits of these changes were highly positive and
immediate. The next release of the platform produced lower
numbers of regression bugs. Most of the newly written code had
a uniform coding style, irrespective of the developer who coded
it. Code reviews could now be done by any developer in the
team. Integrating my code with that of another developer was
now far easier. This resulted in smoother integration cycles and
fewer integration related bugs.

3.2 Build Automation and Automated Sanity
Tests
During the first five release cycles, a build was performed after
every sprint and after every bug fixing cycle. This process was
manual and was performed by a developer. This added
responsibility of build engineering was assigned to each
developer on a round-robin basis.

The complexity of the platform was such that there were a
number of frontend and backend packages, most of which were
required to be deployed on seven servers according to a
deployment matrix. This meant an entire day was consumed in
making a build. The developer making the build had to
accommodate this additional role without affecting his own
development estimates for a sprint cycle. The build process was
viewed with scorn and disliked by all the developers who saw it
as a laborious process that was highly manual in nature.

After making the build, the build engineer of the week had to
perform certain mandatory sanity tests to validate the
deployment of the build, which was another long and manual
process. Websites had to be published on all of the frontend
servers, making use of each of the backend servers at a time. It
was a task that was almost dreaded by all of the developers.

582

Repeated pleas for having an automated build system was
largely ignored by the management. Some of the developers felt
that these pleas were nothing more than ‘soft-pedaling’ and
suggested more aggressive petitioning. Others felt that a stage
would eventually be reached when the management would see
the light of day and realize that a build automation system was
badly needed.

As part of adopting agile best practices, all the developers
agreed that there was an acute need for automating the build
process. Given the increasing scope of the platform and the
number of other teams within the company that were going to
adopt it, the team decided to automate sanity testing and make it
part of the build process. CruiseControl was adopted as the build
tool. Coding standards checkers and the sanity testing suite were
made a part of the build process too.

Within a few sprints, nightly builds were started. Each of the
initial nightly builds proved to be very painful, in the sense that
many of them failed because of a coding standard failure or a
unit test execution failure. But the team resolved itself to
continuing the process of making nightly builds. There was
positive reinforcement that however painful this exercise might
be in the short term, nightly builds were a must. This had a
dramatic impact on the stability and quality of subsequent
builds.

Automating the build and sanity testing processes freed up
valuable developer time. The QA team was so thrilled to see a
developer-driven sanity testing automation framework that they
embarked on an automation tool for their set of basic test cases.

In other words, adopting one best practice inspired the adoption
of another.

3.3 Stability of the code and its near-release
quality
Persisting with nightly builds, even as it unearthed painful habits
of developers, was a bold and necessary step that proved to be
highly beneficial over the long run. Regression bugs plummeted
in number and there was a renewed sense of confidence in the
quality of code written by each developer. More importantly, the
product was now of a near-release quality after each of the
nightly builds.

The lesson drawn from the above experiences is that the set of
fundamental agile infrastructure must include an automated
build system. It should also automate sanity testing if possible,
and integrate coding-standard checkers and unit tests within the
build process. It is not enough to merely choose a version
control system and define loose processes for adherence to
coding standards and unit testing. Automating these steps within
a tool such a CruiseControl would go a long way in ensuring
that the product that emerges after every build is stable and is
releasable.

Having such an automated system is an important facet of
continuous integration. It encourages developers to check-in
code that has been thoroughly tested. Test driven development
of software is critical to an agile team, because it ensures
release-quality code at every point in the development cycle.

This set of fundamental agile infrastructure is necessary if an
agile team is to position itself towards responding effectively to
change, be it changes in requirements, in the scope of the
product or changes in the team composition.

4. Sprint Planning and its maturity
A team that uses scrum for software development uses sprints –
usually a two to three week period producing an increment of
the product in terms of new or changed functionality [Ksh04].

In my team, there were usually three sprints for every release of
the product with each sprint lasting for about two and a half
weeks. Items to be finished during a sprint were entered into a
sprint backlog, which was closely tied with the product backlog.
Tasks were assigned to developers based on their core
competencies. Each developer was required to break each of his
tasks into subtasks. Each subtask had to be assigned an ‘effort’,
in terms of the number of hours it would take to complete the
task.

4.1 The estimator
The usual unwritten norm in the organization was that the act of
estimating a task was to be done by the developer alone. Of
course, the engineering manager had a prerogative to temper any
estimation, and tell the developer if certain estimations seemed
too optimistic or too conservative. But the primary responsibility
of estimating a task was on the developer – by estimating a task
the developer was committing to delivering that functionality
within that time.

Prior to the incorporation of best practices, the process of
estimating a task was more of a top-down chain of command.
Excessive pressures on the engineering manager from his
director often forced him to estimate the tasks for many of the
developers. This was against the practices of other teams in the
company. The platform that my team was building was a very
important one, and many other teams relied on it. This was often
cited as a justification as to why micromanaging of task
estimations was happening in the team. Of course, the
developers did not like their tasks to be estimated by another
person, although they grudgingly accepted the fact that the
engineering manager was probably under a lot of pressure
himself.

Repeated attempts by the development team to convince the
engineering manager and the division director to let them
control their own estimations were often drowned down by
emphasizing the urgency of the business the need. ‘We need to
release these features as soon as possible. Many teams depend
on our platform. This is agility. We have to focus on what is
important here’ was the usual response. Obviously, the
suggested best practices were not viewed as very important.

During the brainstorming sessions about the incorporation of
agile best practices, the developers sat down with the
engineering, product and program managers to convince them
that there was more benefit in allowing developers to estimate
their tasks rather than doing it for them. Specific examples of
sprint spillages were cited as proof.

After some persuasive discussions, it was decided that the task
of estimating a task was the primary responsibility of the

583

developer. Each developer was now expected to view their
estimations very seriously and responsibly, and that finishing a
task implied that the code would be written thoughtfully and
tested thoroughly within the estimated time.

This was in sync with the fundamental principles of agility.
Trust is an important attribute of teamwork for an agile team.
And by allowing each developer to estimate their own tasks, he
or she was being trusted to deliver that task within the time
promised.

Suddenly, the seriousness with which each developer
approached the process of estimating a task was evident for
everyone to see. Each subtask was estimated right down to the
act of code reviews and code check-ins and unit testing.
Subsequent sprints had lesser numbers of spillages, as most of
the tasks were completed within or before the estimated time.
This had a significant impact on the project schedule, which was
now a lot smoother and a lot more predictable.

4.2 Granularity of task estimation
 It is important to highlight a detailed approach to task
estimation.

High level estimations such as “9 hours for Flickr integration to
the new backend framework” were weeded out as part of the
new changes within the team. Each subtask had to have
estimations for every step in the process. For example, the
following table gives sample estimation for an important task.

Task: Flickr Integration to the new backend architecture
Subtask Estimation(hours)

Generic XML definition 2
Integration with moderation 2

Integration with cache 3
Unit test cases 2

Unit testing 2
Frontend testing from a

published website
2

With the granularity of task estimations increasing, developers
had a much better idea of the how long it might take to code a
given feature and allow them to perform comprehensive testing
before signing off on that particular task.

4.3 Planning for early integrations in a sprint
Another important change was to formally incorporate code
integration within a sprint. Before this was achieved, the code
from two or more developers was integrated just before the
sprint was about to end. Integration of code from two different
developers was not a formal part of the task estimations. Hence
many code integrations stretched well beyond a sprint cycle and
affected the sprint backlogs of subsequent sprints.

Planning and formalizing code integrations, including devoting
time for comprehensive integration testing, paid rich dividends.
Code integrations were now well achieved within each sprint
cycle and the number of integration related bugs dropped
drastically. Integration was now a more peaceful process and not
performed under the duress of doing it beyond a sprint cycle.

4.4 Efficacy of online sprint tools
Sprints within the company were tracked using a sprint manager.
Each developer had to put up his estimations on the sprint tool.
As and when things were done, the sprint tool had to be updated
to reflect the work done. These estimations were visible to
everyone in the team, and to that extent, provided a good
visibility of what was happening to other stakeholders and the
upper management.

While providing visibility, the sprint tool often forced
developers to think about how their tasks were viewed and
perceived by others. The focus was now on what the sprint tool
showed, rather than on the task itself.

Hence it was decided that while the tool was good to the extent
that it allowed each developer to track and organize his or her
task, the focus should be on the task itself and not so much on
what the sprint tool showed.

It was agreed that the sprint tool was only a tool; working
software was more important than what the sprint tool showed.
Each developer was encouraged to use the sprint tool to refine
his estimations and track his or her progress in a release cycle.

The lesson here is that these sprint tracking tools should not be
treated as ‘contracts’ between the engineering manager and the
developers. They are not agile artifacts, and are more of an aid
in better planning and organizing.

5. Issues in Sprint Cycles
Each release of the platform usually had three sprints, with each
sprint lasting for about two and a half weeks. Prior to each
sprint, there would be a sprint planning session where the
program manager would sit with the development and QA teams
to form the sprint catalog of features and tasks to be done.

The importance of sprint planning can hardly be emphasized. In
those cases where the sprint planning was poor or not
comprehensive enough, there were invariably a considerable
proportion of spillages beyond that particular sprint cycle.
Sometimes, the sprint planning sessions would be held on the
day when the actual sprint cycle was due to begin. This meant
that the sprint was already delayed by a day, because it would
take at least a few hours for the individual task estimations to
happen before the actual work could get underway.

5.1 Sprint planning and when it should be done
As part of the agile best practices adoption, it was agreed that
sprint planning sessions would be held in advance of the actual
sprint cycle. It was after all, a planning exercise and had to be
performed before the commencement of the sprint cycle itself.

It was decided that the sprint planning exercise would be
conducted two days prior to the start of the sprint. This idea was
initially opposed by the top management which felt that two
days for planning sprints was too much and that agile
development, by nature did not approve of such a degree of
planning. They felt that this was encroaching on valuable
development time and that it would add an unnecessary delay to
the overall project schedule.

584

The development team though, argued that the two days for
sprint planning was both reasonable and necessary. Cases where
improper sprint planning resulted in spillages were referred to. It
was argued that sprint planning would be a comprehensive
exercise with detailed and careful attention being given to task
estimations and QA build schedules. Investing heavily in sprint
planning meant that sprints were likely to have less spillages and
have a stabilizing affect on the entire project schedule. With
great reluctance, the engineering manager and the division
director agreed to allow this for the next release of the platform
on an experimental basis.

The experiment reaped rich rewards though. Allowing
developers to deliberate on their tasks and calibrate their task
estimations, with a view to incorporate code-integrations and
post-build sanity testing brought a sense of order to each of the
sprint cycles. The program manager and the QA team also felt
that their schedules were now less variable. There was a feeling
that things were proceeding in a predictable and systematic
fashion. After noticing that the number of spillages in each
sprint cycle was just one or two if any, the upper management
was happy to note that two days of aggressive and
comprehensive sprint planning was a good thing to have done.
Other teams in the company were now embracing this idea too.

Sprint planning, therefore, is a must if spillages are to be
minimized or eliminated. Contrary to the notion that agile
development proceeds with minimal planning, this proved that
careful and detailed planning is not antagonistic to agile
development. In fact, planning complements agility.

5.2 Stand-up meetings and the 15 minute rule
Scrum uses daily stand-up meetings during a sprint cycle, where
each developer talks about how much work he or she has
completed and what would be next on his plate, and what
bottlenecks or dependencies might prevent them completing his
tasks. All the developers are usually present in the meeting and
it is conducted by the program manager (sometimes called the
scrum master). In my team, the engineering manager was also
present in these meetings and his comments often carried more
weight than the program manager himself.

A daily scrum meeting usually lasts for about fifteen minutes.
Given the number of design discussions and other meetings that
a developer was usually involved in, it was problematic if daily
scrum meetings stretched beyond half an hour. This was
common in the team. Scrum meetings often extended beyond
half an hour.

Several blogs and research papers advocate the removal of
chairs in a room meant for scrum stand-up meetings [Yip06].
Stand-up meetings are supposed to be short, precise and concise,
where the focus is only on the sprint tasks. The program
manager agreed that this ought to be done immediately and that
each scrum meeting would last only for about fifteen to twenty
minutes.

The benefit of incorporating this concept of ‘stand-up’ meetings
was that subsequent meetings were to-the-point and saved
valuable development time for each developer. Scrum meetings
that digress into design discussions and requirements analysis

waste a lot of development time and indicates a lack of initial
planning.

 A role of a digression detector was assigned to a developer in
each of the scrum meetings. This individual was to call out
digressions during the sprint meetings. The main idea was to
avoid sprint meetings from digressing into design discussions.
Scrum meetings are about the tasks that are currently underway
and the ones that would follow next. If scrum meeting end up
being design discussions, it means that development work has
started without ironing out a strong design strategy.

5.3 Necessity of prioritization of bugs after every
sprint
For the first few releases, the prioritization of bugs was done
only after the completion of all the three sprints and just before
the bug fixing cycle. This meant that bugs which accumulated
over each of the sprints were put in the same basket. Critical
bugs from all three sprints were fixed only during the bug fixing
cycle. Bugs that emerged from the first sprint were the ones that
usually caused many of the bugs in the second and third sprint.

This process was changed to prioritize bugs after each sprint.
Bugs that were prioritized as potential regression causers were
to be fixed by the developer who caused it in the next sprint.
This was a healthy change, as the number of regression bugs in
the bug fixing cycle at the end of the three sprints decreased and
the cascading effect of the earlier bugs was avoided. Each
developer was now keener to avoid fixing his own bugs during a
sprint and was hence more careful about checking in any code
before testing it thoroughly.

5.4 Sprint cycles in the vicinity of a release
The platform was to be deployed on seven production servers.
All production related tasks were performed by a dedicated
operations team assigned specifically for the platform.

Planning for production related tasks such as re-brooming
production boxes and acquiring new hardware was done only
during the vicinity of the staging release.

A developer from the team would wear the hat of a release
engineer and sit with the operations team to work towards
acquiring the hardware and establishing the supporting
environments on each of the production boxes. This was a side
dish of a sort for the developer, who had to do this in addition to
his or her coding tasks in the sprint. The result was that the
production boxes were set up just in time, all done in a hurried
and stressed fashion. Repeated calls for establishing a structured
process to deal with the operations team were overlooked by the
upper management.

The developers, as part of the retrospective changes, decided to
form a separate process to plan and deal with the operations
team well before the start of the first sprint. While this process
was not very formal, early preparation and active involvement of
the operations team from the beginning meant that the staging
and production pushes were smooth and orderly. Many
production related issues, such as obtaining permissions for
deployment of packages on important production servers was

585

now a planned exercise. The upper management was pleasantly
surprised with the systematic way in which the staging and
production pushes happened for that particular release and the
process was formalized for subsequent releases. Early
involvement of operations personnel and planning of production
related tasks are vital to ensure that the release engineering
process is in sync with the agile development process as a whole
– being able to cope with changes in the developmental
environment such as an early staging deployment.

6. Managerial Issues and Their Ramifications On
Developers
Much of the literature written about agile development often
espouses the concept of ‘self-directed’ teams [Oxy03] where the
engineering manager has a minimal role of drawing up
schedules and overseeing status reports. As such, many agile
evangelists believe that managers should not pursue an active
role in designing, analyzing, coding and other direct tasks
related to agile development. What then, are the implications of
heavy and intrusive managerial involvement in these direct tasks
of agile development? As discussed below, managerial issues
have a significant impact on the work habits of developers
which in turn have ramifications for the entire product. Although
there were many instances of such micromanagement in my
experience, I list three issues as examples.

6.1 Sprint overload is directly proportional to the
number of painful regression bugs
During the first four releases of the platform, task estimations
for developers were done by the engineering manager. While
this was seen as unnecessary micromanagement, another direct
implication was the often heavy loads placed on individual
developers for each sprint cycle.
Developers were asked to put in extra hours of work on a routine
basis, and sometimes it required an entire weekend to finish the
work just in time before a weekly build on Monday.

Frequent multitasking to perform other tasks such as making
builds and performing manual sanity testing added to the sense
of work overload. Naturally, the code that was produced during
such heavily loaded sprints was susceptible to regression bugs.
In fact, the number of regressions bugs was distinctly higher
during such stressful sprints.

After the team’s collective retrospective act of driving in agile
best practices, micromanagement of task estimations ceased.
Although managerial involvement in this regard continued to be
fairly high by most agile evangelist’s standards, avoiding sprint
overloads and allowing each developer to estimate his or her
own tasks did lead to a drastic reduction in the number of
regression bugs.

6.2 Improper load balancing during sprints and
team fractionalization
Certain developers in the team were given the additional
responsibility of build and release engineering alongside their
usual development work.

While this is expected of a small agile team, it has to be
recognized that the individual sprints of such developers should
feature these additional tasks.

Also, frequent context-switching between coding, doing builds
and resolving production-related issues often results in reducing
the efficacy of each of those tasks. Before the implementation of
the best practices, the developer who was to make the builds and
perform sanity testing was not allowed to enter these tasks in his
sprints. Sprints were viewed as comprising of strictly
developmental work. Any other act during these sprints, such as
a design formulation or making builds was deemed as a non-
sprint task. This approach was largely responsible for the sense
of overload that the development team felt.

Consequently after retrospection, such tasks were allowed to be
entered as individual tasks in sprint cycles. The idea that a
developer’s sprint catalog was to feature only coding tasks was
disbanded. This change allowed for more relaxed and detail
oriented approach to performing builds.

Another particularly unhealthy aspect of disproportionate
distribution of workloads in the team was the strife that it
produced. Developers who had more tasks often resented the
fact that they were being asked to perform more tasks than
others in the team. The developers, in retrospect, collectively
decided that this was highly unhealthy for the team as a whole,
and that the upper management ought to be persuaded to avoid
such skewed work-load distribution. Fortunately, the persuasion
worked and a clear directive was laid to equally distribute
workloads amongst all the developers in the team.

The lesson here is that excessive micromanagement coupled
with skewed work-load distribution will pose significant risks
for team morale.

6.3 Design discussions devoid the developer
Engineering managers and architects should be very aware that
agility as a developmental methodology calls for building a
product collaboratively. This means that developers must be
involved in design discussions. Designs drawn by together by
the architect and the engineering manager in isolation cannot be
imposed upon the developers without making them understand
the rationale behind the adoption of the particular design. It is
important to get their inputs as they know the code best.

After the incorporations of the best practices, developers were
invited for all the design discussions. This was highly beneficial
to the extent that it was easier to code a certain feature by
constantly thinking about the architecture of the platform as a
whole, and about any extensions or changes that might come
later. Developers were able to choose appropriate design
patterns while coding, and there was a sense of perceiving the
code in terms of the larger architectural goals of the platform.

7. Conclusion
In this paper, I have examined the benefits of adopting agile best
practices and overcoming the short-term limitations that often
prevent the adoption from happening. I have compared the state
of the development process before and after the adoption of best
practices. While each agile team has to adopt what best practices
they deem as necessary, I have learned from my experience in
this company that there is never a bad time to incorporate an
agile best practice. It has led me to believe that early adoption of

586

best practices is a must in a newly formed agile team, because of
the many short term limitations that prevent such adoptions from
happening in later stages of the project.

When I left this company to pursue my graduate studies, the
team had benefited enormously from the adoption of best
practices and many other teams within the company were
following suit with their own adoptions of best practices.

8. Acknowledgements
I want to thank Professor Jonathan Aldrich from Carnegie
Mellon’s School of Computer Science for his judicious, crisp
and timely advice that helped me in every stage of writing this
report. I also want to thank my former developer colleagues for
making me a part of one of the most successful agile best
practices adoptions within the company.

9. References

[CM00] Cardona, P., and Miller, P. The Art of Creating and

Sustaining Winning Teams. International Graduate School
of Management, 2000.

 [AM01] Beedle, M., Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Highsmith, J., Hunt, A.,
Jeffries, R., Kern, J., Marick, B., Martin, R., Schwaber,
K., Sutherland, J., Thomas, D Agile Manifesto, 2001.
[Available at http://agilemanifesto.org/principles.html]

[SH05] Subramaniam V., Hunt A. Practices of an Agile
Developer, The Pragmatic Programmers, LLC, 2005, pp 6-
7

[Ksh04] Schwaber,K., Agile Project Management with Scrum,
Microsoft Press, 2004, Appendix B.

[Yip06] Yip, J., It's Not Just Standing Up: Patterns of Daily
Stand-up Meetings, [Available at
http://martinfowler.com/articles/itsNotJustStandingUp.html
]

[Oxy03] Lougie, A., B. A. Glen, et al. (2003). Agile
management - an oxymoron?: who needs managers
anyway? Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications. Anaheim, CA, USA, ACM.

587

