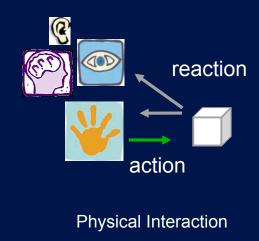
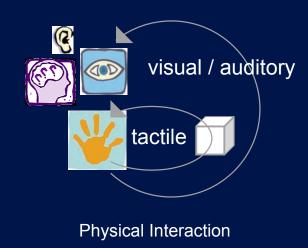

Painted Bits (GUI)

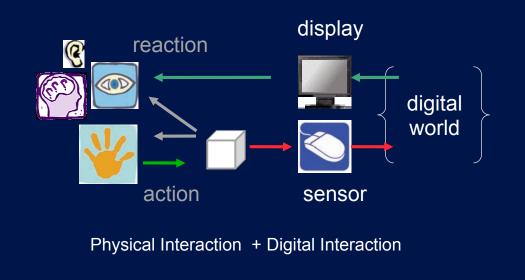
General input devices as remote-controllers of intangible representation (pixels on a screen)


Tangible Bits (TUI)

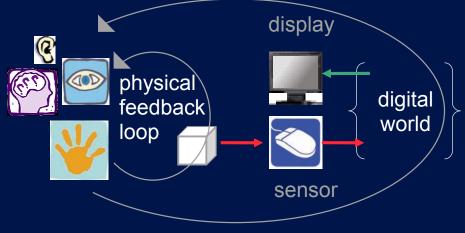
Tangible representation as interactive control mechanism to manipulate the information represented in both tangible and intangible forms



Double Interaction


Physical Interaction

Physical Interaction



Double Interaction Loops: Physical and Digital

Double Interaction Loops: Physical and Digital

digital feedback loop

Physical Interaction + Digital Interaction

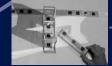
workbench

Evolution of Workbench for Collaborative Design and Tangible Thinking

1999 PingPongPlus

1997-8 Illuminating Light

2001-02


Senseboard

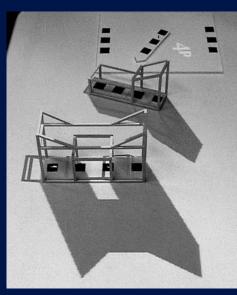
2000-02 Sensetable

2002 Actuated Workbench

1998-9 Urp

2000-02 **Luminous Table** 2001-02

Illuminating Clay


I/O Bulb and Luminous Room

Underkoffler and Ishii, 1997 - 1999

- I/O Bulb
 - High resolution output, two-way information
- Luminous Room
 - Multiple I/O bulbs illuminating architectural space
- Give life to architectural surfaces and physical objects.
- Enable direct manipulation of digital world by grasping and manipulating objects with digital shadows.

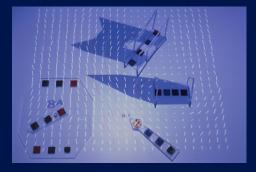
Urp: Urban Planning Workbench (an I/O Bulb AP) Underkoffler and Ishii, 1997 - 1999

light reflections

wind

digital shadows

Urp: Urban Planning Workbench Underkoffler and Ishii, 1997 - 1999


Luminous Room with multiple I/O Bulbs

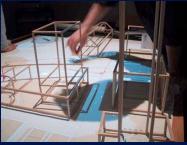
Underkoffler and Ishii, 1997 - 1999

Integration of Tangible and Intangible Representations

Principle of Tangible Interface Design

Urp 99

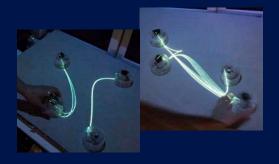
Luminous Table


in Urban Design Studio at MIT Ben-Joseph, Ishii, Underkoffler, Chak, Yeung, Piper, 1999-2001

Urban Planning Workbench used in the spring 2000 / 2001 MIT courses

Luminous Table

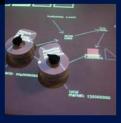
in Urban Design Studio at MIT Ben-Joseph, Ishii, Underkoffler, Chak, Yeung, Piper, 1999-2001


EXPERIENCE OF LUMINOUS TABLE IN THE PROCESS OF URBAN DESIGN

Urban Planning Workbench used in the spring 2000 / 2001 MIT courses

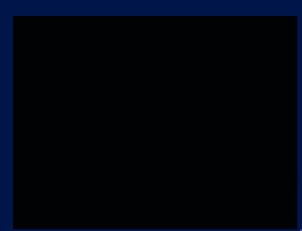
Sensetable James Patten & Hiroshi Ishii

- TUI platform to track multiple objects and their states on a table with video projection
- Applications
 - Music "Audiopad" in collaboration with Ben Recht
 - System Dynamics simulatio for Supply Chain Analysis
 - Chemistry


Business

System Dynamics Simulation for Supply Chain Analysis Patten, Hines, Malone, Murphy-Hoye & Ishii 00-03

Sensetable


Theglible Media Group MIT Media Lab

Collaboration with Intel and MIT Sloan School

System Dynamics Simulation for Supply Chain Analysis

Patten, Hines, Malone, Murphy-Hoye & Ishii 00-03

Collaboration with Intel and MIT Sloan School

IP Network Design Workbench NTT Comware + TMG

- Event-Driven Simulation + NTT Comware's network design consulting expertise
- TUI supports cooperative direct manipulation of IP Network simulator.

IP Network Design Workbench: NTT Comware + TMG (sensetable)

- Based on Event-Driven Simulation Engine and NTT Comware's NW consulting expertise
- This workbench helps designers to evaluate the effects of changing topology, bandwidth, server location in real time, to optimize the network performance.
- TUI supports cooperative direct manipulation of IP Network simulator.

IP Network Design Workbench

NTT Comware R&D Dept. MIT Mecia Lab., Tangible Mecia Group

IP Network Design Workbench NTT Comware + TMG

Thanks to Mr. Kase, Mr. Hirano, Mr. Narita, Ms. Kobayashi, Mr. Tanaka, and many other NTT Comware people.

- **Event-Driven Simulation**
- TUI supports

 cooperative direct
 manipulation of simulator to
 evaluate the effects of
 changing topology,
 bandwidth, server location in
 real time, to optimize the
 network performance.

BusinessWeek Nov. 3, 2003

Audiopad James Patten and Ben Recht (Physics & Media)

- A new way to perform electronic music.
- Designed to combine the expressive power of traditional musical instruments with the modularity of a computer
- Based on the Sensetable project.

Audiopad **James Patten and Ben Recht***

(*Physics & Media Group)

- A new way to perform electronic music.
- Designed to combine the expressive power of traditional musical instruments with the modularity of a computer
- · Based on the Sensetable project.

Sensetable: TUI Platform + Applications

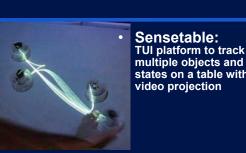
TMG

TMG + Intel + Sloan

NTT Comware + TMG

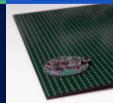
Urp [fluid dynamics]

Audiopad


Supply Chain Visualization [System Dynamics]

IP Network Designer [Event Driven Sim]

Business Process Analyzer [Event Driven Sim]



multiple objects and their states on a table with

CircuiTUI

NTT Comware Sensetable Product 2003

Patten Studio

EFFECTIVE EFFECT

Actuated Workbench

Dan Maynes-Aminzade, Gian Pangaro & Hiroshi Ishii 02

Function

Magnetic forces to move objects on a table in two dimensions.

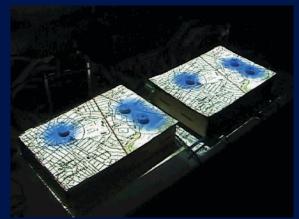
Application

Augment existing "Sensetable" providing an additional physical dynamic display capability.

Actuated Workbench Dan Maynes-Aminzade and Gian Pangaro & Hiroshi Ishii 02-03

without actuation

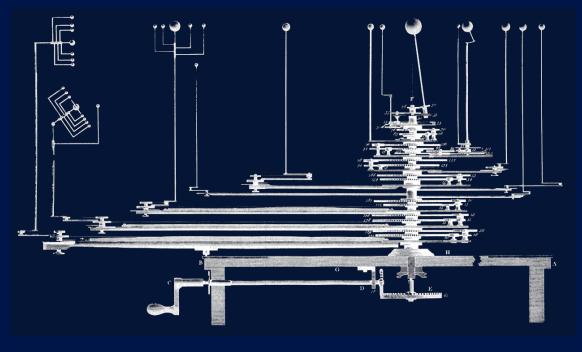
with actuation


Application 1

• Clearing up inconsistencies that arise from the computer's inability to move the objects on the table

Actuated Workbench

Dan Maynes-Aminzade and Gian Pangaro & Hiroshi Ishii 02-03



• Synchronization of distributed "Sensetables" in realtime remote collaboration

Home Home

Mechanical Representation of Knowledge: Orrery

機械成 制約 Mechanical Constraints

PICO Interaction Techniques James Patten and Hiroshi Ishii CHI 2007

Mechanical constraints, coupled with computer-controlled actuation, provide a novel and effective way to interact with computers.

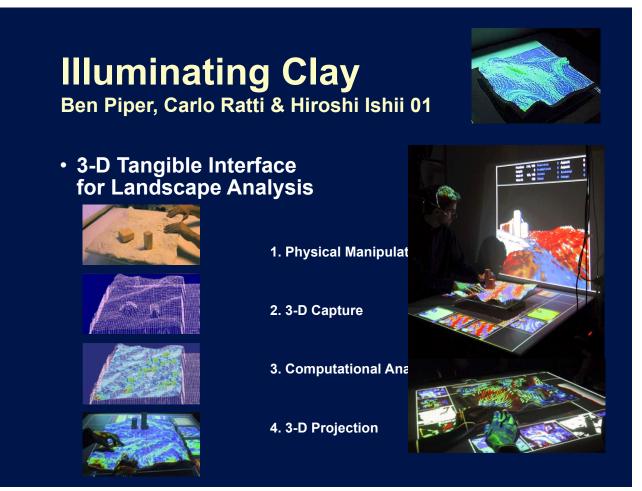
ad hoc

Mechanical constraints

Guiding the motion of physical objects to guide the computational process

Mechanical constraints

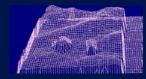
- legible
- flexible
- ad hoc

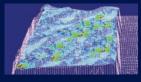


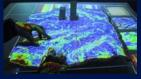
Sensetable

James Patten, Patten Studio

3D Continuous



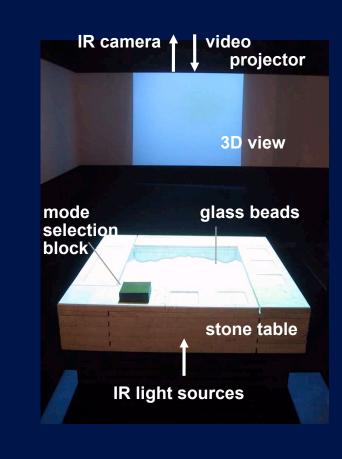

Illuminating Clay Ben Piper, Carlo Ratti & Hiroshi Ishii



- Physical Clay as 3-D Physical Input & Visual Display for intuitive manipulation and understanding of spatial relationships
- 3D Laser Scanner + Video Projector

SandScape

Hiroshi Ishii, Carlo Ratti, Ben Piper, Yao Wang, and Assaf Biderman


Tangible Media Group MIT Media Laboratory

Users can alter the form of the landscape model by manipulating sand while seeing the resultant effects of computational analysis projected on the surface of sand in real-time.

SandScape

System

A ceiling mounted IR camera captures the radiance of the light passing through the sand model to determine the geometry of the surface.

The resulting landscape analysis is projected back on to the surface.

Physical Design Media

- Clay
- Cardboard
- Wooden Blocks
- Found Objects

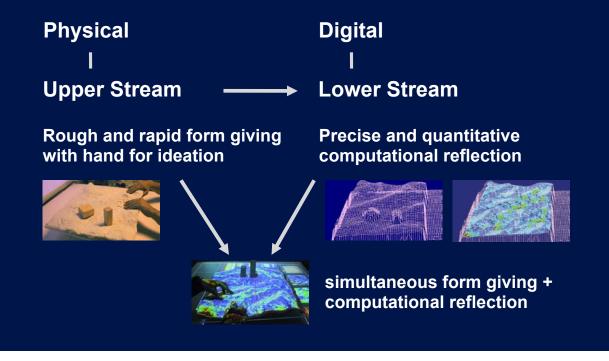
Frank O. Gehry, Architect

Physical Outcomes Stata Center 2002

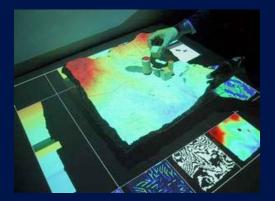
Lack of Continuity Between Physical and Digital Representation in Design

Physical

Ease of manipulation Clearer communication Aids spatial understanding


Digital

Greater precision Easy distribution Quantitative analysis



How can we merge these media?

Tangible Design Media for Seamless Form Giving & Computational Reflection

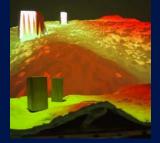
Representation of Idea Matters ...

e.g.

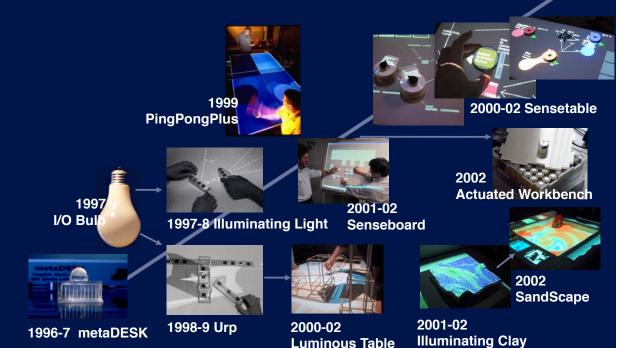
- Mathematical representation
- Drawings
- Physical models
- Computational models

... because the mental operations are made possible by the representation. ... GUI/CAD is not for ideation.

Media for Design Thinking


Visual Thinking
 -sketch

Tangible Thinking


tactile manipulation of physical representations coupled with digital computation

-design + analysis

Evolution of Workbench for Collaborative Design and Tangible Thinking

PingPongPlus

Ishii, Lee, Wisneski, Orbanes 1999

- Digital augmentation of ping pong play with "reactive table."
- Ball tracking using microphone array underneath table.
- From competition to collaboration

PingPongPlus

Ishii, Lee, Wisneski, Orbanes 1999

- Digital augmentation of ping pong play with "reactive table."
- Ball tracking using microphone array underneath table.
- "From competition to collaboration"

- ICC, Tokyo 2000
- Centre Pompidou, Paris 2003
- Victoria and Albert Museum, London 2005

PingPongPlus at Centre Pompidou, Paris 2003

- Digital augmentation of ping pong play with "reactive table."
- Ball tracking using microphone array underneath table.
- "From competition to collaboration"

Invisible extension of body - good fit

- customize
- personalize
- adapt
- co-evolve

Visible center of focus - goal of task

- Critical representation of task
- Ball has to be always visible in the foreground with a table as reference
- You need an interface (paddle) to control the ball

