◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Top-down Predict what you expect to see (eg Earley algorithm)

- Bottom-up Start with the words, then incrementally build up parse trees
 - CYK (Cocke-Younger-Kasami) algorithm
 - Well-matched to probabilistic grammars
 - Dynamic programming approach
 - Resolve ambiguities by taking the most probable subtree

- Top-down Predict what you expect to see (eg Earley algorithm)
- Bottom-up Start with the words, then incrementally build up parse trees
 - CYK (Cocke-Younger-Kasami) algorithm
 - Well-matched to probabilistic grammars
 - Dynamic programming approach
 - Resolve ambiguities by taking the most probable subtree

- Top-down Predict what you expect to see (eg Earley algorithm)
- Bottom-up Start with the words, then incrementally build up parse trees
 - CYK (Cocke-Younger-Kasami) algorithm
 - Well-matched to probabilistic grammars
 - Dynamic programming approach
 - Resolve ambiguities by taking the most probable subtree

- Top-down Predict what you expect to see (eg Earley algorithm)
- Bottom-up Start with the words, then incrementally build up parse trees
 - CYK (Cocke-Younger-Kasami) algorithm
 - · Well-matched to probabilistic grammars
 - Dynamic programming approach
 - Resolve ambiguities by taking the most probable subtree

- Top-down Predict what you expect to see (eg Earley algorithm)
- Bottom-up Start with the words, then incrementally build up parse trees
 - CYK (Cocke-Younger-Kasami) algorithm
 - Well-matched to probabilistic grammars
 - Dynamic programming approach
 - Resolve ambiguities by taking the most probable subtree

- Top-down Predict what you expect to see (eg Earley algorithm)
- Bottom-up Start with the words, then incrementally build up parse trees
 - CYK (Cocke-Younger-Kasami) algorithm
 - Well-matched to probabilistic grammars
 - Dynamic programming approach
 - Resolve ambiguities by taking the most probable subtree

- If a CFG is in Chomsky Normal Form, productions are constrained to be of two forms only:
 - Expand to 2 non-terminals, eg: A → B C with A, B, C all non-terminals
 - Expand to 1 terminal, eg: A \rightarrow a where A is a non-terminal and a is a terminal
- Any CFG can be translated to a (weakly) equivalent CFG in CNF

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- The CYK algorithm requires a grammar in CNF
- NLTK: use parse.treetransforms

- If a CFG is in Chomsky Normal Form, productions are constrained to be of two forms only:
 - Expand to 2 non-terminals, eg: A \rightarrow B C with A, B, C all non-terminals
 - Expand to 1 terminal, eg: A → a where A is a non-terminal and a is a terminal
- Any CFG can be translated to a (weakly) equivalent CFG in CNF

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- The CYK algorithm requires a grammar in CNF
- NLTK: use parse.treetransforms

- If a CFG is in Chomsky Normal Form, productions are constrained to be of two forms only:
 - Expand to 2 non-terminals, eg: A \rightarrow B C with A, B, C all non-terminals
 - Expand to 1 terminal, eg: A \rightarrow a where A is a non-terminal and a is a terminal
- Any CFG can be translated to a (weakly) equivalent CFG in CNF

- The CYK algorithm requires a grammar in CNF
- NLTK: use parse.treetransforms

- If a CFG is in Chomsky Normal Form, productions are constrained to be of two forms only:
 - Expand to 2 non-terminals, eg: A \rightarrow B C with A, B, C all non-terminals
 - Expand to 1 terminal, eg: A \rightarrow a where A is a non-terminal and a is a terminal
- Any CFG can be translated to a (weakly) equivalent CFG in CNF

- The CYK algorithm requires a grammar in CNF
- NLTK: use parse.treetransforms

- If a CFG is in Chomsky Normal Form, productions are constrained to be of two forms only:
 - Expand to 2 non-terminals, eg: A \rightarrow B C with A, B, C all non-terminals
 - Expand to 1 terminal, eg: A \rightarrow a where A is a non-terminal and a is a terminal
- Any CFG can be translated to a (weakly) equivalent CFG in CNF

- The CYK algorithm requires a grammar in CNF
- NLTK: use parse.treetransforms

- If a CFG is in Chomsky Normal Form, productions are constrained to be of two forms only:
 - Expand to 2 non-terminals, eg: A \rightarrow B C with A, B, C all non-terminals
 - Expand to 1 terminal, eg: A \rightarrow a where A is a non-terminal and a is a terminal
- Any CFG can be translated to a (weakly) equivalent CFG in CNF

- The CYK algorithm requires a grammar in CNF
- NLTK: use parse.treetransforms

CYK Example

Alice called Bob from Cardiff

Context-Free Grammar:

$$\begin{array}{l} \mathsf{S} \rightarrow \mathsf{NP} \ \mathsf{VP} \\ \mathsf{NP} \rightarrow \mathsf{NP} \ \mathsf{PP} \\ \mathsf{VP} \rightarrow \mathsf{V} \ \mathsf{NP} \\ \mathsf{VP} \rightarrow \mathsf{VP} \ \mathsf{PP} \\ \mathsf{PP} \rightarrow \mathsf{P} \ \mathsf{NP} \end{array}$$

 $\begin{array}{l} \mathsf{NP} \rightarrow \mathsf{Alice} \\ \mathsf{NP} \rightarrow \mathsf{Bob} \\ \mathsf{NP} \rightarrow \mathsf{Cardiff} \\ \mathsf{V} \rightarrow \mathsf{called} \\ \mathsf{P} \rightarrow \mathsf{from} \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

				Cardiff
			from	
		Bob		
	called			
Alice				

CYK Parse Chart

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

				Cardiff
			from	
		Bob		
NP	called			
Alice				

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

				Cardiff
			from	
	V	Bob		
NP	called			
Alice				

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

				Cardiff
		NP	from	
	V	Bob		
NP	called			
Alice				

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

			Р	Cardiff
		NP	from	
	V	Bob		
NP	called			
Alice				

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

				NP
			Р	Cardiff
		NP	from	
	V	Bob		
NP	called			
Alice				

				NP
			P	Cardiff
		NP	from	
X	V	Bob		
NP	called			
Alice				

				NP
			P	Cardiff
	VP	NP	from	
Х	V	Bob		
NP	called			
Alice				

				NP
		X	Р	Cardiff
	VP	NP	from	
Х	V	Bob		
NP	called			
Alice				

			PP	NP
		Х	Р	Cardiff
	VP	NP	from	
Х	V	Bob		
NP	called			
Alice				

			PP	NP
		Х	Р	Cardiff
S	VP	NP	from	
Х	V	Bob		
NP	called			
Alice				

			PP	NP
	X	Х	Р	Cardiff
S	VP	NP	from	
Х	V	Bob		
NP	called			
Alice				

		NP	PP	NP
	Х	Х	Р	Cardiff
S	VP	NP	from	
Х	V	Bob		
NP	called			
Alice				

		NP	PP	NP
X	Х	Х	Р	Cardiff
S	VP	NP	from	
Х	V	Bob		
NP	called			
Alice				

	VP ₁	NP	PP	NP
Х	Х	Х	Р	Cardiff
S	VP	NP	from	
Х	V	Bob		
NP	called			
Alice				

	VP ₂	NP	PP	NP
Х	Х	Х	Ρ	Cardiff
S	VP	NP	from	
Х	V	Bob		
NP	called			
Alice				

	VP ₁ /VP ₂	NP	PP	NP
Х	Х	Х	Р	Cardiff
S	VP	NP	from	
Х	V	Bob		
NP	called			
Alice				

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

S	VP	NP	PP	NP
Х	Х	Х	Ρ	Cardiff
S	VP	NP	from	
Х	V	Bob		
NP	called			
Alice				

First Parse

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

S	VP	NP	PP	NP
Х	Х	Х	Ρ	Cardiff
S	VP	NP	from	
Х	V	Bob		
NP	called			
Alice				

Second Parse

First tree

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Second tree

Probabilistic context-free grammars (PCFGs)

- A probabilistic context-free grammar augments each rule in a CFG with a conditional probability pA $\rightarrow \alpha$ (p)
- This probability is the probability that given non-terminal A it will be expanded to the sequence α; written as P(A → α|A) or P(A → α)

(ロ) (同) (三) (三) (三) (○) (○)

• Probability of a parse tree is the product of the rule probabilities used to construct the parse

Probabilistic context-free grammars (PCFGs)

- A probabilistic context-free grammar augments each rule in a CFG with a conditional probability pA $\rightarrow \alpha$ (p)
- This probability is the probability that given non-terminal A it will be expanded to the sequence α; written as P(A → α|A) or P(A → α)

• Probability of a parse tree is the product of the rule probabilities used to construct the parse

Probabilistic context-free grammars (PCFGs)

- A probabilistic context-free grammar augments each rule in a CFG with a conditional probability *p* A → α (*p*)
- This probability is the probability that given non-terminal A it will be expanded to the sequence α; written as P(A → α|A) or P(A → α)

• Probability of a parse tree is the product of the rule probabilities used to construct the parse

Probabilistic parsing

Consider the rule:

$S \to NP \; VP$

Then the probability of S is the product of the rule probability and the probability of each subtree:

 $P(S) = P(S \rightarrow NP VP) \cdot P(NP) \cdot P(VP)$

 We are doing bottom-up parsing... so we already know the subtree probabilities P(NP) and P(VP)

Probabilistic parsing

A D F A 同 F A E F A E F A Q A

Consider the rule:

 $\mathsf{S} \to \mathsf{NP} \; \mathsf{VP}$

Then the probability of S is the product of the rule probability and the probability of each subtree:

 $P(S) = P(S \rightarrow NP VP) \cdot P(NP) \cdot P(VP)$

 We are doing bottom-up parsing... so we already know the subtree probabilities *P*(NP) and *P*(VP)

Probabilistic CYK Example

Alice called Bob from Cardiff

Context-Free Grammar:

 $S \rightarrow NP VP (p_1)$ $NP \rightarrow NP PP (p_2)$ $VP \rightarrow V NP (p_3) NP \rightarrow Cardiff (p_8)$ $VP \rightarrow VP PP$ (p₄) $V \rightarrow called$ (p₉) $PP \rightarrow P NP (\rho_5)$

 $NP \rightarrow Alice (p_6)$ $NP \rightarrow Bob (p_7)$ $P \rightarrow from (p_{10})$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $P(T1, S) = p_1(p_6)(p_4(p_3(p_9p_7))(p_5(p_{10}p_8)))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 $P(T1, S) = p_1(p_6)(p_4(p_3(p_9p_7))(p_5(p_{10}p_8)))$

 $P(T1, S) = p_1(p_6)(p_4(p_3(p_9p_7))(p_5(p_{10}p_8)))$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 $P(T1,S) = p_1(p_6)(p_4(p_3(p_9p_7))(p_5(p_{10}p_8)))$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

 $P(T2, s) = p_1(p_6)(p_3(p_9)(p_2(p_7)(p_5(p_{10}p_8))))$

 $P(T2, s) = p_1(p_6)(p_3(p_9)(p_2(p_7)(p_5(p_{10}p_8))))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

 $P(T2, s) = p_1(p_6)(p_3(p_9)(p_2(p_7)(p_5(p_{10}p_8))))$

 $P(T2, s) = p_1(p_6)(p_3(p_9)(p_2(p_7)(p_5(p_{10}p_8))))$

Choosing the tree

Choose tree 1 if P(T1, S)/P(T2, S) > 1.

$$\frac{P(T1,S)}{P(T2,S)} = \frac{p_1(p_6)(p_4(p_3(p_9p_7))(p_5(p_{10}p_9)))}{p_1(p_6)(p_3(p_9)(p_2(p_7)(p_5(p_{10}p_8))))} = \frac{p_4}{p_2}$$

If $p_4p_3p_7p_9p_5p_8p_{10} < p_3p_9p_2p_7p_5p_8p_{10}$:

S	VP ₁	NP	PP	NP
<i>P</i> 1 <i>P</i> 6 <i>P</i> 3 <i>P</i> 9 <i>P</i> 2 <i>P</i> 7 <i>P</i> 5 <i>P</i> 8 <i>P</i> 10	<i>P</i> ₄ <i>P</i> ₃ <i>P</i> ₇ <i>P</i> ₉ <i>P</i> ₅ <i>P</i> ₈ <i>P</i> ₁₀	<i>p</i> ₂ <i>p</i> ₇ <i>p</i> ₅ <i>p</i> ₈ <i>p</i> ₁₀	p ₅ p ₈ p ₁₀	p_8
Х	Х	Х	Р	Cardiff
			p ₁₀	
S	VP	NP	from	
<i>P</i> 1 <i>P</i> 6 <i>P</i> 3 <i>P</i> 7 <i>P</i> 9	p ₃ p ₇ p ₉	p 7		
Х	V	Bob		
	p_9			
NP	called			
p_6				
Alice				

If $p_4p_3p_7p_9p_5p_8p_{10} < p_3p_9p_2p_7p_5p_8p_{10}$:

S	VP ₁	NP	PP	NP
<i>P</i> 1 <i>P</i> 6 <i>P</i> 3 <i>P</i> 9 <i>P</i> 2 <i>P</i> 7 <i>P</i> 5 <i>P</i> 8 <i>P</i> 10		<i>p</i> ₂ <i>p</i> ₇ <i>p</i> ₅ <i>p</i> ₈ <i>p</i> ₁₀	$p_5 p_8 p_{10}$	p_8
Х	Х	Х	Р	Cardiff
			p ₁₀	
S	VP	NP	from	
<i>P</i> ₁ <i>P</i> ₆ <i>P</i> ₃ <i>P</i> ₇ <i>P</i> ₉	$p_3 p_7 p_9$	p 7		
Х	V	Bob		
	p_9			
NP	called			
p_6				
Alice				

If $p_4p_3p_7p_9p_5p_8p_{10} < p_3p_9p_2p_7p_5p_8p_{10}$:

S	VP ₁	NP	PP	NP
<i>P</i> ₁ <i>P</i> ₆ <i>P</i> ₃ <i>P</i> ₉ <i>P</i> ₂ <i>P</i> ₇ <i>P</i> ₅ <i>P</i> ₈ <i>P</i> ₁₀		<i>p</i> ₂ <i>p</i> ₇ <i>p</i> ₅ <i>p</i> ₈ <i>p</i> ₁₀	$p_5 p_8 p_{10}$	p_8
Х	Х	Х	Р	Cardiff
			p ₁₀	
S	VP	NP	from	
<i>p</i> ₁ <i>p</i> ₆ <i>p</i> ₃ <i>p</i> ₇ <i>p</i> ₉	$p_3 p_7 p_9$	p 7		
Х	V	Bob		
	p_9			
NP	called			
ρ_6				
Alice				

If $p_4p_3p_7p_9p_5p_8p_{10} < p_3p_9p_2p_7p_5p_8p_{10}$:

S	VP ₁	NP	PP	NP
<i>P</i> ₁ <i>P</i> ₆ <i>P</i> ₃ <i>P</i> ₉ <i>P</i> ₂ <i>P</i> ₇ <i>P</i> ₅ <i>P</i> ₈ <i>P</i> ₁₀	<i>p</i> ₄ <i>p</i> ₃ <i>p</i> ₇ <i>p</i> ₉ <i>p</i> ₅ <i>p</i> ₈ <i>p</i> ₁₀	<i>p</i> ₂ <i>p</i> ₇ <i>p</i> ₅ <i>p</i> ₈ <i>p</i> ₁₀	$p_5 p_8 p_{10}$	p_8
Х	Х	X	Р	Cardiff
			p ₁₀	
S	VP	NP	from	
<i>p</i> ₁ <i>p</i> ₆ <i>p</i> ₃ <i>p</i> ₇ <i>p</i> ₉	$p_3 p_7 p_9$	p 7		
Х	V	Bob		
	p_9			
NP	called			
ρ_6				
Alice				

If $p_4p_3p_7p_9p_5p_8p_{10} < p_3p_9p_2p_7p_5p_8p_{10}$:

S	VP ₂	NP	PP	NP
<i>P</i> ₁ <i>P</i> ₆ <i>P</i> ₃ <i>P</i> ₉ <i>P</i> ₂ <i>P</i> ₇ <i>P</i> ₅ <i>P</i> ₈ <i>P</i> ₁₀	<i>p</i> ₃ <i>p</i> ₉ <i>p</i> ₂ <i>p</i> ₇ <i>p</i> ₅ <i>p</i> ₈ <i>p</i> ₁₀	<i>p</i> ₂ <i>p</i> ₇ <i>p</i> ₅ <i>p</i> ₈ <i>p</i> ₁₀	$p_5 p_8 p_{10}$	p_8
Х	Х	X	Р	Cardiff
			p ₁₀	
S	VP	NP	from	
<i>p</i> ₁ <i>p</i> ₆ <i>p</i> ₃ <i>p</i> ₇ <i>p</i> ₉	$p_3 p_7 p_9$	p 7		
Х	V	Bob		
	p_9			
NP	called			
ρ_6				
Alice				

If $p_4p_3p_7p_9p_5p_8p_{10} > p_3p_9p_2p_7p_5p_8p_{10}$:

S	VP ₁	NP	PP	NP
<i>p</i> ₁ <i>p</i> ₆ <i>p</i> ₄ <i>p</i> ₃ <i>p</i> ₇ <i>p</i> ₉ <i>p</i> ₅ <i>p</i> ₈ <i>p</i> ₁₀	<i>p</i> ₄ <i>p</i> ₃ <i>p</i> ₇ <i>p</i> ₉ <i>p</i> ₅ <i>p</i> ₈ <i>p</i> ₁₀	<i>p</i> ₂ <i>p</i> ₇ <i>p</i> ₅ <i>p</i> ₈ <i>p</i> ₁₀	<i>p</i> ₅ <i>p</i> ₈ <i>p</i> ₁₀	p 8
Х	Х	Х	Р	Cardiff
			p ₁₀	
S	VP	NP	from	
<i>p</i> ₁ <i>p</i> ₆ <i>p</i> ₃ <i>p</i> ₇ <i>p</i> ₉	<i>p</i> ₃ <i>p</i> ₇ <i>p</i> ₉	p 7		
Х	V	Bob		
	p_9			
NP	called			
p_6				
Alice				

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

If $p_4 p_3 p_7 p_9 p_5 p_8 p_{10} < p_3 p_9 p_2 p_7 p_5 p_8 p_{10}$:

S	VP ₂	NP	PP	NP
<i>p</i> ₁ <i>p</i> ₆ <i>p</i> ₃ <i>p</i> ₉ <i>p</i> ₂ <i>p</i> ₇ <i>p</i> ₅ <i>p</i> ₈ <i>p</i> ₁₀	<i>p</i> ₃ <i>p</i> ₉ <i>p</i> ₂ <i>p</i> ₇ <i>p</i> ₅ <i>p</i> ₈ <i>p</i> ₁₀	<i>p</i> ₂ <i>p</i> ₇ <i>p</i> ₅ <i>p</i> ₈ <i>p</i> ₁₀	<i>p</i> ₅ <i>p</i> ₈ <i>p</i> ₁₀	p 8
Х	Х	Х	Р	Cardiff
			p ₁₀	
S	VP	NP	from	
<i>p</i> ₁ <i>p</i> ₆ <i>p</i> ₃ <i>p</i> ₇ <i>p</i> ₉	$p_3 p_7 p_9$	p 7		
Х	V	Bob		
	p_9			
NP	called			
p_6				
Alice				

Estimating PCFG Probabilities

Treebank—corpus of parsed sentences

 Given a treebank compute the probability of each non-terminal expansion (A → α) based on the counts c(A → α):

$$P(A \to \alpha | A) = \frac{c(A \to \alpha)}{\sum_{Y} c(A \to Y)} = \frac{c(A \to \alpha)}{c(A)}$$

Estimating PCFG Probabilities

- Treebank—corpus of parsed sentences
- Given a treebank compute the probability of each non-terminal expansion (A → α) based on the counts c(A → α):

$$P(A \to \alpha | A) = \frac{c(A \to \alpha)}{\sum_{Y} c(A \to Y)} = \frac{c(A \to \alpha)}{c(A)}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Problems with PCFGs

(ロ) (同) (三) (三) (三) (○) (○)

Structural Rule probabilities are independent of location in the parse tree. For example pronouns are much more likely to be subjects than objects

Lexical PCFGs only capture lexical information in the expansion of pre-terminals. But, lexical dependencies can often be used to choose the correct parse, eg: Carol eats chips with ketchup Carol eats chips with a fork

Problems with PCFGs

- Structural Rule probabilities are independent of location in the parse tree. For example pronouns are much more likely to be subjects than objects
 - Lexical PCFGs only capture lexical information in the expansion of pre-terminals. But, lexical dependencies can often be used to choose the correct parse, eg: Carol eats chips with ketchup
 - Carol eats chips with a fork

Lexical dependence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Data from Penn Treebank:

Rule	come	take	think	want
$VP\toV$	0.095	0.026	0.046	0.057
$VP \to V \: NP$	0.011	0.321	0.002	0.139
$VP\toVPP$	0.345	0.031	0.071	0.003
$VP\toV\:S$	0.022	0.013	0.048	0.708

The rule used to expand VP is strongly dependent on the verb

• Annotated each non-terminal with its *lexical head*

- Each rule has a head child on the left hand side; the headword for a node is then the headword of its head child
- Easy for simple examples (eg the noun is the head of an NP, the verb is the head of a VP); harder in practice
- Various heuristics for finding the head robustly (mainly developed on Penn Treebank)
- A "simple" lexicalised CFG is a basic CFG with a lot more rules (ie each rule is copied for each headword) but this is impractical!
- Make some independence assumptions and condition the probability of each rule on the head (or nearby heads)

- Annotated each non-terminal with its lexical head
- Each rule has a head child on the left hand side; the headword for a node is then the headword of its head child
- Easy for simple examples (eg the noun is the head of an NP, the verb is the head of a VP); harder in practice
- Various heuristics for finding the head robustly (mainly developed on Penn Treebank)
- A "simple" lexicalised CFG is a basic CFG with a lot more rules (ie each rule is copied for each headword) but this is impractical!
- Make some independence assumptions and condition the probability of each rule on the head (or nearby heads)

- Annotated each non-terminal with its lexical head
- Each rule has a head child on the left hand side; the headword for a node is then the headword of its head child
- Easy for simple examples (eg the noun is the head of an NP, the verb is the head of a VP); harder in practice
- Various heuristics for finding the head robustly (mainly developed on Penn Treebank)
- A "simple" lexicalised CFG is a basic CFG with a lot more rules (ie each rule is copied for each headword) — but this is impractical!
- Make some independence assumptions and condition the probability of each rule on the head (or nearby heads)

- Annotated each non-terminal with its lexical head
- Each rule has a head child on the left hand side; the headword for a node is then the headword of its head child
- Easy for simple examples (eg the noun is the head of an NP, the verb is the head of a VP); harder in practice
- Various heuristics for finding the head robustly (mainly developed on Penn Treebank)
- A "simple" lexicalised CFG is a basic CFG with a lot more rules (ie each rule is copied for each headword) — but this is impractical!
- Make some independence assumptions and condition the probability of each rule on the head (or nearby heads)

- Annotated each non-terminal with its lexical head
- Each rule has a head child on the left hand side; the headword for a node is then the headword of its head child
- Easy for simple examples (eg the noun is the head of an NP, the verb is the head of a VP); harder in practice
- Various heuristics for finding the head robustly (mainly developed on Penn Treebank)
- A "simple" lexicalised CFG is a basic CFG with a lot more rules (ie each rule is copied for each headword) — but this is impractical!
- Make some independence assumptions and condition the probability of each rule on the head (or nearby heads)

- Annotated each non-terminal with its lexical head
- Each rule has a head child on the left hand side; the headword for a node is then the headword of its head child
- Easy for simple examples (eg the noun is the head of an NP, the verb is the head of a VP); harder in practice
- Various heuristics for finding the head robustly (mainly developed on Penn Treebank)
- A "simple" lexicalised CFG is a basic CFG with a lot more rules (ie each rule is copied for each headword) — but this is impractical!
- Make some independence assumptions and condition the probability of each rule on the head (or nearby heads)