
CYK Review

• Top-down Predict what you expect to see (eg Earley
algorithm)

• Bottom-up Start with the words, then incrementally build up
parse trees

• CYK (Cocke-Younger-Kasami) algorithm
• Well-matched to probabilistic grammars
• Dynamic programming approach
• Resolve ambiguities by taking the most probable subtree



CYK Review

• Top-down Predict what you expect to see (eg Earley
algorithm)

• Bottom-up Start with the words, then incrementally build up
parse trees

• CYK (Cocke-Younger-Kasami) algorithm
• Well-matched to probabilistic grammars
• Dynamic programming approach
• Resolve ambiguities by taking the most probable subtree



CYK Review

• Top-down Predict what you expect to see (eg Earley
algorithm)

• Bottom-up Start with the words, then incrementally build up
parse trees

• CYK (Cocke-Younger-Kasami) algorithm
• Well-matched to probabilistic grammars
• Dynamic programming approach
• Resolve ambiguities by taking the most probable subtree



CYK Review

• Top-down Predict what you expect to see (eg Earley
algorithm)

• Bottom-up Start with the words, then incrementally build up
parse trees

• CYK (Cocke-Younger-Kasami) algorithm
• Well-matched to probabilistic grammars
• Dynamic programming approach
• Resolve ambiguities by taking the most probable subtree



CYK Review

• Top-down Predict what you expect to see (eg Earley
algorithm)

• Bottom-up Start with the words, then incrementally build up
parse trees

• CYK (Cocke-Younger-Kasami) algorithm
• Well-matched to probabilistic grammars
• Dynamic programming approach
• Resolve ambiguities by taking the most probable subtree



CYK Review

• Top-down Predict what you expect to see (eg Earley
algorithm)

• Bottom-up Start with the words, then incrementally build up
parse trees

• CYK (Cocke-Younger-Kasami) algorithm
• Well-matched to probabilistic grammars
• Dynamic programming approach
• Resolve ambiguities by taking the most probable subtree



Chomsky Normal Form (CNF)

• If a CFG is in Chomsky Normal Form, productions are
constrained to be of two forms only:

•
Expand to 2 non-terminals, eg: A ! B C
with A, B, C all non-terminals

•
Expand to 1 terminal, eg: A ! a
where A is a non-terminal and a is a terminal

• Any CFG can be translated to a (weakly) equivalent CFG
in CNF

• The CYK algorithm requires a grammar in CNF
• NLTK: use parse.treetransforms
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CYK Example

Alice called Bob from Cardiff

Context-Free Grammar:

S ! NP VP NP ! Alice
NP ! NP PP NP ! Bob
VP ! V NP NP ! Cardiff
VP ! VP PP V ! called
PP ! P NP P ! from
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Probabilistic context-free grammars
(PCFGs)

• A probabilistic context-free grammar augments each rule in
a CFG with a conditional probability p

A ! ↵ (p)

• This probability is the probability that given non-terminal A
it will be expanded to the sequence ↵; written as
P(A ! ↵|A) or P(A ! ↵)

• Probability of a parse tree is the product of the rule
probabilities used to construct the parse
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Probabilistic parsing

• Consider the rule:
S ! NP VP

Then the probability of S is the product of the rule
probability and the probability of each subtree:

P(S) = P(S ! NP VP) · P(NP) · P(VP)

• We are doing bottom-up parsing... so we already know the
subtree probabilities P(NP) and P(VP)
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Probabilistic CYK Example

Alice called Bob from Cardiff

Context-Free Grammar:

S ! NP VP (p1) NP ! Alice (p6)
NP ! NP PP (p2) NP ! Bob (p7)
VP ! V NP (p3) NP ! Cardiff (p8)
VP ! VP PP (p4) V ! called (p9)
PP ! P NP (p5) P ! from (p10)
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NP (p8)
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P (p10)

from

VP (p3)

NP (p7)

Bob

V (p9)

called

NP (p6)

Alice

P(T 1,S) = p1(p6)(p4(p3(p9p7))(p5(p10p8)))
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Choosing the tree

Choose tree 1 if P(T 1,S)/P(T2,S) > 1.

P(T1,S)

P(T2,S)
=

p1(p6)(p4(p3(p9p7))(p5(p10p9)))

p1(p6)(p3(p9)(p2(p7)(p5(p10p8))))
=

p4

p2



Probabilistic CYK

If p4p3p7p9p5p8p10 < p3p9p2p7p5p8p10:

S VP1 NP PP NP
p1p6p3p9p2p7p5p8p10 p4p3p7p9p5p8p10 p2p7p5p8p10 p5p8p10 p8

X X X P Cardiff
p10

S VP NP from
p1p6p3p7p9 p3p7p9 p7

X V Bob
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NP called
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Alice
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Estimating PCFG Probabilities

• Treebank—corpus of parsed sentences
• Given a treebank compute the probability of each

non-terminal expansion (A ! ↵) based on the counts
c(A ! ↵):

P(A ! ↵|A) = c(A ! ↵)P
Y

c(A ! Y )
=

c(A ! ↵)

c(A)
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Problems with PCFGs

Structural Rule probabilities are independent of location in
the parse tree. For example pronouns are much
more likely to be subjects than objects

Lexical PCFGs only capture lexical information in the
expansion of pre-terminals.
But, lexical dependencies can often be used to
choose the correct parse, eg:
Carol eats chips with ketchup
Carol eats chips with a fork
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Lexical dependence

Data from Penn Treebank:
Rule come take think want

VP ! V 0.095 0.026 0.046 0.057
VP ! V NP 0.011 0.321 0.002 0.139
VP ! V PP 0.345 0.031 0.071 0.003
VP ! V S 0.022 0.013 0.048 0.708

The rule used to expand VP is strongly dependent on the verb



Lexicalised PCFGs

• Annotated each non-terminal with its lexical head

• Each rule has a head child on the left hand side; the
headword for a node is then the headword of its head child

• Easy for simple examples (eg the noun is the head of an
NP, the verb is the head of a VP); harder in practice

• Various heuristics for finding the head robustly (mainly
developed on Penn Treebank)

• A “simple” lexicalised CFG is a basic CFG with a lot more
rules (ie each rule is copied for each headword) — but this
is impractical!

• Make some independence assumptions and condition the
probability of each rule on the head (or nearby heads)
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