Decentralizing Privacy: Using Blockchain to Protect Personal Data

Guy Zyskind, Oz Nathan, Alex ‘Sandy’ Pentland
The problem of protecting personal data

Data are stored centrally (Trusted Third Party model):

User perspective:

- **Security breaches**: a single point of failure
- Users don’t own their data (lack of **ownership**)
- Users can’t audit (lack of **transparency**)
The problem of protecting personal data

Data are stored centrally (Trusted Third Party model):

User perspective:

- **Security breaches**: a single point of failure
- Users don’t own their data (lack of ownership)
- Users can’t audit (lack of transparency)

Service perspective:

- **Cost** (compliancy, security audits, Hiring CS PhDs…)
- Brand **reputation**
- **Simplicity**
General idea – A (verifiable) privacy-preserving decentralized cloud

Service

Registry Server

Service

blockchain

DHT
General idea – Simulate TTPs with a P2P network + blockchain

Eliminates trust. Decentralized:
- Access-control (Blockchain)
- Storage (DHT)
- Privacy-preserving Computations (MPC)
A brief introduction to Bitcoin

- Proposed in 2008 in a paper by Satoshi Nakamoto (pseudonym).
- Enables parties to directly transfer a digital currency (Bitcoins) without a TTP (i.e., banks).
- Instead, a network of untrusted peers ensures the validity of all transactions.
- All correct transactions are publicly verifiable through a public ledger (the blockchain).
How does Bitcoin work? In a nutshell ..

Goal: Construct a public time-stamped log of all *valid* transactions without using TTPs.
How does Bitcoin work? In a nutshell..

Goal: Construct a public time-stamped log of all *valid* transactions without using TTPs.

How? Every ~10 minutes (expected time), reach a *distributed consensus* ensuring valid mempool (floating) transactions are grouped into a block. Then, append the block to the end of the chain. The blockchain is the desired public log.
Distributed consensus mechanism

Nakamoto consensus (AKA – Proof of Work):
For every round t and every miner m:
Distributed consensus mechanism

Nakamoto consensus (AKA – Proof of Work):

For every round t and every miner m:

- Collect mempool transactions (tx’s) and validate them. Construct block $b_{m,t}$
Distributed consensus mechanism

Nakamoto consensus (AKA – Proof of Work):

For every round t and every miner m:

- Collect mempool transactions (tx’s) and validate them. Construct block $b_{m,t}$
- Attempt to solve a hard computational puzzle [$SHA-256(SHA-256(b_{m,t})) < target$].
Distributed consensus mechanism

Nakamoto consensus (AKA – Proof of Work):

For every round \(t \) and every miner \(m \):

- Collect mempool transactions (tx’s) and validate them. Construct block \(b_{m,t} \).

- Attempt to solve a hard computational puzzle \([SHA-256(SHA-256(b_{m,t})) < target]\).

- First miner to solve broadcasts the solution. All other miners independently validate the solution (work + all included transactions). If correct, they append it to their local copy of the blockchain.
Distributed consensus mechanism

Nakamoto consensus (AKA – Proof of Work):

For every round t and every miner m:

- Collect mempool transactions (tx’s) and validate them. Construct block $b_{m,t}$

- Attempt to solve a hard computational puzzle $[SHA-256(SHA-256(b_{m,t})) < target]$.

- First miner to solve broadcasts the solution. All other miners independently validate the solution (work + all included transactions). If correct, they append it to their local copy of the blockchain.

- Solver receives newly minted coins and tx fees.
How are transactions deemed valid? Scripts!

• Every transaction is associated with a script (actually, every tx output is associated with a script called scriptPubKey).

• Nodes validate transactions by executing the script with the arguments given in the tx by the sender (most importantly – her sig).

• Can run arbitrary verifications – not just financial (smart contracts).
Our framework (Overview)

Goal: when a user installs a mobile app, she can control and audit what data are stored and how they are used. Access should be revokable.
Our framework (Overview)

Goal: when a user installs a mobile app, she can control and audit what data are stored and how they are used. Access should be revokable.

Solution: Store access-policies to personal data on the blockchain. Then, let the blockchain nodes moderate access to a DHT.
Sign up *(or user downloads the app)*

- User \(u \) and service \(s \) each generate a signing key pair.
- A symmetric encryption key is generated and shared over a secure channel.
- The user approves the list of permissions \(POLICY_{u,s} \).
- \(u \) sends \(T_{access}(pk_{u,s}, pk_{s,u}, POLICY_{u,s}) \) to the blockchain.
- Also used for uninstall/modify.
Storing & loading data

Storing data:

- Send $T_{data}(E_v, 'w')$. Nodes verify sig against policy.
- Set $k=SHA-256(E_{u,s}(v))$

(key stored on blockchain, data stored on DHT).
Storing & loading data

Storing data:

• Send $T_{data}(E_v,'w')$. Nodes verify sig against policy.

• Set $k=SHA-256(E_{u,s}(v))$

Reading data:

• Send $T_{data}(k,'r$'). Nodes verify sig against policy.

• Return $v \leftarrow DHT[k]$
Security and privacy analysis

- An adversary controlling any number of DHT nodes cannot compromise privacy (because of encryption).
Security and privacy analysis

- An adversary controlling any number of DHT nodes cannot compromise privacy (because of encryption).

- An adversary controlling less than 50% of the computational power of miners cannot compromise privacy or resiliency (Nakamoto consensus & forging digital signatures)
Security and privacy analysis

• An adversary controlling any number of DHT nodes cannot compromise privacy (because of encryption).

• An adversary controlling less than 50% of the computational power of miners cannot compromise privacy or resiliency (Nakamoto consensus & forging digital signatures)

• An adversary controlling the service can learn as much as permissions allows, but traceable. An improved model follows.
Security and privacy analysis

• An adversary controlling any number of DHT nodes cannot compromise privacy (because of encryption).

• An adversary controlling less than 50% of the computational power of miners cannot compromise privacy or resiliency (Nakamoto consensus & forging digital signatures)

• An adversary controlling the service can learn as much as permissions allows, but traceable. An improved model follows.

• In general, an adversary can’t learn anything, as that implies forging either the user or the service’s sig.
Adding secure computation

Problem: Malicious services could read the raw data and store them. In addition, encrypted DHTs are mainly useful for random search.
Adding secure computation

Problem: Malicious services could read the raw data and store them. In addition, encrypted DHTs are mainly useful for random search.

Solution: Instead of direct-access, use secure MPC. The network already exists!
Adding secure computation

Problem: Malicious services could read the raw data and store them. In addition, encrypted DHTs are mainly useful for random search.

Solution: Instead of direct-access, use secure MPC. The network already exists!

Implementation (sketch):

- Instead of encrypting data, secret-share them. Policies now allow services to compute functions over private data, but they can’t obtain the raw data.

- T_{access} and T_{data} require small modifications. Off-chain network needs to be extended from storage only to MPC.
Security and privacy analysis (MPC)

Key observations:

• An adversary controlling the service can never reveal the raw data. Specifically, if x are the secret shared data, the service can only obtain $f(x)$.

• Privacy and resiliency follows feasibility results of secure MPC [BGW87] (unconditionally secure and resilient against a dishonest minority. Better bounds exist with computational assumptions).
Reputation and trust

- Bitcoin’s PoW is an expensive way to reach distributed consensus.
- It weighs each node based on its computational power ($\text{trust}_n \propto \text{resources}(n)$)
- Instead, approximate trust (or reputation) by node’s honesty. For example:

\[
\text{trust}_n^{(i)} = \frac{1}{1 + e^{-\alpha(\#\text{good}-\#\text{bad})}}
\]

* A plausible example; this is an open question requiring significant research.
Conclusions and future work

• Blockchains are a practical tool for removing TTPs from the equation.

• Can be used to govern access-control and ensure transparency.

• Personal data are not stored centrally (DHT); third-parties run MPC protocols on the network without accessing raw data directly.

• Future work: making secure MPC scalable for large n & high dimensional data; formalizing atomicity of operations; ease-of-use (a parser).