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Abstract—Optimizing the use of available resources is one of the key
challenges in activities that consist of interactions with a large number of
“target individuals”, with the ultimate goal of “winning” as many of them
as possible, such as in marketing, service provision, political campaigns,
or homeland security. Typically, the cost of interactions is monotonically
increasing such that a method for maximizing the performance of these
campaigns is required. In this paper we propose a mathematical model
to compute an optimized campaign by automatically determining the
number of interacting units and their type, and how they should be
allocated to different geographical regions in order to maximize the
campaign’s performance. We validate our proposed model using real
world mobility data.

Keywords—Mobile Networks, Network Optimization, Marketing, Behav-
ior Modeling

1 INTRODUCTION

I N a world of limited resources, behavior change campaigns
(e.g. marketing, service provision, political or homeland

security) can rely on creativity and “coolness” up to a certain
point. The success of a campaign can generally be defined as
the product of reach (portion of the population exposed to the
campaign messages) and value of a single interaction (the ca-
pacity of a message to induce a certain behavior in an exposed
audience). Hence, campaign managers typically distribute their
budget between content enhancement (to increase the value a
single interaction) and wide reach. Yet, to date it seems that the
optim trade-off between these two factors is found as a result
of “intuition” rather than based on well established analysis.

In this paper, we propose a novel mathematical method that,
given the characteristics of the target audience and its ability
to be persuaded, generates an optimized campaign strategy in
terms of: (a) the quantity of interacting units, also referred
to as insertions and (b) the monetary allocation to each unit.
The model takes into account the population’s mobility in
an urban environment as it can be inferred from real data
received from a large mobile phone carrier. Even though
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different populations located in different environments would
be tailored with different campaign strategies, the optimality
of each strategy would be maintained.

A major contribution in our optimization model is the use
of network analysis methods to approximate the reach of a
campaign. More specifically, given the network of mobility
between the different geographic locations, and a subset of
locations, we use the Group Betweenness Centrality (GBC)
[54] – a network measure that calculates the percentage of
shortest paths among all pairs of network nodes that pass
through a pre-defined sub-set of the network’s nodes – to
approximate the reach of this subset of locations. We then
demonstrate that this function can be approximated using a
smooth and easily analyzed Gompertz function. This tackles
the main limitation of works on campaign optimization hitherto
– efficiently estimating the campaign reach as a function of the
number of units and their locations.

Finally, we validate our campaign optimization model using
a real-world mobility network inferred from CDR data, and
demonstrate how GBC based deployment of campaign units
outperforms several common alternatives.

The rest of this paper is organized as follows. Related work
is discussed in Section 2. A characterization of a campaign
model and its target optimization function are presented in
Section 3. An analytical optimization of the campaign’s model
is shown in Section 4. A validation of the model using real
world mobile data is described in Section 5. Concluding
remarks appear in Section 6.

2 RELATED WORK
In recent years the social sciences have been undergoing a
digital revolution, heralded by the emerging field of “compu-
tational social science”. Lazer, Pentland et. al [75] describe
the potential of computational social science to increase our
knowledge of individuals, groups, and societies, with an un-
precedented breadth, depth, and scale. Computational social
science combines the leading techniques from network science
[19], [88], [116] with new machine learning and pattern
recognition tools specialized for the understanding of people’s
behavior and social interactions [50].

Marketing campaigns are essential facility in many areas
of our lives, and specifically in the virtual medium. One of
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the main thrusts that propels the constant expansions and
enhancement of social network based services is its immense
impact on the “real world” in a variety of fields such as politics,
traditional industry, currency and stock trading and more. This
field is becoming increasingly popular [51], [78], due to the
possibility of increasing the impact of campaigns by using
network related information in order to optimize the allocation
of resources in the campaign. This relies on the understanding
that a substantial impact of a campaign is achieved through
the social influence of people on one another, rather than
purely through the interaction of campaign managers with the
people that are exposed to the campaign messages directly.
A constantly growing portion of commercial and government
marketing budgets is being allocated to advertising in social
platforms the main goal of which is to spark viral phenomena
that by spreading through the social networks would result in
global “trends”.

2.1 Coverage optimization – theory and methods
The study of optimal coverage in pre-defined regions, by a
distributed system of interacting units, has been the topic of
many works in the past couple of decades. The work of [25]
considers the problem of locating the minimum number of
sensors on the network nodes in order to determine arc flow
volumes of the entire network (a variant that considers dynamic
environments is discussed in [97]). Influencing the behavior
of large consumers population through prices manipulation
campaigns by government agencies is discussed in [38]. In
[79] a model for optimizing coverage using a multitude of
units (in the form of sensors, for traffic surveillance purposes)
was discussed.

In general, most of the analytic techniques used for guaran-
teeing maximal interaction using distributed actors, or “cam-
paign units” use some sort of cellular decomposition of the re-
gion to be covered through the campaign. For example, in [30]
a decomposition method is being used which is analytically
shown to guarantee a complete coverage of an area. Another
interesting work is presented in [3], discussing two methods for
efficient coverage campaign using mobile units (e.g. cars with
posters, or mobile advertising Zeppelins), one probabilistic and
the other based on an exact cellular decomposition. Similar
results can be found in [12], [13].

2.1.1 Diffusion optimization
Analyzing the spreading of information has been the focus of
many social networks studies for the last decade [67] [77].
Researchers have explored both the offline networks structure
by asking and incentivizing users to forward real mails and
E-mails [45], and online networks by collecting and analyzing
data from various sources such as Twitter feeds [72].

Researchers believe that such techniques can help under-
stand the inter-influence of individuals in nowadays entan-
gled world, comprising multi-layers of social and media net-
works [35], and that it can eventually lead to accurate predic-
tion and active optimization and construction for successful
and low-cost viral market campaigns, such as the DARPA
Challenge [94]. However, the information diffusion process on

social networks is overwhelmingly complicated: the outcome
is clearly sensitive to many parameters and model settings
that are not entirely well understood and modeled correctly.
As a result, accurate trend prediction and influence diffusion
optimization are currently among the central research topics
in the field.

The dramatic effect of the network topology on the dynam-
ics of information diffusion in communities was demonstrated
in works such as [36] [90]. One of the main challenges asso-
ciated with modeling of behavioral dynamics in social com-
munities stems from the fact that it often involves stochastic
generative processes. While simulations on realizations from
these models can help explore the properties of networks [63],
a theoretical analysis is much more appealing and robust.

The identity and composition of an initial “seed group”
in trends analysis has also been the topic of much research.
Kempe et al. applied theoretical analysis on the seeds selection
problem [70] based on two simple adoption models: Linear
Threshold Model and Independent Cascade Model. Recently,
Zaman et al. developed a method to trace rumors back in
the topological spreading path to identify sources in a social
network [105], and suggest that methods can be used to
locate influencers in a network. Some scholars express their
doubts and concerns for the influencer-driven viral marketing
approach, suggesting that “everyone is an influencer” [18], and
companies “should not rely on it” [115]. They argue that the
content of the message is also important in determining its
spreads, and likely the adoption model we were using is not
a good representation for the reality.

2.1.2 Adoption model and social diffusion
A fundamental building block in trends prediction that is not
yet entirely clear to scholars is the adoption model, modeling
individuals’ behavior based on the social signals they are
exposed to. Centola has shown both theoretical and empirically
that a complex contagion model is indeed more precise for
diffusion [32], [33]. Using social influence relations derived
from online domains was discussed for example in [91]. Much
research concerning the prediction of users’ behavior based
on the dynamics in their community has been carried out in
the past, using a variety of approaches such as sociological
methods [58], [65], communities-oriented approaches [66],
game theory [34] and various machine learning methods [92].
Different adoption models can dramatically alter the model
outcome [46]. In fact, a recent work on studying mobile
application diffusions using mobile phones demonstrated that
in real world the diffusion process is a far more complicated
phenomenon, and a more realistic model was proposed in [93].

2.2 Using mobile phones data for social systems
modeling

The use of mobile phone data for the mobility and behavioral
modeling of large population has become popular in the recent
decade. In [74] the behavior and social patterns of 2.5 million
mobile phone users, making 810 million phone calls, were
analyzed and resulted in efficient mapping of users’ mobility
and housing patterns. Similar result appears in [61],
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In another example, it was shown that the penetration of
cellular phones to the Israeli market is very high, even to
lower income households, and specially among individuals
in the ages of 10 to 70 (the main focus of travel behavior
studies) [23]. This widespread use of cellular phones enables
the collection of accurate mobility data that can be used to
analyze and optimize coverage and monitoring campaigns.

For example, this data was shown in [23] and [118] to
provide a high quality coverage of the network, tracking 94%
of the trips (defined as at least 2km in urban areas, and at least
10km in rural areas). The resulting data contained a wealth of
traffic properties for a network of over 6,000 nodes, and 15,000
directed links. In addition, the network was accompanied with
an Origin Destination (OD) matrix, specifying start and end
points of trips.

2.3 Campaign optimization studies
Whenever a company wishes to introduce a new product,
increase its market share or merely retain the current one,
it needs to engage itself in marketing efforts. In fact, the
global marketing spend has been rising fast for several decades,
and is currently estimated at 1 trillion dollars a year, which
makes it between 1 to 2 percent of global GDP [56]. One
important decision with regard to marketing involves finding
the optimal balance between cost and effectiveness of the
marketing campaign. An appropriate optimization method can
help either to obtain more effective marketing results for a
given budget or to reduce the marketing cost.

The advertising budgeting problem has been addressed in
literature from different perspectives. Early models were rela-
tively simple. [87] focused on the relationship between current
marketing spending and future demand. In [112], Vidale and
Wolfe represented sales response using three parameters - sales
decay, saturation level and a response constant. Building upon
the Vidale-Wolfe model, [104] used optimal control theory to
obtain an optimal advertising strategy and [43] extended it to
include competition in a duopoly.

[81] reviewed aggregate advertising models - functions that
show the relationship between product sales and advertising
spending for a market as a whole. He stressed that most
models at the time often contradicted one another and missed
key components, making it difficult to put these models into
practical use.

Several works, such as [98] and [52], suggested that at least
the short term response to advertising is S-shaped. Meaning
that an increase in advertising is typically followed by a
period of diminishing returns. In [84], Mesak and Hani provide
oligopolistic justification for a pulsing advertising policy where
S-shaped response functions are present.

[43] determines the optimal advertising expenditures for
a duopoly in an equilibrium. [99] characterized the brands’
choice and Nash equilibrium advertising expenditures in an
oligopoly. [59] shows a model of oligopolistic competition in
which advertising enters into the demand functions of firms,
resulting in a positive relationship between product price and
the degree of advertising cooperativeness. [89] incorporated
random demand for a product to show how demand uncertainty

affects advertising decisions. [68] showed that when the market
is saturated, a brand should choose a defensive strategy, in
which the goal is preserving the existing customers and sales.
[22] explains how to choose between generic advertising and
brand advertising strategies in a dynamic duopoly.

Several researchers sought methods of helping marketing
managers allocate a given budget and optimize response.
[83] focused on assisting marketing managers in optimizing
advertising budget. They presented the first comprehensive
allocation model that, given a fixed budget, finds the optimal
spread over time and market segments. Using simple inputs,
the model created by [101] efficiently select advertising sched-
ules for network television.

Instead of looking at advertising as an expense, [40] argues
that advertising should be regarded as an investment with long-
lived effects. They then lay out an approach for calculating the
level of spending that generates optimal return. Following this
approach, [41] supplies the formulas required for calculating
the level of spending that maximizes ROI. [85] uses a Markov
decision process to formulate a stochastic, sequential model
that takes into account the maturity and past advertising of the
product and determines the optimal advertising spending. [73]
considers the advertising investment in a spatial monopoly,
contrasting the socially optimal behavior of a benevolent
planner against that of a profit seeking monopolist.

The formulas in [41] provide a solution for a single product,
single medium and a single stage. [48] addresses the multi-
product advertising budgeting problem, in which the cross-
effects of the advertised products are taken into consideration,
as well the effect of the promoted products on the rest of
the products portfolio. [106] and others studied multistage
advertising budgeting, showing the short-term and long-term
impact on demand.

Additional work has been done by [24], who addressed
the multistage multiproduct advertising budgeting problem -
optimizing the budget and allocation for multiple products,
multiple sale attributes over multiple periods. They tested their
model in an actual campaign and observed a clear increase
in profits compared to other approaches. In the second part
of their work, [24], they introduce a stochastic optimization
model and compare it with the deterministic model presented
on their early work.

So far, we have reviewed models used for finding optimal
expenditures and coverage in marketing campaign. However, a
variation of these problems can be found in other domains as
well. For example, in [2], the authors discuss two methods for
efficient coverage using mobile units, one probabilistic and
the other based on an exact cellular decomposition. Similar
results and methods can be found in [12], [14]. The work of
[26] considers the problem of locating the minimum number
of sensors on the network nodes in order to determine arc
flow volumes of the entire network. The dynamic environments
variant is discussed in [97]. The study of the correlation be-
tween topological features of a marketing environment network
and the efficiency of a distributed group of (mobile) units is
discussed in [16]. In [80] a model for optimizing coverage
using a multitude of units (in the form of sensors, for traffic
surveillance purposes) was discussed. In general, most of the
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analytic techniques used for guaranteeing maximal interaction
using distributed actors, or campaign units use some sort of
cellular decomposition of the region to be covered through the
campaign. For example, in [31] a decomposition method is
being used which is analytically shown to guarantee a complete
coverage of an area. These methods are the equivalent of the
optimization methods used for finding the optimal coverage
using various media (e.g. cars with posters, or mobile adver-
tising, Zeppelins) in the world of marketing campaigns.

2.4 Campaign optimization in practice
The author of [82] pointed out that a model that is to be
used by a manager should be simple, robust, easy to control,
adaptive, as complete as possible and easy to communicate
with. In accordance with this recommendation, the models that
we survey in this section are simple but realistic enough to be
used in the advertising industry.

2.4.1 Estimating effectiveness
In the past, short-term measurement of advertising effective-
ness was extremely problematic because of the inherently long-
term nature of advertising impact and the very small short-
term effects of advertising [1], [29], [110], [111]. Thus, as a
practical matter, the media planner often employed a proxy
for advertising effectiveness [41]. Popular choices for such a
proxy include reach [41], effective reach [4], [39], [86] and
average frequency [41]. Reach is the proportion of the target
audience exposed to at least one insertion of the advertisement.
Effective reach is the proportion of the target audience exposed
to at least three insertions of the advertisement. Frequency is
the average number of times a person from the reach audience
is exposed to an advertisement.

Exposure to an advertisement is often measured in Gross
Rating Points (GRPs): the product of reach and frequency. For
example, 100 GRPs could mean that 100% of the market is
exposed once to an advertisement or that 50% of the market is
exposed twice [62]. According to [21], it is usually preferred
to measure advertising in GRPs and not in dollars since: (1)
most managers evaluate the effectiveness of their campaigns
in terms of demand generated per GRP; and (2) it is not clear
how much advertising exposure can be purchased for a given
budget, and thus GRPs provide a clearer picture of advertising
input.

We denote the reach for k insertions as rk, and for g GRPs
as rg . Similarly, we denote the effective reach for k insertions
as erk, and for g GRPs as erg .

Traditionally, advertising campaigns are quantitatively de-
scribed by the exposure distribution (ED), defined as the
probability of exposure to none, one, up to all of the ads
in the campaign [42], [102]. Denoting the exposure random
variable as X, ranging from 0, 1 . . . k, where k is the total
number of insertions in the campaign. It was found in [76]
that the most frequently used nonproprietary model for X is
the beta-binomial distribution (BBD), with mass function:

fX(x) =

(
k

x

)
· Γ(α+ β) · Γ(α+ x)

Γ(α+ β + k) · Γ(α)
· Γ(β + k − x)

Γ(β)

where Γ is the gamma function and α, β > 0. The authors
of [41] showed that under the BBD model, the reach function
can be modeled as:

rk = 1−
k−1∏
j=0

β + j

α+ β + j

and the number of GRPs can be modeled as:

g = 100k · α

α+ β

That is, the number of GRPs g depends linearly on the
number of insertions k. At first, this result may seem strange,
as the same value of GRPs may have several corresponding
insertions values. In reality, however, for a moderately large
number of insertions, the GRPs-insertions curve is quite flat.
This means that, although there are many possible insertions
values for the same GRPs, the fluctuation in GRPs for these
combinations are small [109].

In recent years, it has become significantly easier to estimate
the effectiveness function directly. We are living the era of Big
Data, where companies gather and manage huge databases.
By using market response models we can transform this raw
marketing information into ’ready to use’ information [62]. As
a concrete example, [24] models the sales due to advertising
as a function of the number of GRPs, denoted as salesg .

Regardless of whether the effectiveness function fg is esti-
mated directly or via a proxy, in the single product scenario, it
corresponds to an increasing concave function which models
diminishing returns [62].

The authors of [41] argue that the effectiveness proxies
rg and erg can be well approximated by a function of the
following form:

fg ≈ 1− γg−λ

where γ, λ > 0 and g > g0 for some lower threshold value of
GRPs.

The authors of [62] argue that a better choice for approxi-
mating fg is the so called ’modified exponential’ function:

fg ≈ γ(1− e−δg)

In the multi product scenario, however, there exist cross
elasticities among the products due to relationships of comple-
mentarity or substitution [48]. In the case of complementarity
(positive elasticity), advertising on one product increases sales
of another product and this cross effect can be modeled by an
increasing concave function. In the case of substitution (neg-
ative elasticity), however, advertising on one product reduces
sales of the other product (this cross effect is known as canni-
balization [24]). The cannibalization effect can be modeled by
a decreasing convex function. If this function is strictly convex,
the resulting effectiveness function may not be concave. As is
well known, concavity of the objective function is a desirable
property in a maximization problem since it guarantees global
optimality (assuming a convex feasible domain). Having said
that, the cross product effects are usually small relative to the
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direct advertising effects, and therefore, in most cases, it is
reasonable to assume that the effectiveness function can be
modeled by an increasing concave function.

In Section 4, we suggest a method to derive the reach
function using real-world data, and propose to model it us-
ing a Gompertz function instead of a ’modified exponential’
function.

2.4.2 Estimating cost
the authors of [40] have proposed a mathematical relationship
between cost and GRPs. The function employed makes two
assumptions: (1) more GRPs cost more than fewer GRPs and
thus cost is a monotonically increasing function of GRPs; and
(2) buying a large number of GRPs can result in discounts and
thus the cost curve is concave. The authors further suggest the
following flexible functional form to model the cost function
cg .

cg = C · gδ

where C > 0 is a constant and 0 ≤ δ ≤ 1 is a parameter
which reflects the expected discounting extent.

In the remainder of this paper we assume that no discounting
occurs and thus δ = 1.

cg = C · g

2.4.3 Optimal criteria
The authors of [40] and [41] categorize spending criteria into
popular ad hoc criteria, and optimal criteria, which are based
on modeling and solving an optimization problem. Although
criteria that are actively used in practice often tend to be in
the ad hoc category, we focus here on the optimal category.

The three primary approaches for optimizing the level of
marketing spending are: (1) maximizing advertising profitabil-
ity, (2) maximizing advertising productivity (efficiency), and
(3) maximizing the return on investment of advertising.

Maximizing advertising profitability
This approach, developed by Kaplan and Shocker [69] starts
with the assumption that an advertising effectiveness measure
exists (perhaps effective reach), and that this measure is
directly related to revenue. This seemingly strong assumption
is not so unreasonable, because almost all media planners (in-
cluding the most sophisticated ones) currently use surrogates
of advertising effectiveness.

If we denote profitability as E1, the measure of advertising
effectiveness as fg , where g is the number of GRPs, and cg is
the cost of buying g GRPs, then the profitability is:

E1 = K · fg − cg
where K is the dollar value of one unit of effectiveness.

Maximizing advertising productivity (efficiency)
Maximizing productivity or efficiency is another alternative.
Economists often emphasize the importance to the economy

of increasing productivity, and management scholars recognize
that the greatest potential for gains in productivity are in the
knowledge and service sectors of the economy [49].

Using the above notations, productivity (efficiency) is cal-
culated as:

E2 =
K · fg
cg

Maximizing the return on investment
This approach was proposed in [44]. Using the above notations,
return on investment (ROI) is calculated as:

E3 =
K · fg − cg

cg
=
K · fg
cg

− 1

3 CHARACTERIZATION OF A CAMPAIGN
Let us define a campaign as an activity confined in time and
space with a limited budget whose objective is to send a
message or engage with the maximum number of individuals
who are located in that space.

More specifically, based on the conventions laid out in the
previous section, let us define an insertion as some kind of
induced intervention that is designed to incentivize certain
kinds of inclined behavior in the audience. Such insertions
can be for example large billboards, human agents who hand
coupons to passing pedestrians, etc. Let us also define a
deployment scheme as a specific allocation algorithm that for
a given number of insertions k outputs a set of k locations for
said insertions. Finally, let us define the reach function, rk,
as the number of individuals exposed to at least one insertion
(given that exactly k insertions were deployed according to the
given deployment scheme).

Selecting profitability as our optimal criteria (see Section
2.4.3), the reach function rg as the effectiveness measure
fg , and C · g as the cost function cg (see Section 2.4.2),
the Optimized Campaign Problem aims at maximizing the
following target function:

Eg = K · rg − C · g (1)

Given that k ≈ g (see Section 2.4.1), the above equation
can be rewritten to use the number of insertions k instead of
the number of GRPs g.

Ek = K · rk − C · k (2)

Next, we are left with efficiently modeling the reach function
rk. Assume that the network of mobility between all possible
locations is available (In section 5 we demonstrate such a
mobility network which is inferred from CDR data). Given
a number of insertions k and a deployment scheme, the reach
function rk can be well approximated by calculating the Group
Betweenness Centrality (GBC) [54] of the k locations (i.e.
nodes) which are returned by the deployment scheme.

Betweenness Centrality (BC) stands for the ability of an in-
dividual node to control the communication flow in a network
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and is defined as the total fraction of shortest paths between
each pair of vertices that pass through a given node [17], [57].
In recent years Betweenness was extensively applied to analyze
various complex networks [20], [108] including social net-
works [103], [114], computer communication networks [55],
[119], and protein interaction networks [27]. Holme [64] has
shown that Betweenness is highly correlated with congestion in
particle hopping systems. Extensions of the original definition
of BC are applicable for directed and weighted networks [28],
[117] as well as for multilayer networks where the underlying
infrastructure and the origin-destination overlay are explicitly
defined [95].

The GBC of a given group (U ⊆ V ) of vertices accounts for
all routes that pass through at least one member of the group.
Let σs,t be the number of shortest-path routes from s to t, and
let σs,t(U) be the number of shortest-path routes from s to t
passing through at least one vertex in U :

GBC(U) =
∑

s,t∈V \C|s6=t

σs,t(U)

σs,t
(3)

While the “optimal deployment scheme”, by definition,
would select the set of k locations that yield the maximal
group betweeness centrality, our proposed model does not
assume any constraint on the deployment scheme and enables
the planners to select the optimal number and type of the
units, as a function of the deployment scheme used. More
specifically, in many cases the optimal deployment scheme
might be unfeasible, involve additional costs, or be subject
to various regulatory constraints. In such cases campaign
managers may choose a different, non-optimal, deployment
scheme. Regardless of the deployment scheme chosen, it would
of course still provide monotonically increasing reach (and
GBC), albeit with a lower incline rate compared to the optimal
one.

Finally, we model the approximated reach function, using
the well-known Gompertz function [60]:

rk = aebe
ck

(4)

The Gompertz function is widely used for modeling a
great variety of processes, (due to the flexible way it can be
controlled using the parameters a, b and c), such as mobile
phone uptake [100] or population in a confined space [53].
Its ability to model the progress of optimization process as a
function of the available resources can be seen for example
in [5]–[7], [15]. In Section 5, we present empirical evidence
which illustrates how the reach function rk approximated by
the GBC of three different deployment schemes can be fitted
efficiently into a Gompertz function.

Assigning the values of Equation 4 back into Equation 2,
results in the following target function:

Ek = K · aebe
ck

− C · k (5)

The campaign will be optimized by determining the op-
timal number of insertions (k) and the optimal cost (C) of
each individual insertion that would maximize the campaign’s
performance.

4 OPTIMIZED CAMPAIGNS

At this point, we have a clear model for estimating the
efficiency of a campaign, that is dependent on the number
of insertions and the cost of each insertion.

4.1 Optimizing the Number of Insertions
We now turn our attention to finding the optimal number
of insertions k that would maximize the profitability of the
campaign. First, we obtain the derivative to find the critical
points of the function we seek to optimize:

∂Ek
∂k

= K · ∂(aebe
ck

)

∂k
− C (6)

Nullifying Equation 6 results in:

∂(aebe
ck

)

∂k
=
C

K
(7)

In that case, using Equation 7 we obtain:

a · b · c · eck · ebe
ck

=
C

K

which in turn implies:

beck + ck − ln
C

a · b · c ·K
= 0 (8)

We note that a, b, c > 0. Analyzing Equation 8 we can then
see that in cases where:

C

K
≤ −a · c

e
(9)

and where W (x) is the Lambert product log, that can be
calculated using the series:

W (x) =

∞∑
n=1

(−1)n−1nn−2

(n− 1)!
xn (10)

the optimal value of k would equal:

k1 =
ln
(

1
a·b·c ·

C
K

)
−W

(
1
a·c ·

C
K

)
c

k2 =
ln
(

1
a·b·c ·

C
K

)
−W−1

(
1
a·c ·

C
K

)
c

(11)

Note that W (x) is the Lambert product log, and Wk(x) is
its analytic continuation over the complex plane (the values of
the functions W (x) and W−1(x) in the segment implied by
the constraint of Equation 9 are illustrated in Figure 1).

Returning to the optimization of the campaign, we now
assign the values of the optimal number of insertions of
Equation 11 into the definition of Ek, as follows:

Ek1 = K · aebe
ck1 − k1 · C

Ek2 = K · aebe
ck2 − k2 · C
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Fig. 1. The upper and lower charts depict the values of
the Lambert functions W (x) and W−1(x) in the segment
[− 1

e , 0], respectively. The segment is implied by the con-
straint of Equation 9.

and using the properties of the W function, simplify it into
the following form:

Ekmax = max{Ek1 , Ek2} where: (12)

Ek1 = a · b ·K · γ ·
(
W (b · γ) +

1

W (b · γ)
− ln (γ)

)
Ek2 = a · b ·K · γ ·

(
W−1 (b · γ) +

1

W−1 (b · γ)
− ln (γ)

)
where the Campaign Benefit Factor γ is defined as:

γ =
1

a · b · c
· C
K

From Equation 12 we see that the optimization of a cam-
paign is a function of the Campaign Benefit Factor γ, which
takes into account the dollar value of one unit of effectiveness,
the total cost, as well as the deployment scheme (characterized
by the values of a, b and c). Notice that the value of C does
not affect the values of a, b and c (as they are solely derived
from the coverage efficiency of the mobility patterns).

4.2 Optimizing the Cost of a Single Insertion
We now proceed to finding the optimal type of units that should
be deployed, by optimizing Equation 12 with respect to the
cost of various possible kinds of insertions.

Definition 1: Let CostBase denote the cost of the “most
expensive” insertions which we will assume are the units that
provide the highest value to the initiators of the campaign,

namely — those insertions that persuade the maximal amount
of individuals to take the desired action.

We hereby define K, the dollar value of one unit of effec-
tiveness, as a function dependent on the proportion between
the cost of the given type of insertions and the cost of the
optimal, but most expensive, insertions:

K = fS

(
C

CostBase

)
(13)

We now look into finding the optimal cost of insertions that
would maximize the profitability of a campaign. To do so,
we first revise Equation 12 in order to take into account the
different types of insertions:

(14)

Ek1 = a · b · fS · γ ·
(
W (b · γ) +

1

W (b · γ)
− ln (γ)

)

Ek2 = a · b · fS · γ ·
(
W−1 (b · γ) +

1

W−1 (b · γ)
− ln (γ)

)
and where:

γ =
1

a · b · c
· C
fS

We then maximize the financial merits of the campaign
(namely, max{Ek1 , Ek2}), by calculating the partial deriva-
tives ∂Ek1

∂C and ∂Ek2

∂C :
∂Ek1
∂C

= (15)

1

c
·

(
W (b · γ)− ln(γ) +

1− ∂fS
∂C ·

C
CostBase·fS

W (b · γ)

)
and:

∂Ek2
∂C

=

1

c
·

(
W−1(b · γ)− ln(γ) +

1− ∂fS
∂C ·

C
CostBase·fS

W−1(b · γ)

)
Once again, by nullifying the partial derivative and finding the
critical points, we obtain the following set of equations:

(16)

0 = W (b · γ)− ln(γ)+

1− C
CostBase

· ∂fS∂C

[
C

CostBase

]
·
(
fS

[
C

CostBase

])−1
W (b · γ)

or :

0 = W−1(b · γ)− ln(γ)+

1− C
CostBase

· ∂fS∂C

[
C

CostBase

]
·
(
fS

[
C

CostBase

])−1
W−1(b · γ)

where :

γ =
1

a · b · c
· C
K
·
(
fS

[
C

CostBase

])−1
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Equation 16 can now be used to calculate the exact optimal
cost of a single insertion, for every cost-value relation, and for
every deployment scheme!

5 CAMPAIGN OPTIMIZATION FOR A REAL-
WORLD MOBILITY NETWORK

In this section we validate our campaign optimization model
using a real-world mobility network inferred from CDR data.

5.1 The Dataset
We used Call Data Records (CDR) from a large mobile carrier
to create a network that captures the traveling patterns among
different urban areas. CDR are readily available today, as
they are collected by all carriers and in most (if not all)
countries. Furthermore, these records are constantly collected
in an automated manner, thus increasing the likelihood of
the data being objective and uniform across locations and
operators.

More specifically, we denote G = 〈V,E〉 to be the
undirected network graph, where V is the set of vertices
representing the cell towers and E is the set of weighted edges
representing trips or movements of people between two cell
towers. The weight of each edge represents the number of
trips that people made between the cell towers connected by
that edge.

Each CDR contains an anonymized identifier of the
caller/callee, the call time, and the cell tower that the phone
was connected to when the call (or SMS) originated. A trip is
defined as a change of location by the caller/callee, detected
by the existence of two consecutive calls from two different
towers or by a change in the cell tower during an existing call.

As shown in figure 2 (left), the weights of the edges in
the network seem to follow a power-law distribution. We
used the method suggested in [37] and [113] to determine
the best Xmin and corresponding γ values that fit a power-
law distribution. Since the focus of this paper is not related
to the network’s topology, our analysis did not include the
statistical tests performed in [37]. Figure 2 (right) shows the
Probability Density Function (PDF) and the best power-law fit
with Xmin = 3 and γ = 1.87.

In order to focus on the network’s structure that represents
urban mobility patterns of large populations, we retained
only edges with weights higher than 10 (arbitrarily chosen
threshold), producing a graph with |V | = 18, 315 and |E| =
130, 313.

The Complementary Cumulative Distribution Function
(CCDF) of node degrees is shown in Figure 3 (left). Once
again, we used the method suggested by [37] and [113] to find
the parameters that best fit a power-law distribution. Figure
3 (right) shows the PDF and the best power-law fit with
Xmin = 45 and γ = 5.05.

5.2 Optimized Deployment Schemes
Acquiring information regarding the mobility patterns of the
audience members, and the specific network that is generated

through those patterns can be used to subsequently derive
optimized locations for the campaign units, or to the very least,
provide a way of measuring the utilization of a set of locations,
by calculating the GBC of the set, and comparing it to that of
the optimal one.

Several combinatorial optimization techniques can be used
to find a group of nodes of given size that has the largest
GBC, including greedy approximation [47], a classical Depth
First Branch and Bound (DFBnB) heuristic search algorithm
[71], or the recently proposed Potential Search [107]. Both
the DFBnB and the Potential algorithms are anytime search
algorithms [120], meaning that their execution can be stopped
at any point of time, yielding the best solution found so far.

Similarly to [96], in this section, we examine three methods
for finding the group of size k with the highest GBC, and
apply them on our real-world mobility network. The first
method, Random Deployment, simply selects a random set of
k vertices. The second method, BC Deployment, chooses the
k vertices with the highest individual Betweeness Centrality
scores. The third method, GBC Deployment, uses a greedy
algorithm which iteratively finds the vertex which improves
the group’s GBC score the most and adds it to the group.

Due to the runtime complexity of the GBC calculation and
the GBC deployment scheme, we performed two stages of
sampling our mobility network. First, a subset of 5000 vertices
was randomly selected. Then, we retained only the largest
connected component, denoted by G, a network containing
991 vertices and 3,304 edges. An illustration of the resulting
network is shown in figure 4.

Fig. 4. Network G’

It can be seen that this network is a good sampling of the
original network, as the median distance from each trimmed
node to the closest node in the sampled network is 4, while
the diameter of the graph itself is 22. Figure 5 (left) shows the
distribution of distances of trimmed vertices from nodes in the
sampled network and Figure 5 (right) depicts the PDF and the
best power-law fit with Xmin = 3 and γ = 2.08.

We examined the three deplyment schemes variants, calcu-
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lated their corresponding GBC values, and fitted them onto a
Gompertz function using regression. Figure 6 illustrates the
three deployment schemes for our mobility network. Their
fitting yielded the following Gompertz regressions:

Random Deployment : rk = 0.76e−3.14e
−0.02k

(17)

BC Deployment : rk = 0.92e−0.94e
−0.2k

GBC Deployment : rk = 0.96e−1.25e
−0.38k

The regressions had the following fit quality (in terms of

R2):

1) Random Deployment - 0.6683
2) BC Deployment - 0.8035
3) GBC Deployment - 0.8531

Consistently with [95], using the GBC Deployment we saw
that it is possible to cover the vast majority of the most
popular mobility nodes with a few dozen insertions. The
BC Deployment produced high quality deployments as well,
although based on our findings it required a higher number of
insertions. It seems that both schemes significantly outperform
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Random Deployment, which required 100 insertions to reach
50 percent coverage, and a few hundred nodes to guarantee a
near-full one.

It is important to note that rk can significantly change
for different networks (modeling different urban environments
mobility patterns). With this in mind, we can now proceed to
finding the optimal number of insertions, and subsequently —
the maximization of the monetary utilization of the investment
in the system.

5.3 Optimizing the number of insertions and the cost
per insertion

In this section we demonstrate how the proposed method can
be used to significantly increase the utilization of a given
campaign.

For simplicity, we assume that both K and the cost per
unit (C) are continuous, and follow some pre-defined function,
known to the campaign managers., For example, we may
imagine a function that follows a sub-linear correlation, such
as the following:

fS1

(
C

CostBase

)
=

(
C

CostBase

)2

The meaning of this function is that insertions that cost
half of the optimal insertions possible, would generate 25%
value of the optimal (most expensive) ones. Alternatively,
we may imagine environments where the correlation between
insertions’ cost and value is super-linear, converging to one,
such as the function:

fS2

(
C

CostBase

)
=

√
C

CostBase

In this analysis we shall use the values of the Gompertz
approximation as shown above in Equation 17:
• Random Deployment : a = 0.76, b = 3.14, c = 0.02
• BC deployment : a = 0.92, b = 0.94, c = 0.2
• GBC deployment : a = 0.96, b = 1.25, c = 0.38
In this case, nullifying the partial derivative of Equation 15

for GBC deployment, and assuming fS1 as a measurement of
K, would yield:

∂Ek1
∂C

= 0 −→ (18)

W (1.25 · γ) = ln (γ) +
1

W (1.25 · γ)

and:
∂Ek2
∂C

= 0 −→

W−1 (1.25 · γ) = ln (γ) +
1

W−1(1.25 · γ)

subsequently implying:

γopt ≈ 0.2837

(in this example, the optimal value of γ for Ek2 has a non-zero
imaginary component).

Using this optimal value of γ we would now get:

γopt =
1

a · b · c
· C
fS1

=
2.19 · Cost2Base

C
= 0.2837

and from this we receive:

Copt =
2.19 · Cost2Base

0.2837 ·K
≈ 7.72 · Cost2Base (19)
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Fig. 6. GBC for three deployment schemes with respect to the number of used units, using mobility patterns extracted
from mobile phones data (left to right): (a) Random Deployment, (b) BC Deployment, and (c) GBC Deployment. The
appropriate Gompertz fit of the curves is also included.

From Equation 19 we can obtain for each kind of campaign
the optimal type of insertions that should be used, in order
to maximize Equation 5 — the optimization function that
maximizes a campaign’s profitability.

Assigning this back into Equation 11, we can get the optimal
number of insertions for each potential campaign (see an
illustration in Figure 7):

k1 = (20)

2.63 ·W
(
2.74 · Cost2Base

)
+ 0.786− 5.26 · ln (CostBase)

and:
k2 =

2.63 ·W1

(
2.74 · Cost2Base

)
+ 0.786− 5.26 · ln (CostBase)

Note that the previous example depends on the assumption
of a quadratic relation between the cost and quality of the
insertions, and on the assumption regarding the deployment
scheme (i.e. the parameters of the Gompertz Model). However,
given any substitute for these assumptions, corresponding
solutions to the optimized campaign problem will be generated
by the model.

Repeating the above process with the Gompertz fitted values
for BC Deployment, as well as Random Deployment, we can
obtain the optimized campaigns (in terms of cost per insertion,
and number of insertions) for these deployment schemes.

The above analysis examined the profitability of the cam-
paign (see again Section 2.4.3). If we are interested in the
return on investment of the campaign, we can devide the
profitability of the campaign by its cost (i.e. the number
of insertions times the cost per insertion). Figure 8 shows
the return on investment of the three deployment schemes
as a function of their profitability. The figure illustrates the
superiority of the GBC method, as well as the performance of
the optimized campaigns, compared to non-optimized ones.

6 CONCLUSIONS
In this paper we studied the problem of campaign optimization.
We started by formalizing the problem of optimizing a cam-
paign by finding the optimal trade-off between the resources

(cost) allocated to each single unit, and the number of such
units. We have presented a novel model to analytically generate
an optimized strategy for marketing campaigns, and demon-
strated how it can be used with aggregated and anonymized
mobility data received from mobile carriers.

Specifically, we have shown a way to analytically calculate
the exact optimal cost for units in a campaign, as well as the
optimal number of such units, that would guarantee a maximal
utilization of the campaign’s budget.

In this work we have discussed the optimization of cam-
paigns resources utilization. However, the exposure results to
be guaranteed using such resources and the proposed method
were left outside the scope of this work. This aspect however
(namely, theoretical lower bounds for any conceivable cam-
paign strategy), was discussed in works such as [13] – where a
generic analytical bound was developed, under the assumption
that the campaign’s target will practice an adversarial strategy
that would minimize their exposure, or [8], [9], [13] – where
the impact of changes in the topological properties of the
environment and the campaign’s theoretical utilization were
analyzed.

Finally, it is interesting to note that the problem of finding
an optimal (and optionally dynamic) “engagement strategy”
is related to other kinds of monitoring problems, such as
monitoring for evading land targets by a flock of Unmanned
Air Vehicles (UAV). In this problem, however, the fact that
the paths of the UAVs is unconstrained (as they are flying in
the air) makes the calculation of a near-optimal monitoring
strategy fairly easy [10], [11].
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[20] M. Barthélemy. Betweenness centrality in large complex networks.
The European Physical Journal B – Condensed Matter, 38(2):163–
168, March 2004.

[21] Frank M Bass, Norris Bruce, Sumit Majumdar, and BPS Murthi.
Wearout effects of different advertising themes: A dynamic bayesian
model of the advertising-sales relationship. Marketing Science,
26(2):179–195, 2007.

[22] Frank M Bass, Anand Krishnamoorthy, Ashutosh Prasad, and Suresh P
Sethi. Generic and brand advertising strategies in a dynamic duopoly.
Marketing Science, 24(4):556–568, 2005.

[23] Shlomo Bekhor, Yehoshua Cohen, and Charles Solomon. Evaluating
long-distance travel patterns in israel by tracking cellular phone
positions. Journal of Advanced Transportation, pages n/a–n/a, 2011.

[24] Cesar Beltran-Royo, H Zhang, LA Blanco, and J Almagro. Multistage
multiproduct advertising budgeting. European Journal of Operational
Research, 2012.

[25] Confessore G. Gentili M. Bianco, L. Combinatorial aspects of the
sensor location problem. Annals of Operation Research, 144(1):201–
234, 2006.

[26] Lucio Bianco, Giuseppe Confessore, and Monica Gentili. Combina-
torial aspects of the sensor location problem. Annals of Operations
Research, 144(1):201–234, 2006.

[27] P. Bork, L. J. Jensen, C. von Mering, A. K. Ramani, I. Lee, and E. M.
Marcotte. Protein interaction networks from yeast to human. Curr.
Opin. Struct. Biol., 14(3):292–299, 2004.

[28] U. Brandes. On variants of shortest-path betweenness centrality and
their generic computation. Social Networks, 30(2):136–145, 2008.

[29] Simon Broadbent. Point of view-what is a small advertising elasticity.
Journal of Advertising Research, 29(4):37–39, 1989.

[30] Z. Butler, A. Rizzi, and R. Hollis. Distributed coverage of rectilinear
environments. In Proceedings of the Workshop on the Algorithmic
Foundations of Robotics, 2001.

[31] Zack J Butler. Distributed coverage of rectilinear environments. PhD
thesis, Carnegie Mellon University, 2000.

[32] D. Centola. The spread of behavior in an online social network
experiment. science, 329(5996):1194, 2010.

[33] D. Centola and M. Macy. Complex contagions and the weakness of
long ties. American Journal of Sociology, 113(3):702, 2007.

[34] N. Cesa-Bianchi and G. Lugosi. Potential-based algorithms in on-line
prediction and game theory. Machine Learning, 51:239–261, 2003.

[35] M. Cha, H. Haddadi, F. Benevenuto, and K.P. Gummadi. Measuring
user influence in twitter: The million follower fallacy. In 4th Inter-
national AAAI Conference on Weblogs and Social Media (ICWSM),
2010.

[36] H. Choi, S.H. Kim, and J. Lee. Role of network structure and network
effects in diffusion of innovations. Industrial Marketing Management,
39(1):170–177, 2010.

[37] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-
law distributions in empirical data. SIAM review, 51(4):661–703, 2009.

[38] M. C. Cohen and P. Harsha. Designing price incentives in a network
with social interactions. Submitted, 2013.

[39] C Samuel Craig and Avijit Ghosh. Using household-level viewing data
to maximize effective reach. Journal of Advertising Research, 1993.

[40] Peter J Danaher and Roland T Rust. Determining the optimal level of
media spending. Journal of Advertising Research, 34(1):28–34, 1994.

[41] Peter J Danaher and Roland T Rust. Determining the optimal return
on investment for an advertising campaign. European Journal of
Operational Research, 95(3):511–521, 1996.

[42] PJ Danaher. Parameter estimation and applications for a generalisation
of the beta-binomial distribution. Australian Journal of Statistics,
30(3):263–275, 1988.

[43] Kenneth R Deal. Optimizing advertising expenditures in a dynamic
duopoly. Operations Research, 27(4):682–692, 1979.

[44] Norman K Dhalla. Assessing the long term value of advertising.
Harvard Business Review, 56(1):87–95, 1978.

[45] P.S. Dodds, R. Muhamad, and D.J. Watts. An experimental study of
search in global social networks. Science, 301(5634):827, 2003.

[46] P.S. Dodds and D.J. Watts. Universal behavior in a generalized model
of contagion. Physical Review Letters, 92(21):218701, 2004.

[47] S. Dolev, Y. Elovici, R. Puzis, and P. Zilberman. Incremental deploy-
ment of network monitors based on group betweenness centrality. Inf.
Proc. Letters, 109:1172–1176, 2009.

[48] Peter Doyle and John Saunders. Multiproduct advertising budgeting.
Marketing Science, 9(2):97–113, 1990.

[49] Peter F Drucker. The new productivity challenge. Quality in Higher
Education, 37, 1995.

[50] N. Eagle, A. Pentland, and D. Lazer. Inferring social network structure
using mobile phone data. Proceedings of the National Academy of
Sciences (PNAS), 106:15274–15278, 2009.

[51] Nathan Eagle, Michael Macy, and Rob Claxton. Network diversity
and economic development. Science, 328(5981):1029–1031, 2010.

[52] Joseph O Eastlack and Ambar G Rao. Modeling response to adver-
tising and pricing changes for v-8 cocktail vegetable juice. Marketing
Science, 5(3):245–259, 1986.

[53] G.M. Erickson, P.J. Currie, B.D. Inouye, and A.A. Winn. Tyrannosaur
life tables: An example of nonavian dinosaur population biology.
Science, 313(5784):213–217, 2006.

[54] M. G. Everett and S. P. Borgatti. The centrality of groups and classes.
Mathematical Sociology, 23(3):181–201, 1999.

[55] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law rela-
tionships of the internet topology. SIGCOMM Comput. Comm. Rev.,
29(4):251–262, 1999.

[56] McKinsey Chief Marketing & Sales Officer Forum. Big Data,
Analytics, and the Future of Marketing & Sales. 2013.



14

[57] L. C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, 40(1):35–41, 1977.

[58] D. Friedman, A. Steed, and M. Slater. Spatial social behavior in second
life. In Proc. Intelligent Virtual Agents LNAI 4722, pages 252–263,
2007.

[59] James W Friedman. Advertising and oligopolistic equilibrium. The
Bell Journal of Economics, pages 464–473, 1983.

[60] Benjamin Gompertz. On the nature of the function expressive of the
law of human mortality, and on a new mode of determining the value
of life contingencies. Philosophical Transactions of the Royal Society
of London, 115:513–583, 1825.

[61] Marta C. Gonzalez, Cesar A. Hidalgo, and Albert-Laszlo Barabasi.
Understanding individual human mobility patterns. Nature,
453(7196):779–782, 06 2008.

[62] Dominique M Hanssens, Leonard J Parsons, and Randall L Schultz.
Market response models: Econometric and time series analysis, vol-
ume 12. Springer, 2003.

[63] C.P. Herrero. Ising model in scale-free networks: A monte carlo
simulation. Physical Review E, 69(6):067109, 2004.

[64] P. Holme. Congestion and centrality in traffic flow on complex
networks. Advances in Complex Systems, 6(2):163–176, 2003.

[65] C.L. Hsu and H.P. Lu. Why do people play on-line games? an extended
tam with social influences and flow experience. Information and
Management, 41:853–868, 2004.

[66] C.L. Hsu and H.P. Lu. Consumer behavior in online game communi-
ties: A motivational factor perspective. Computers in Human Behavior,
23:1642–1659, 2007.

[67] B.A. Huberman, D.M. Romero, and F. Wu. Social networks that
matter: Twitter under the microscope. First Monday, 14(1):8, 2009.

[68] John Philip Jones. How Much is Enough?: Getting the Most from Your
Advertising Dollar. Lexington Books, 1992.

[69] Robert S Kaplan and Allan D Shocker. Discount effects on media
plans. Journal of Advertising Research, 11(3):37–43, 1971.

[70] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of
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