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Abstract 

The use of fluorescent probes and the recovery of their lifetimes allow for significant 

advances in many imaging systems, in particular medical imaging systems. Here, we propose 

and experimentally demonstrate reconstructing the locations and lifetimes of fluorescent 

markers hidden behind a turbid layer. This opens the door to various applications for non-

invasive diagnosis, analysis, flowmetry and inspection. The method is based on a time-

resolved measurement which captures information about both fluorescence lifetime and 

spatial position of the probes. To reconstruct the scene the method relies on a sparse 

optimization framework to invert time-resolved measurements. This wide-angle technique 

does not rely on coherence, and does not require the probes to be directly in line of sight of 

the camera, making it potentially suitable for long-range imaging. 

 

 Introduction  

With the ability to control and manipulate luminescent probes, fluorescence imaging has 

become a major workhorse in many imaging systems. Besides providing high-resolution 

results in biological microscopy1,2, fluorescence imaging has been found useful in many other 

applications, including the study of turbulence3,4 and high-temperature reactions5, the 

production of optical tags for anti-fraud measures or covert tracking6, and the remote sensing 

of vegetation7.  These radiance measurements are further supplemented with fluorescence 

lifetime imaging (FLI) data.  Though it requires more complex hardware, FLI provides great 

detail about the environment of the probes, including mixing dynamics8 and energy transfer 

mechanisms9, and it resolves ambiguous spectral radiance measurements by unmixing 

multiple fluorescence markers and auto-fluorescence10.  

 

Time-resolved FLI is useful for fluorescence localization in turbid media using asymptotic 

decay approximations11 and early photons12,13,14, with hybrid models under study15.  Though 

fluorescence decay broadens the pulse duration, early-photon FLI measurements can still 

localize objects using the relatively fast rise time16,17. This high-frequency temporal structure 

competes with the low-frequency decay. Therefore, in an imaging modality, a time-resolved 

image that is high-pass temporally filtered should reveal these edges, which in turn contain 

information about the spatial configuration of the fluorescent markers. However, typical 

imaging  systems use either widefield  gated  intensified  CCD cameras  (time resolution 

~100s ps) or fiber-coupled sensors, and have not made full use of the spatial variation of early 

photons and fluorescence lifetime simultaneously.  

 



 
Figure 1. Measurement geometry and output streak images. a) Geometry of diffuser and patch. b) Example of 
recorded streak image for a non-fluorescing patch, i.e. τ→ 0, and c) for a fluorescing patch with  τ = 5ns. Scale bars: 

100 ps (vertical), 1 cm (horizontal). 

 

Here, we propose and demonstrate a 3D widefield time-resolved method for locating 

fluorescent probes through diffuse layers by looking only at a single 1D horizontal line on the 

diffuser. We overcome the inherent temporal blurring due to long fluorescence decay times by 

using a sparse optimization. Thus, the method is a two-step process: (1) record the time-

resolved scattering of fluorescent markers, and (2) use prior knowledge of the scene to recover 

the positions of the fluorescent markers and classify them via their lifetimes.  Because of the 

inherent wide-angle field of view of our time-resolved technique18,19, the method has potential 

use in areas such as long-range imaging through turbulence and widefield tomography using 

early photon arrival times. The integration of a sparse prior here allows for recovering object 

information in the presence of long lifetimes. Previous methods18,19 require the high temporal 

resolution and would fail to recover nanosecond emission. The suggested method does not 

require the fluorophore to be directly in the field of view of the camera. Instead the tags can 

be localized and identified as long as the photons from the fluorescent emission of the tags 

can reach the camera lens in the recorded time window. The technique is implemented 

noninvasively in reflective mode. This opens a new set of possibilities for applications such as 

tracking and locating probes in photocytometry20, endoscopy21, and larger scale industrial 

tomography22. 

 

Results 

Forward Model 

Consider the sketch shown in Fig. 1a. Laser light (L) scatters through a diffuse layer (D) 

toward an object (O), which produces some response R. Light then scatters back toward the 

diffuser and is imaged onto a time-resolved sensor (C). For a given incident laser pulse at 

position xl with incident power of I0, the measured time-resolved image is given by18,19 
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where *t denotes convolution in time, rl(x′) = ||x′−xl||, rc(x′) = ||x′−x||, and g(xl,x,x′) is a time-

independent physical factor that depends on the system geometry: 
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The angles {α, β, γ, ζ, θin/out} are defined by the geometry in Fig. 1a. N(θ) is the diffuser 

scattering profile, characterized by a scattering width σ. For the 0.7 mm thick polycarbonate 

diffuser considered here, N is Gaussian: N(θ) = exp(−θ2/2σ2), with σ ≈ 60°. The object 

response function R is generally a function of the reflectance (including, e.g., the efficiency) 

of an object point, as well as a function of time. For fluorescent markers the lifetime and 

efficiency can vary in space.  



 

Figure 2.   Time-resolved  fluorescence  imaging  with  a  pulse  train.  a) Incident pulse train, separated by period T. 
b) Measured output for a fluorescent marker with lifetimes 5 ns and 32 ns. Dashed lines indicate the individual 

response for a single pulse. Solid lines indicate the measured signal. The orange box indicates detector time window.  

 

Here each point in the object volume can contain a single but different exponential decay: 

    )()'()'(),'( )'(/1 tuexxtxR xt      (3) 

where ρ(x′) is the local time-independent reflectance, τ(x′) is the local lifetime, and u(t) is the 

unit step function, imposed to satisfy causality constraints. Note that the delta function 

confines intensity to a hyperbolic path in the x-t plane: a streak image for a single point source 

(ignoring any time response in R) is a hyperbola. 

 

For a single-shot image acquisition system, Eq. 1 is the recorded time-resolved image. 

However, for a pulse train (which is used experimentally to increase SNR), the fluorescent 

lifetimes must be compared with the repetition rate T of the illumination. If τ ~ T, then the 

fluorescent decay from the current pulse is superposed with the decays from previous pulses. 

Quantitatively, if we model the illumination with a pulse train, the streak image becomes  
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Substituting Eq. 3 into Eq. 4, we have (see Supplementary note 1) 
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where    is the integer floor function.  Here, we assume that there are only a small number of 

fluorescent particles in the field of view. Thus, we measure the fluorescence dynamics of 

discrete object points, located at coordinates xj with lifetime τj: 
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A simulated time-resolved measurement for a non-fluorescent and a fluorescent point object 

are shown in Fig. 1b and Fig. 1c, respectively



 
Figure 3. Reconstruction flow. Raw measurements are filtered to produce streak hyperbolas; geometry is recovered 

via OMP; a lifetime dictionary is created; and another OMP step identifies lifetimes of the probes. 

 

Eq. 6 is a time-periodic function.  To gain some intuition, we ignore all spatial dependence 

and focus on the time dependence, plotted in Fig. 2 for a single fluorescent point. Fig. 2a 

shows the incident pulse train with repetition rate T. Compared to all other temporal 

parameters, the pulse duration can be considered negligible. Fig. 2b shows the time response 

for τ/T = 0.40 and τ/T = 2.56, respectively. The dashed curves represent the individual 

responses due to each pulse, and the solid curves represent the expected measurement. We see 

that for longer lifetimes, the contrast of the measured signal decreases due to the residual 

fluorescence from previous pulses. If we define the contrast V as the difference between the 

maximum and minimum intensity values divided by the sum, we find that V = tanh(T/2τ) (see 

Supplementary Note 1).  Longer lifetimes, therefore, tend to increase the “dc” component of 

the signal relative to the high frequency edges.  This is effectively a low pass filtering 

operation in time. Therefore, previous methods18,19 for reconstructing objects in similar 

environments must be modified.  

 

We  seek  to  answer  the  following  question:  given a  set of time-resolved measurements 

{Il} (l = 0,1,...,L), what are the locations (xj) and lifetimes (τj) of the fluorescent tags 

generating the signal? A sparsity constraint allows us to separate the problem into two steps 

(see Reconstruction Algorithm subsection below) and to overcome strong signal overlap. Note 

that this is the physical insight for subwavelength resolution using PALM or STORM 

microscopy23,24 and single pixel acquisition modalities25. Our extensions here offer similar 

possibilities in remote sensing. 

 

Reconstruction Algorithm 

In order to recover the unkown positions and lifetimes from a set of time-resolved 

measurements, we separate the problem into two steps. We first recover the objects’ positions. 

Then, using the measurmenents and recovered positions, we classify the objects via lifetimes. 

The reconstruction flow is shown in Fig. 3. This two-step process allows us to exploit the 

sparsity of the geometry information by avoiding the signal overlap due to relatively long 

fluorecence decay times. 

 



 
Figure 4. Experimental geometry and streak images. a) Experimental setup. b) Scene under investigation. c) Sample 

FLI measurement, with decay times extending throughout the entire image. d) Non-fluorescent analog of c) (recorded 

without UV filter). The diffuser is fluorescent, noted by the decay of the calibration spot in c). Scale bars: 4.2 cm 
(horizontal), 200 ps (vertical). 

 

At the first step, we aim to localize the patches. Ideally, the data could be deconvolved with 

an appropriate R(x,t), but we do not know the individual lifetimes in advance. Instead, we 

operate on each streak image a simple high-pass temporal filter (first order derivative) and 

zero all resulting negative values. The result is a set of streak images {Il
(F)} that contain 

(approximately) only the edge structures, and hence geometrical information.  We then define 

a  measurement  Īl  to  be  the  vectorized form of a single time-resolved image Il
(F), i.e., Īl is 

an  MN × 1  vector.  We  concatenate  all  L  vectors  into  a single  LMN × 1  data vector: 

Imeas = (Ī1
T Ī2

T ... ĪL
T)T. This is a complete experimental measurement. 

 

Next, we define a vector Ip as the expected data from a single non-fluorescent object located 

at point xp. We can create a dictionary matrix D whose columns consist of the expected data of 

all possible point locations and lifetimes: D = (I1 I2 ... IP). Thus, for a set of object points with 

weights ρ, we can write the system in a vector-matrix form as 

     Imeas = Dρ,    (7) 

where the elements of ρ = (ρ1 ρ2 ... ρP)T are the reflectance values of each potential object 

point (0 < ρp < 1). Note that if the number of object points in the experiment is much less than 

the total length of ρ, then most elements of ρ are zero. Thus, we can recover the nonzero 

elements of this vector using a sparsity-promoting algorithm. The positions of each nonzero 

element determine the location of the object points. We seek to solve the following 

optimization problem: 

        Minimize ||ρ||0 subject to ||Imeas − Dρ||2 < ε,  (8) 

where the l0 norm equals the number of nonzero elements in ρ, and ε represents an error 

tolerance due to noise. To build the dictionary matrix D, we simulate (via Eq. 1) the expected 

streak images for a single patch and computationally scan its location throughout the working 

volume.  

 



 
Figure 5. Experimental measurements as input to the algorithm. Each column is a different configuration, and for 
each we show a) example of four measurements taken and b) the corresponding high-pass filtered images. Scale bars: 

4.2 cm (horizontal), 200ps (vertical). The four points correspond to measurements with illumination positions x12, x11, 

x9, x8 as shown by the labels in Fig. 10. 

 

 
 

Figure 6. Reconstruction results. a) reconstructed streak images using the recovered locations and lifetimes. Scale 

bars: 4.2 cm (horizontal), 200ps (vertical). b) geometry recovered for each configuration. Green and yellow 
correspond to PI and QD patches, respectively. Patches with an X are the recovered locations; solid outlines indicate 

ground truth (measured by a Faro Gage Arm). The four points correspond to measurements with illumination 

positions x12, x11, x9, x8 as shown by the labels in Fig. 10. 
 

Eq. 8 is solved via orthogonal matching pursuit (OMP)26 to yield the dictionary atoms (or unit 

cells) that are best correlated with the filtered streak images. OMP is a greedy algorithm, 

which searches sequentially for the best atom that matches the input, subtracts its contribution 

from the data, and iterates this process until the residual error derivative is below a user-

defined threshold. The number of iterations equals the number of objects recovered. 

 

With the locations of all patches recovered in the first step we move on to the second step and 

render all possible florescent images using a known set of potential lifetimes. For Np patches 

and Nf potential lifetimes, there are NpNf atoms in this new fluorescent dictionary. The 



fluorescent dictionary and the measured (unfiltered) fluorescent data are input into another 

OMP iteration with the residual error derivative as a stopping criterion. The lifetimes are also 

recovered in this process.  We note that due to the noisy input to the OMP algorithm from  

step 1, we usually recover too many patches (relaxed stopping criterion, see Supplementary 

note 2); however, these are always removed in the second step, and the correct number of 

patches is recovered.  
 

Experimental Demonstration 

The scene is a set of three 1.5 ×1.5 cm2 square patches (Fig. 4a, 4b) hidden behind a diffuser.  

The first patch (NF) is non-fluorescent.  The second patch (QD) is painted with a quantum dot 

solution (τ = 32 ns,  λemission ~ 652 nm)27.   The third patch (PI) is  painted  with  Pyranine ink 

(τ = 5 ns, λemission ~ 510 nm) 28.  

 

We carry out three experiments, each with a different patch configuration. Each column in 

Fig. 5 corresponds to a different configuration. Fig. 5a shows the experimental measurments.  

For each configuration, we input the filtered data (Fig. 5b) into OMP to recover the location 

of each patch. After reconstructing the lifetimes, we use the forward model (Eq. 6) to generate 

streak images that match the measurments (Fig. 6a). The reconstructions are shown in Fig. 6b. 

Because we use a UV filter, no information from the NF patch is recorded. We note that the 

fluorescent lifetimes are always identified correctly, and that the position error is on the order 

of the patch size or dictionary resolution (Table 1). Finally, because we assume only a finite 

number of lifetimes, the algorithm distinguishes between the PI and QD patches with no 

errors. We emphasize here that the reconstruction is spectrally invariant, so that two patches 

with the same emission wavelength can still be separated. 

 

 Configuration 1 Configuration 2 Configuration 3 

Patch ΔX  ΔY ΔZ Δτ ΔX ΔY ΔZ Δτ ΔX ΔY ΔZ Δτ 

QD 8.1 9.9 1.6 0 5.8 14.6 1.67 0 4.8 7.0 2.6 0 

PI 5.7 10.9 1.6 0 2.4 14.3 2.13 0 6.9 16.7 1.7 0 

Table 1. Reconstruction error; the numbers represent distances from the center of each ground truth patch in space to 

the center of the corresponding reconstructed patch (length units are millimeters). 

 

Discussion 

 

Currently, we are modeling turbulence by scattering layers.  This is common29, but can be 

extended beyond to thick media, provided the temporal blurring due to multiple scattering still 

allows us to resolve the fluorescence rise time via filtering19. Theoretically, there is no 

fundamental limit precluding the extension of our method to volume scattering. The main 

issues are practical, namely, a reduction in SNR with an increase in complexity in forward 

modeling. However, the sparse prior we exploit here can alleviate these constraints. Since 

fluorescence signals are commonly sparse in nature, sparsity is a natural way to avoid local 

minima during reconstruction (as would occur in standard optimization methods) and to 

achieve a robust solution relatively quickly (i.e., in minutes rather than days). It is specifically 

the sparse prior that allows reconstruction in the presence of long lifetimes over narrow time 

windows. We provide detailed comparison of our method with other techniques in 

Supplementary note 3; our system offers wider field of view30 and does not rely on 

coherence31,32. With our method the relevant parameters are the diffusion constant, thickness 

of the diffuser, and the system time resolution. 

 

Because the illumination intensity at the excitation wavelength is stronger than the emission, 

without a UV filter we can filter out the fluorescence and use only the geometrical 

information (including non-fluorescent objects) in the first OMP step. This results in higher 

reconstruction accuracy, but requires twice the recording time.   



 
Figure 7. Patch size effect on PSNR. The red dots are experimental measurements (taken with fixed exposure and 
gain), and the blue curve is a forward model simulation prediction (we add to simulated measurements white 

Gaussian noise with variance that matches the measured variance). 
 

 
Figure 8. Noise performance. a) Analysis of reconstruction error as function of patch side size and added noise. White 

Gaussian noise with increasing variance (x-axis) is added while increasing the patch’s size (y-axis). The color 
represents the total algorithm reconstruction error in arbitrary units. Inset figure shows the algorithm sensitivity along 

the black dashed line (corresponding to patch size of 1.5 cm). b) Examples of different points on the inset graph 

which show input images with added noise and the reconstruction results. These images correspond to one of the 
twelve illumination points. 

 

Ultimately, however, the underlying limits of the system are SNR and the accessible volume. 

One straightforward way to alleviate this for a remote sensing application is to increase the 

laser power.  This can be done provided it is not harmful to the targets under study, so it is 

preferable to use the minimum laser power (lowest SNR) that still enables correct 

reconstruction.  

 

In our system, changes in the patch size behind the diffuser affect the PSNR as in Fig. 7. The 

red markers are measured data and the blue curve is the result of our forward model.  For each 

image we estimate the noise by using the algorithm described in ref. 33. While the signal 

strength increases with the patch size, the estimated noise levels in all five measurements are 

identical (within 1.5% of the noise mean). As expected the PSNR improves for larger patches. 

Note that the measured PSNR of the largest patch is slightly lower than what is expected from 

the forward model; this can be explained by non-linear behavior of the streak tube dynamic 

range near the saturation level of the sensor. 



 
Figure 9. Visible volume. a) Top and b) side views of visible volume. The inner black curve shows the saturation 
bound, and the outer black curve shows the noise-limited bound. The purple area shows the geometry limitation 

imposed by diffusion/scattering angles (σ). The green rectangle in the middle of the diffuser is the line imaged by the 

camera (conventional FoV). c) Illumination gaps due to small scattering angles and widely spaced illumination 
points.  

 

Based on the effect of patch size on PSNR, the reconstruction error is also indirectly a 

function of patch size. To understand the effects of noise, we analyze the reconstruction 

accuracy as a function of measurement noise and patch size (Fig. 8).  Twelve time-resolved 

images are simulated (via Eq. 1) using three different fluorescent objects, with white Gaussian 

noise added to the images. These images are then input into the reconstruction algorithm. 

 

Fig. 8a shows the reconstruction error as a function of the noise level and patch size. The 

plotted error is a sum of all three distances between the reconstructed objects and the 

corresponding ground truth locations of fluorescing patches divided by the diagonal size of 

dictionary voxel. The error results show three step-like changes for all patch sizes (Fig. 8a); as 

the patch size increases the signal level increases, and the first jump in error is postponed to 

larger added noise. It should be noted that for all simulations we used the original dictionary 

designed for 1.5cm×1.5cm patches. 

 

We see that for low noise variance the error is virtually zero. As the noise increases, step-like 

jumps in the error are noted. At first, this seems counter-intuitive: we expect the error to 

increase continuously with noise. However, the discontinuities occur as a result of the 

sparsity-based method.  

 

At specific noise levels, OMP cannot distinguish between different curves, and so an atom is 

essentially lost (Fig. 8). This occurs at thresholds when the energy of the lost atom is 

comparable to the noise level. After this threshold, the algorithm selects a different (incorrect) 

atom that overlaps with one of the remaining, stronger atoms (transitions from II to III and 

from III to IX). When the last atom is lost (point X), the algorithm chooses the atoms with the 

largest foot print. Similar analysis for choosing the patches’ lifetimes showed that the lifetime 

estimation is even more robust to noise. 

 

As seen from the reconstructions presented in Fig. 6, the patches are not required to be 

directly in the line of sight of the camera; therefore, unlike a conventional imaging system 

with a field of view (FoV), we need to define an accessible volume (or visible volume) for 

this imaging system (Fig. 9a and Fig. 9b). Because there are two sequential scattering events 

before the signal reaches back to the diffuser, the detected signal must fall off as the product 

of the square of the distances rc and rl. Assuming rc ≈ rl = r, we have Il ~ I0/r4 (Eqs. 1 and 2).  

Therefore, a larger accessible volume is obtained at the expense of lower SNR. The intensity 

contrast from the closest object point (rD1) to the farthest point (rD2) should be within the 

dynamic range of the camera to avoid saturation, and the signal from the farthest point must 

be above the noise floor. We can write these conditions as: 
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where K is a constant that is inversely proportional to σ (the scattering angle of the diffusive 

layer). Combining Eqs. 9 and 10, we find that the maximum and minimum distances are      

rD2 = (KI0/Inoise)1/4 and rD1 = (KI0/Isat)1/4. This gives us the intensity constraints on the 

maximum potential accessible volume (Figs. 9a,b). Further, the scattered light from all points 

must arrive within the sensor’s time window Tw: (rc + rl)max − (rc + rl)min ≤ cTw.  Thus, for a 

given incident laser position xl, the accessible volume is the intersection of the volumes given 

by this time constraint and the intensity constraints (Fig. 9b). Note also that this volume is 

trimmed if σ is less than 90°. 

 

Lastly, the number of illumination points L controls the total visible volume, which is the 

concatenation of L volumes described above for each laser position xl. Further, for a scattering 

angle less than 90°, there can be gaps in the accessible volume close to the diffuser (Fig. 9c). 

Overall, increased scattering increases the accessible volume close to the diffuser.  Therefore, 

the ability to reconstruct images is thus a competition between SNR, which is reduced by 

scattering, and the accessible volume, which is enhanced by it. 

 

In summary, we demonstrated time-resolved inversion of scattered light to locate fluorescent 

tags behind diffusive layers in wide-angle scenes and to identify their lifetimes. This 

technique, which relies on sparse optimization, has potential applications in remote sensing of 

spectrally identical fluorescent tags, and offers algorithmic benefits for fluorescence lifetime 

tomography beyond the conventional line of sight of the camera.  

 

  



 

Figure 10. Experimental setup. A 1.15 Watt Ti:Sapphire beam is frequency-doubled and is focused onto a diffuser via 
a pair of galvo mirrors (GM), which scan the beam across the diffuser to different incident positions (inset). Light is 

scattered by various objects and is recorded by a streak camera (field of view indicated by the dotted line). A fixed 

reference beam is used to correct for intensity and timing noise. Inset: locations of incident laser positions for each 
streak image. 

 

Methods 

Optical Setup 

The experimental setup is shown in Figs. 10 and 4a,b. A Titanium:Sapphire laser (1.15W  (~15nJ/pulse),  

λ = 800 nm, T = 12.5 ns repitition rate, and 50 fs pulse duration) is frequency-doubled using a barium 

borate (BBO) crystal to 400 nm and is then focused (~100 mW average power at the focus) onto a 

polycarbonate diffuser (Edmund Optics, 55-444) with a scattering angle of ~60°.  Light is scattered 

toward a scene, which scatters light back toward the diffuser, the front side of which is imaged onto a 

streak camera (Hamamatsu C5680) with a time resolution of 2 ps and a time window of 1 ns. The 

detector has a one-dimensional aperture and records the time profile of a horizontal slice of the diffuser, 

with an x-t resolution of M × N =  672 × 512 pixels. To increase SNR, the total exposure time is          

Tint = 10 ms, so that a given streak image integrates light scattered from Tint/T incident pulses.  Because 

the streak camera has only a 1D horizontal aperture, we scan the incident laser position across L = 12 

positions to mimic a 2D aperture34 and record 12 streak images. The total acquisition time is 

approximately LTint.  

 

To calibrate intensity fluctuations and temporal jitter, a portion of the incident laser beam is split off and 

focused onto the diffuser, directly in the view line of the camera, so that a streak image of a direct 

reflection is observed.  This calibration spot is fixed for the duration of the acquisition of all streak 

images (incident laser positions) and is used to subtract any timing jitter noise in the detector and to 

scale any intensity fluctuations. The calibration point is then cropped to reduce errors during the 

reconstruction process. 

 

Fluorescent Markers Parameters 

 

The scene is a set of three 1.5 ×1.5 cm2 square patches (Fig. 4b).  The first patch (NF) is non-fluorescent, 

cut from a white MacBeth Colorchecker square.  The second patch (QD) is painted with a CdSe-CdS 

quantum dot solution (τ = 32 ns, λemission ~ 652 nm)27.  The third patch (PI) is painted with Pyranine ink  

(τ = 5 ns, λemission ~ 510 nm)28. To study the time-resolved scattering of both the UV excitation (400 nm) 

and the fluorescent emission ( 652 nm from QD and 510 nm from PI) , images are recorded both with 

and without a UV cutoff filter (λcut = 450 nm). The UV filter eliminates the UV reflection from the 

patches and with it only the visible fluorescence emission profile is captured by the camera (e.g.,        



Fig. 4c). A non-fluorescent analog is shown in Fig. 4d. Only the images taken with the UV cutoff filter 

are used for reconstruction, thus information for the NF patch is not measured. While each of these 

probes has several main absorption bands, the closest dominant absorption maxima  for QD and PI are at 

600 nm and 460 nm respectively27,35. Therefore 400nm illumination can properly excite the probes into 

fluorescent mode. 

 

Algorithm Parameters 

 

The geometry dictionary resolution is chosen to be dx = 6.9 mm, dy = 7.5 mm, dz = 5.2 mm. The 

volume of interest results in 18856 atoms in the dictionary. Therefore, using the full resolution streak 

images results in a vector of size 12 × 512 × 672 = 4128768. Storing the full dictionary requires 

approximately 622 GB of memory. By down-sampling each image to 51 × 67 pixels a vector length of 

41004 is obtained for the 12 images, which results in dictionary size of 6.2 GB. This is a factor of 100 

reduction in computational burden. Another approach that might be considered is the use of sparse 

representation; however, since the dictionary structure is highly irregular, this approach is not beneficial. 

The lifetime dictionary is far smaller than the geometry dictionary, which allows us to use full resolution 

images. Using an unoptimized MATLAB code and a desktop computer (Intel Core i7 with 32GB 

RAM), it took the algorithm 91 seconds per reconstruction on average. 
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