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Abstract

One of the greatest challenges in computational imaging is scaling it to work outside
the lab. The main reasons for that challenge are the strong dependency on precise
calibration, accurate physical models, and long acquisition times. These prevent
practical progress towards medical imaging and seeing through occlusions such as fog
in the wild. This dissertation demonstrates that with data-driven and probabilistic
modeling we can alleviate these dependencies, and pave the way towards real-world
time-resolved computational imaging through extreme scattering conditions using
visible light.

The ability to image through scattering media in the visible part of the electro-
magnetic spectrum holds many applications in various industries. For example, seeing
through fog would enable autonomous robots to operate in challenging weather con-
ditions; augment human driving; and allow airplanes, helicopters, and drones to take
off and land in dense fog conditions. In medical imaging, the ability to see into the
body with near-infrared light would reduce the exposure to ionizing radiation and
provide more clinically meaningful data.

In order to image in diverse and extreme scattering conditions, we develop novel
algorithms inspired by techniques in signal processing, optimization, statistical anal-
ysis, compressive sensing, and machine learning that leverage time-resolved sensing.
More specifically, we demonstrate techniques that computationally leverage all of the
optical signal, including scattered light, as opposed to locking onto a specific part
of the optical signal. Furthermore, we show that by introducing probabilistic formu-
lation to the imaging problem, the resulting system does not require user input for
calibration and priors; this makes our systems more practical for real-world scenarios
and enables them to operate in a wide range of scattering conditions.
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We consider four cases of imaging through scattering media with increasing com-
plexity:

1. A theoretical analysis of time-resolved single pixel imaging, which demonstrates
scene reconstruction even when the entire scene is measured with a single pixel,
an equivalent of simple scattering or a blur that is easy to model.

2. A data-driven calibration invariant technique for imaging through simple scat-
tering (a sheet of paper).

3. Imaging through a thick tissue phantom by utilizing all of the optical signal
with minimal assumptions on the tissue properties.

4. Imaging through a wide range of dense, dynamic, and heterogeneous fog condi-
tions. In that case, we introduce a probabilistic model that is able to recover
the occluded target reflectance and depth without any assumption about the
fog.

Thesis Supervisor: Ramesh Raskar
Title: Associate Professor

4



All Photons Imaging
Time-Resolved Computational Imaging Through Scattering for Vehicles

and Medical Applications with Probabilistic and Data-Driven
Algorithms

by
Guy Satat

Thesis Advisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ramesh Raskar

Associate Professor in Media Arts and Sciences
MIT Media Arts and Sciences

Thesis Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Joseph A. Paradiso

Alexander W. Dreyfoos (1954) Professor in Media Arts and Sciences
MIT Media Arts and Sciences

Thesis Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fadel Adib

Assistant Professor in Media Arts and Sciences
MIT Media Arts and Sciences



6



Acknowledgments

I first joined Professor Ramesh Raskar’s group as a visiting student seven years ago.

Before the visit, I did not imagine what a tremendous effect it will have on my life.

During my short visit, I learned so much from Ramesh and it was clear to me that

it wasn’t enough. The visit led to me joining Ramesh’s group for a Masters followed

by a PhD. Ramesh always inspired me to work on the important and hard problems

first. I am grateful for his willingness to teach, mentor and guide me during the last

seven years.

I thank my committee. Joe Paradiso has been a part of my academic journey in

the Media Lab since I joined. He has always inspired me to think about interesting

and new ways to leverage physical interpretation and time-resolved sensing in my

work. I have learned a lot from countless interactions and conversations with Fadel

Adib. My work is inspired by Fadel’s rigorous work in imaging with RF.

Special gratitude to Moungi Bawendi. Moungi opened his lab for me, and almost

all the experimental work presented in this thesis was done using hardware from the

Bawendi Lab. Moungi’s generosity allowed me to pursue my research goals.

I thank Petros Boufounos. Petros was my professor in a class on information

theory at MIT which was the inspiration and basis to the FemtoPixel work presented

here (Chapter 3).

Many mentors have been instrumental to my work and growth (most of them

from the Camera Culture Group). Christopher Barsi and Barmak Heshmat taught

me all I know about optics and working with ultrafast optics. Dan Raviv taught

me the basics of optimization and machine learning which were the foundation for

my research. Pratik Shah has been a valuable mentor who inspired and encouraged

me to step out of my comfort zone. Micha Feigin was a reliable mentor on anything

related to electronics. Gili Bisker has helped me shape my ideas on imaging through

scattering. John Werner was an amazing resource and a source of inspiration in

countless ways.

I thank my collaborators at the University of Glasgow (previously at Heriot-Watt

7



University) — Daniele Faccio, Gabriella Musarra, Ashley Lyons, and Alessandro Boc-

colini, for inviting and hosting me at Heriot-Watt University, and for helping with

the experimental demonstration of FemtoPixel.

I am profoundly thankful to Matthew Tancik. Matt joined the Camera Culture

group as an undergraduate student and quickly became an integral part of the group

and my research. I was fortunate to have Matt as a collaborator and am grateful for

everything I learned from him. Matt was a key contributor to many of the results

presented here.

I thank all of my co-authors: Christopher Barsi, Moungi Bawendi, Ou Chen,

Daniele Faccio, Otkrist Gupta, Barmak Heshmat, Sachin Katti, Manikanta Kotaru,

Ashley Lyons, Gabriella Musarra, Nikhil Naik, Krithika Ramchander, Ramesh Raskar,

Dan Raviv, Albert Redo-Sanchez, Tristan Swedish, and Matthew Tancik.

∼

I am grateful for my family. My grandparents David, Raizi, Feri, and Monzi have

dedicated their lives so that their children and grandchildren will be able to pursue a

better education. My parents, Aviva and Kobi, have been an incredible role model for

me. I am grateful for their love, support, and education. I can only hope to be at least

as good as a parent as they were and are to me. My sister, Gili, and brother-in-law,

Ido, have always been wonderful friends, I am thankful for their love and support.

Most of all I am thankful to my wife, Talia. Words cannot express my gratitude for

her support, encouragement, friendship, and partnership during our mutual journey in

the last few years. Talia has been an active part of my academic career and reviewed

every paper I submitted. I also have to thank my son, Ben, who never fails to remind

me that there is always time to play.

8



Previous Published Materials

This thesis revises the following publications:

Chapter 3 revises:

[149] Guy Satat, Matthew Tancik, and Ramesh Raskar, “Lensless imaging with com-

pressive ultrafast sensing,” IEEE Transactions on Computational Imaging, 2017.

[147] Guy Satat, Gabriella Musarra, Ashley Lyons, Barmak Heshmat, Ramesh Raskar,

and Daniele Faccio, “Compressive Ultrafast Single Pixel Camera,” OSA Computa-

tional Optical Sensing and Imaging, 2018.

Chapter 4 revises:

[148] Guy Satat, Matthew Tancik, Otkrist Gupta, Barmak Heshmat, and Ramesh

Raskar, “Object classification through scattering media with deep learning on time

resolved measurement,” Optics express, 2017.

Chapter 5 revises:

[145] Guy Satat, Barmak Heshmat, Dan Raviv, and Ramesh Raskar, “All photons

imaging through volumetric scattering,” Nature Scientific Reports, 2016.

[144] Guy Satat, Barmak Heshmat, and Ramesh Raskar, “All Photons Imaging Through

Layered Scattering Materials,” OSA Propagation Through and Characterization of

Atmospheric and Oceanic Phenomena, 2017.

Chapter 6 revises:

[151] Guy Satat, Matthew Tancik, and Ramesh Raskar, “Towards Photography Through

Realistic Fog,” IEEE International Conference on Computational Photography, 2018.

9



10



Contents

1 Introduction 31

1.1 Why Imaging Through Scattering With Visible Light? . . . . . . . . 33

1.2 Why Computational Imaging Through Scattering Is Sensitive to Ac-

curate Modeling and Calibration? . . . . . . . . . . . . . . . . . . . . 35

1.3 Imaging through Scattering — Techniques and Regimes Presented Here 36

1.4 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Background and Related Works 43

2.1 Light-Matter Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Scattering and the Effect on Imaging . . . . . . . . . . . . . . . . . . 44

2.3 Physics of Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 Photon Transport Modes Through Scattering Media . . . . . . 49

2.3.2 Radiative Transport Equation . . . . . . . . . . . . . . . . . . 49

2.3.3 Photon Transport as a Random Walk . . . . . . . . . . . . . . 51

2.4 Imaging through Scattering with Visible Light . . . . . . . . . . . . . 52

2.5 Time-Resolved Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.1 Signal Manipulation . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.2 Time to Digital Conversion . . . . . . . . . . . . . . . . . . . 58

2.5.3 Time-Resolved Sensors Used Here . . . . . . . . . . . . . . . . 60

3 Lensless Imaging with FemtoPixel 61

3.1 Connection Between Imaging Through Scattering and Lensless Imaging 62

3.2 Compressive Sensing and Single Pixel Camera Background . . . . . . 63

11



3.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.1 Compressive Time-Resolved Sensing for Imaging . . . . . . . . 67

3.3.2 Single Pixel Camera, Ghost Imaging, and Dual Photography . 68

3.4 FemtoPixel Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Time-Resolved Light Transport . . . . . . . . . . . . . . . . . 71

3.4.2 Sensors Positioning . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.3 Ideal Compressive Patterns Optimization . . . . . . . . . . . . 78

3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.7 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7.1 Implementation Considerations . . . . . . . . . . . . . . . . . 86

3.7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.7.3 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 88

4 Data-Driven Computational Imaging Through Occlusions 91

4.1 Why Data-Driven Computational Imaging? . . . . . . . . . . . . . . . 92

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Calibration Invariant Target Classi�cation Through Scattering Layer 95

4.3.1 Synthetic Data Generation . . . . . . . . . . . . . . . . . . . . 96

4.3.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.3 Calibration Invariance Analysis . . . . . . . . . . . . . . . . . 101

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6.2 The Importance of Time Resolution . . . . . . . . . . . . . . . 109

4.6.3 What Does The CNN Learn? . . . . . . . . . . . . . . . . . . 110

4.6.4 Scaling To Real-World Scenes . . . . . . . . . . . . . . . . . . 111

4.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 112

12



5 Imaging Through Tissue 113

5.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 All Photons Imaging Algorithm . . . . . . . . . . . . . . . . . . . . . 117

5.2.1 Forward Model . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.2 Signal Independent Scattering Kernel Recovery . . . . . . . . 119

5.2.3 Inverse Problem Formulation . . . . . . . . . . . . . . . . . . 123

5.2.4 Algorithm Implementation Details . . . . . . . . . . . . . . . . 124

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.1 Experimental Implementation Details . . . . . . . . . . . . . . 127

5.4 Sensitivity and Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4.1 Recoverable Resolution . . . . . . . . . . . . . . . . . . . . . . 128

5.4.2 Noise Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5 Imaging Through Layered Materials . . . . . . . . . . . . . . . . . . . 131

5.6 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 134

6 Imaging Through Extremely Dense Fog 137

6.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2 Time-Resolved Statistics in Fog . . . . . . . . . . . . . . . . . . . . . 141

6.2.1 Background Statistics . . . . . . . . . . . . . . . . . . . . . . . 142

6.2.2 Signal Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3 Imaging Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3.1 Pixel-Wise Model Estimation . . . . . . . . . . . . . . . . . . 144

6.3.2 Leveraging Spatial Correlations . . . . . . . . . . . . . . . . . 147

6.3.3 Target Depth and Re�ectance Recovery . . . . . . . . . . . . . 149

6.3.4 Optical Thickness Estimation . . . . . . . . . . . . . . . . . . 150

6.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.6.1 Image Recovery Accuracy . . . . . . . . . . . . . . . . . . . . 156

6.6.2 Depth Recovery Accuracy . . . . . . . . . . . . . . . . . . . . 157

13



6.6.3 Re�ectance Recovery Accuracy . . . . . . . . . . . . . . . . . 159

6.6.4 How Many Photons Are Measured? . . . . . . . . . . . . . . . 160

6.6.5 How Many Photons Are Needed For Reconstruction? . . . . . 161

6.7 EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.8 Reading in Dense Fog . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.9.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.9.2 Sensitivity to Sensor Spatial Resolution . . . . . . . . . . . . . 169

6.9.3 Sensitivity to Sensor Time Resolution . . . . . . . . . . . . . . 169

6.9.4 Sources for Model Mismatch . . . . . . . . . . . . . . . . . . . 170

6.9.5 Real World Considerations . . . . . . . . . . . . . . . . . . . . 172

6.10 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . 173

7 Conclusions 175

7.1 Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A Photon Transport in Scattering Media as a Random Walk 185

A.1 Solving the Brownian Motion PDE . . . . . . . . . . . . . . . . . . . 187

B Derivation of Illumination Patterns Optimization Algorithm for Fem-

toPixel 189

C Expectation Maximization Algorithm for Imaging Through Fog 193

C.1 Expectation Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

C.2 Maximization Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

C.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

14



List of Figures

1-1 Examples of scattering media in visible light: a) fog, b) tissue, and

c) optical di�user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1-2 FemtoPixel � Lensless single pixel imaging with compressive ultrafast

sensing. Two examples with the same acquisition time comparing tra-

ditional techniques to FemtoPixel. To achieve similar reconstruction

quality to FemtoPixel, the traditional approach (not time-resolved) re-

quires a50� longer acquisition time. . . . . . . . . . . . . . . . . . . 37

1-3 Calibration invariant imaging through scattering. A CNN learns to

estimate the pose of a mannequin that is occluded by a sheet of paper.

Our training technique results in a CNN that is invariant to variations

in the system calibration. The network was trained before the experi-

ments took place, and the optical system was built without calibration. 38

1-4 All photons imaging through15 mm thick tissue. API leverages time-

resolved measurement to invert the scattering and recover the hidden

target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1-5 Imaging through realistic fog. With a time-resolved single photon de-

tector we separate background photons that back-re�ect due to the

fog from the signal of the occluded target. We recover the target re-

�ectance and depth in a wide range of realistic, dense, heterogeneous,

and dynamic fog conditions. . . . . . . . . . . . . . . . . . . . . . . . 40

15



2-1 Absorption and scattering in biological tissue (�gure from Vogel and

Venugopalan 2003 [180]). (a) Absorption coe�cient and (b) Scattering

coe�cient as a function of optical wavelength. The scattering coef-

�cient is normalized by the absorption coe�cient. Note that the x-

axis in the plots is di�erent. Scattering is only characterized in the

400� 1800 nmregime where absorption is low. . . . . . . . . . . . . . 44

2-2 a) Sparse and b) Volumetric scattering. The red arrow demonstrates

an example of a photon path in these conditions, compared to the

dashed line which demonstrates the path without scattering. . . . . . 45

2-3 Photon transport modes in scattering media. . . . . . . . . . . . . . 49

2-4 Streak camera operation principle (�gure taken from [64]). . . . . . . 56

3-1 Lensless imaging is equivalent to imaging through scattering. a) A

lens creates a one-to-one mapping of scene points to points on the sen-

sor. The lens is focusing light from each scene point to the detector

and eliminates the angular information in the mapping. b) In lens-

less imaging, the one-to-one mapping is gone, and each scene point

is mapped to all detector points. c) When imaging through a sparse

scattering layer, the lens is focused on the scattering layer. This results

in a measurement that is equivalent to lensless imaging. . . . . . . . . 63

3-2 FemtoPixel � Lensless imaging with compressive ultrafast sensing. a) Il-

lumination, a time pulsed source is wavefront modulated (G) and illu-

minates a target with re�ectancef. b) Measurement, omnidirectional

ultrafast sensor (or sensors) measures the time dependent response of

the scenem(t). H is a physics-based operator that maps scene pixels

onto the time-resolved measurement. . . . . . . . . . . . . . . . . . . 68

16



3-3 Light cone schematic for a planar stationary target. a) Scene geometry,

the target plane and sensor plane are separated by a distancez = D.

Three detectors (marked with blue circles and numbered I, II, III) are

positioned at di�erent y positions in the detector plane. b) The light-

like part of the light cone emanating from the target point marked

with a red `X' de�nes the event measurement times at the di�erent

detectors. Due to the light cone geometry, the light will arrive at the

detectors at di�erent times. First it will be measured by detector I

which is closest to the source, followed by detectors II and III. These

times are de�ned by Eq. 3.8. Note that the horizontal axis describes

in a) the z-axis, and in b) the time-axis. . . . . . . . . . . . . . . . . 71

3-4 Time-resolved light transport in a one-dimensional world. a) Geome-

try, the target is a black line with a white patch, at a distanceD from

the time-resolved sensor. b) The time-resolved measurement produced

by the sensor. The signal start time corresponds to the patch dis-

tance, and the time duration to the patch width. c) The measurement

matrix H , generated by Eq. 3.11. Here the distance to the target is

D = 1000 cm and the sensor has a time resolution ofT = 20 ps. . . . 73

3-5 Recoverable resolution with time-resolved sensing. a) Plots for various

scene distancesD as a function of sensor time resolutionT. b) Plots

for various sensor time resolutions as a function of target distanceD. 75

3-6 E�ects of averaging and noise on time-resolved sensing. a)f (x) is a

sinusoid on the positive half plane, at a distanceD = 1000 cm from

a sensor with time resolutionT = 20 ps and measurement noise of

SNR = 35 dB. b) f̂ (x) is the result of inverting the system using the

Moore-Penrose pseudoinverse, which demonstrates the undersampled

measurement close to the sensor, and sensitivity to noise further away

from the sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

17



3-7 Time-resolved sensing maps rings with varying thickness to di�erent

time bins. The color represents time samples indexes (for the �rst

10 samples). As the time resolution worsens or the target is further

away, the rings become thicker. The images show various sensor time

resolutionsT and target distancesD for a subset area of100 cm� 100 cm. 77

3-8 Mutual coherence as function of sensor numberK , time resolution T,

and array sizeC. The target size is5 m � 5 m, composed of80 � 80

pixels, and at a distance ofD = 10 m from the sensor plane. a) Mutual

coherence contours for a varying number of sensors and their time

resolution (for �xed array size C = 10 cm � 10 cm). b) Similar to (a)

with varying array size constraint (for �xed time resolution T = 20 ps). 78

3-9 The value of optimized active illumination patterns. The patterns

are optimized for a5 m � 5 m target composed of80 � 80 pixels at

a distance ofD = 10 m from the sensor plane. The measurement

is simulated with K = 1 sensors andT = 20 ps. a) Examples of

several patterns computed forM = 50. b) Comparison of di�erent

active illumination methods and their e�ect on the mutual coherence

for varying M . The optimized patterns outperform Hadamard and

random patterns sampled from Gaussian and Bernoulli (inf� 1; 1g)

distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3-10 Mutual coherence as function of number of illumination patternsM ,

sensor time resolutionT, and sensor numberK . The target size is

5 m � 5 m, composed of80 � 80 pixels, and at a distance ofD =

10 m from the sensor plane. The sensor areaC is a square of size

10 cm� 10 cm. a) Mutual coherence contours for a varying number of

illumination patterns and sensors' time resolution (for a �xed number

of sensorsK = 1). b) Similar to (a) with a varying number of sensors

(for �xed time resolution T = 20 ps). . . . . . . . . . . . . . . . . . . 81

18



3-11 System parameters e�ect on reconstruction quality. Various design

points (di�erent number of sensorsK and time resolutionT) are sim-

ulated. The number of optimized illumination patternsM is set as the

minimal number of patterns required to achieve reconstruction quality

with SSIM � 0:95 and PSNR � 40 dB. The target is the cameraman

image (see Fig. 3-12 right). a) Demonstrates the trends of various num-

bers of detectorsK as a function of the time resolutionT. b) Shows

the trends of di�erent detector time resolutions as a function of the

number of detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3-12 FemtoPixel simulation results. a) The target image. b) Result with a

regular single pixel camera withM = 50 and M = 2500 patterns. c)

Results with compressive ultrafast sensing withM = 50 for four design

points with time resolution of T = 100 ps and T = 20 ps, and K = 1

and K = 2. All reconstructions are evaluated with SSIM and PSNR.

The results demonstrate the strong dependency on time resolution.

Recovery with K = 2 and T = 20 ps shows perfect reconstruction on

all targets based on SSIM. All measurements were added with white

Gaussian noise such that the measurement SNR is60 dB. . . . . . . 83

3-13 FemtoPixel experimental setup. a) Optical setup sketch. b) The mea-

suredH operator shows the expected ring structure. . . . . . . . . . . 85

3-14 FemtoPixel experimental results. a) Recovery of a circle shape using

FemtoPixel and compared to a regular single pixel camera with 300

and 800 masks. b) Mutual coherence vs. number of patterns for Fem-

toPixel framework and a regular single pixel camera, demonstrating

the superior results of FemtoPixel. . . . . . . . . . . . . . . . . . . . 86

3-15 FemtoPixel provides a manifold of camera design options between tra-

ditional cameras and single pixel cameras. . . . . . . . . . . . . . . . 87

19



4-1 Data-driven vs. physics-driven NLOS imaging. Data-driven model di-

rectly learns the mapping from measurement to target, while a physics-

driven approach requires an intermediate forward model. . . . . . . . 93

4-2 Calibration-free object classi�cation through scattering. a) The train-

ing phase is an o�ine process in which synthetic data that includes

variations in all physical parameters is used to train a CNN for clas-

si�cation. b) Once the CNN is trained the user can simply set up the

optical system in the scene (SPAD camera and pulsed laser), capture

measurements (six examples of time-resolved frames are shown), and

classify the hidden object with the CNN without having to precisely

calibrate the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4-3 Comparison of SPAD measurement and MC model. The targets are

two poses of a mannequin placed behind a sheet of paper. The data

shows six frames (each frame is32� 32 pixels) of raw SPAD measure-

ments, examples of two synthetic results generated by the MC model

with similar measurement quality, and a synthetic result with high

photon count and no additive noise. Note that di�erences between

synthetic ex. 1, 2 and the raw measurement are due to the fact that

the MC model was never calibrated to this speci�c setup. The syn-

thetic images represent di�erent instances chosen randomly from the

dataset. The synthetic example with high photon count helps to distin-

guish between measurement (or simulated) noise and the actual signal

as well as to observe the full signal wavefront. . . . . . . . . . . . . . 99

4-4 Successful classi�cation of handwritten digits through scattering. The

`0' and `1' digits from the MNIST dataset are placed behind a sheet of

paper. Raw SPAD measurements are input into the CNN and correctly

classi�ed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

20



4-5 CNN learns to be calibration invariant. The CNN is trained with

the complete random training set (based on the MNIST dataset), and

evaluated with test sets in which all model parameters are �xed ex-

cept for one that is randomly sampled from distributions with growing

variance. Three parameters are demonstrated (other parameters show

similar behavior): a) di�user scattering pro�le varianceDD � N (0; � ),

� � U(1 � �; 1 + � )rad; b) camera �eld of viewCF V � U(0:15� �; 0:15 + � )rad;

and c) illumination source positionLP � U(� �; � ) cm. The top plots

show the classi�cation accuracy as a function of the parameter distri-

bution variance in the test set. Red lines show the ranges used for

training. The `X' symbols point to speci�c locations sampled for PCA

projections in the bottom part of the �gure. PCA projections show a

color map where each digit has a di�erent color. Performance is main-

tained beyond the training range and starts to slowly degrade further

from it, as can be observed in PCA projection III, where more mixing

is apparent at a test range2:5� larger compared to the training set. . 102

4-6 Optical setup. The setup was built after the network was trained and

without calibration. a) Sketch of the optical setup. A pulsed laser

incident on a di�user (a sheet of paper) and illuminates the hidden

mannequin. A SPAD camera is focused on the di�user. A black screen

is used to block direct re�ection from the incident laser on the di�user

to the camera. b) Photograph of optical setup, the pulsed laser is

hidden behind the black screen. . . . . . . . . . . . . . . . . . . . . . 103

4-7 Calibration invariant classi�cation of mannequin occluded by paper.

a) Three examples (rows) demonstrate target pose, raw SPAD mea-

surement (�rst six frames), and the successful classi�cation. b) Confu-

sion matrix for classi�cation of raw test set (10 samples per pose). . . 104

21



4-8 Calibration invariant classi�cation among seven poses on synthetic test

dataset. a) t-SNE visualization demonstrates the CNN ability to clas-

sify among the seven poses. b) Confusion matrix for classi�cation on

the synthetic test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 105

4-9 Performance of theK -nearest neighbor approach on the clean dataset.

Classi�cation accuracy with varying dictionary size for a) nearest neigh-

bor classi�er, and b) K -nearest neighbors classi�er. . . . . . . . . . . 108

4-10 Time resolution is more important than pixel count for imaging through

scattering. a) Classi�cation accuracy vs. time resolution (for 32x32

pixels). b) Classi�cation accuracy vs. number of pixels (for a non

time-resolved system). . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4-11 Examples of spatiotemporal �lters learned by the CNN. The network

generates both a) spatial and b) temporal �lters for inference. . . . . 111

5-1 All Photons Imaging through tissue. a) Optical setup. A pulsed laser

is scattered by a di�user sheet (D) to �ood illuminate the target mask.

The mask is adjacent to the1:5 cm tissue phantom which is imaged

with a streak camera. b) Schematic of the scattering process inside

the tissue phantom. c) The optical setup captures the time-resolved

measurement. Each frame corresponds to a di�erent arrival time of

the distorted signal from the mask. Using API the mask is recovered. 118

5-2 All Photons Imaging model estimation. Demonstrated on a point

source example. a) Raw measurement. b) Recovery of time-only func-

tion f T (t). c) The normalized measurement~m(x; y; t). d) Recovered

W(x; yjt) after estimating its parameters. e) The �nal estimated kernel

K (x; y; t ) after multiplying the estimated f T (t) and W(x; yjt). f) Re-

covery of the point source - the result of the deconvolution procedure.

Panels a,c,d,e show cross sections of thex � y � t functions for y = 0. 120

22



5-3 Recovery of 1D slits target with API. Three slits separated by 1.5,

1.0 and 0:5 cm (a, b, c respectively) and their recovery with Time

Averaging and Ballistic photons compared to API. Blue shadings are

the slits' location ground truth. API shows signi�cant advantages in

recovering the three slits when they are separated by up to 0.5cm, while

the other methods fail in all cases. . . . . . . . . . . . . . . . . . . . 125

5-4 API recovers 2D scenes. a) `A' shaped hidden mask. b) Recovered

scene without using time-resolved data; the result is very blurry. c)

Recovered scene using only ballistic photons; the signal is embedded

in the noise level. d) Recovered scene using API; the result clearly

recovers the hidden scene. e-h) Mask and results for a wedge-shaped

scene. Blue arrows mark the points used to evaluate the best recover-

able resolution and the corresponding resolution. All reconstructions

are quantitatively evaluated with both PSNR and SSIM (ranges in

[0; 1], higher is better). Scale bar equals5 mm. . . . . . . . . . . . . 126

5-5 API optical setup. a) Photo of the API experimental setup. b) Photo

of the tissue phantom with the occluded mask at the back. . . . . . . 127

5-6 API recoverable resolution as a function of time resolution and medium

thickness. a) Monte Carlo simulation results for varying sensor time

resolution and di�user thickness; colors represent the best recoverable

resolution in mm. b) Vertical cross sections (for di�erent time reso-

lutions). c) Horizontal cross sections (for di�erent di�user thickness).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5-7 API sensitivity to measurement noise. Monte Carlo simulation results

in di�erent levels of measurement noise and its e�ect on recoverable

resolution. API performs very robustly for PSNR above39 dB. The

experimental measurement PSNR is noted in red cross (61:7 dB). . . 130

23



5-8 API successfully recovers complex targets with noisy measurements.

a) The target mask. b) Time Averaged result. c) Ballistic photon

measurement. d) API recovery. The three rows correspond to three

di�erent targets. The measurements PSNR in targets 1-3 are 42.5,

44.5, and43:9 dB respectively. All reconstructions are evaluated with

PSNR and SSIM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5-9 Layered materials and their equivalent uniform have the same PSF.

The two rows show examples of di�erent materials. a) Depth cross sec-

tion for the scattering coe�cient, and the equivalent uniform (dashed

line). b) Monte Carlo simulation � PSF of the layered material. c) Es-

timated scattering kernel by API for the layered material. d) Monte

Carlo simulation � PSF of the equivalent uniform material. e) Esti-

mated scattering kernel by API for the equivalent uniform material.

Panels b-e show anx � t cross section fory = 0. Columns b and e

are roughly identical (up to sampling noise), demonstrating that the

layered material and its equivalent uniform share the same PSF, and

that API captures the PSF of these four di�erent materials. . . . . . 133

5-10 API is invariant to variations along the optical axis. a) Ground truth.

b-e) Reconstruction results for the four materials de�ned in Fig. 5-9. 134

6-1 Fog background model. a) Experimental time-resolved measured his-

tograms along with �tted Gamma distributions. The panels correspond

to di�erent optical thicknesses (OT) of fog. The plots show that a

Gamma distribution captures well the dynamics of time-resolved scat-

tering in fog, especially at high densities. b) Fitted Gamma distribu-

tions for a wide range of fog densities. The plots show that di�erent

fog densities (optical thicknesses) result in di�erent time pro�les. . . . 143

24



6-2 Rejecting back re�ectance and signal recovery. Demonstrated on four

di�erent levels of fog: optical thicknesses of OT= 1:39; 1:6; 1:89; 2:3

for panels a-d respectively. In each panel, the left plot shows the re-

covered KDE, Gamma distribution, estimated signal, and estimated

target distributions. The right plot shows the histogram generated by

the raw photon counts and the �tted model (Eq. 6.9) including the

SNR between the two. The target in panels a+b is at a depth that

corresponds to3:02 ns, and the target in panels c+d is at2:58 ns. Note

that in all cases there are substantially more background than signal

photons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6-3 The probabilistic algorithm successfully models physical measurements

in a wide range of fog conditions, and target distances. Di�erent rows

correspond to di�erent optical thicknesses. Di�erent columns corre-

spond to targets at di�erent distances, and a background case. The

acquisition time is �xed and identical for all examples. Due to the

signi�cant di�erence in the number of detected photons in these con-

ditions, all plots are normalized to 1, and the total number of photon

counts is reported in the title of each plot. The model fails to estimate

the target for higher levels of fog and when the target is farther away. 148

6-4 Fog background model predicts optical thickness. The estimated back-

ground model parameters are used to predict the optical thickness. a)

Ground truth and the prediction as a function of time while fog is

added to the chamber. b) The optical thickness prediction vs. ground

truth, along with a straight line for reference. . . . . . . . . . . . . . 151

25



6-5 Experimental setup. a) The fog chamber with a mannequin inside.

This photograph was taken with minimal fog density and shows the

SPAD, pulsed laser, traditional camera, and �ashlight. Illumination

and measurement are performed through a glass window in the cham-

ber. A power meter is placed inside the fog chamber to quantify the

optical thickness. The fog generator is composed of an ultrasonic trans-

ducer in water and a fan placed on the far side of the chamber (not

visible). b) Example of the fog generator inside a small open aquarium.

In this case the fan is o�, which results in low concentration. . . . . . 152

6-6 Recovery of a multi-depth target at realistic, dense, dynamic, and het-

erogeneous fog, with the `E' shapes. Di�erent columns demonstrate

cases of di�erent levels of fog. Rows show di�erent reconstructions in-

cluding: a) Image taken with a regular camera (the longer wavelength

used for this measurement undergoes less scattering, which results in

less challenging imaging conditions). b) Result with SPAD camera

in photon counting mode. c) Result of time gating using the SPAD

camera, where the time gate was selected manually to the �rst time

bin with meaningful information. d) Re�ectance reconstruction with

our technique. e) Depth reconstruction with our technique. SSIM

and PSNR metrics provide quantitative comparisons. The left column

shows a measurement without fog (ground truth). . . . . . . . . . . . 154

6-7 Recovery of complicated structures occluded by dense fog. Top � a

Mannequin35 cmaway from the camera. Bottom � a Mannequin70 cm

away from the camera. See Fig. 6-6 for panels description. . . . . . . 155

6-8 The suggested approach produces superior results over the entire range

of fog levels. Showing image recovery accuracy vs. optical thickness.

The accuracy is evaluated with a) SSIM, and b) PSNR on the `E' shapes.156

26



6-9 Depth recovery accuracy as a function of optical thickness. Demon-

strated on four targets (columns). Top row shows the segmented mask

used for each target. Bottom row shows the recovered depth for each

target as a function of optical thickness. The dashed black line indi-

cates the ground truth based on the �rst few frames without fog. The

red cross indicates OT= 2:2 which is the optical thickness in which

we lose the farther targets. . . . . . . . . . . . . . . . . . . . . . . . 157

6-10 Depth recovery accuracy for a slanted plane. a) The estimated depth

pro�le as a function of spatial pixel for di�erent optical thicknesses.

The ground truth depth pro�le is the thick blue line. b) Error and

standard deviation bars for the deviation of the estimated depth pro�le

from a line, as a function of optical thickness. . . . . . . . . . . . . . 158

6-11 Re�ectance recovery accuracy. a) Photon count measurement of the

re�ectance target without fog. b) Recovery of the re�ectance values

for the six di�erent values with our technique, as a function of opti-

cal thickness. Ground truth marked by black horizontal dashed lines.

c-d) similar to b, for time gating and photon counting respectively,

demonstrating mixing of colors at lower levels of fog. . . . . . . . . . 160

6-12 Photon counts drop as fog is added. Photon counts per pixel on tar-

gets at four di�erent depths, as well as a pixel without a target (back-

ground). a) Photon counts vs. optical thickness. b) Same as a) where

the curves are normalized by the photon counts at OT= 0. . . . . . . 161

6-13 The e�ect of exposure window on recovery quality. SSIM metric for

the recovery of the `E' shapes as a function of optical thickness, each

curve is the result of a di�erent number of frames. a-c) Our technique,

time gating, and photon counting respectively. Ours performs equally

well with fewer photons at low fog. . . . . . . . . . . . . . . . . . . . 162

27



6-14 Qualitative results of recovery with varying exposure window. Columns

show di�erent optical thicknesses, rows are di�erent allowed number

of frames. This demonstrates the adaptive property of our approach.

Time gating marginally gains from having more frames (even at lower

levels of fog). Photon counting does not gain from having more frames

regardless of the fog level. . . . . . . . . . . . . . . . . . . . . . . . . 162

6-15 Recovery with the additional expectation maximization step. Di�erent

columns show di�erent levels of fog. The rows compare the recovery

with and without the additional EM step for re�ectance and depth.

We note that up to OT = 1:4, including the EM step improves the

results, and after that the results degrade. . . . . . . . . . . . . . . . 164

6-16 Reading in dense fog � recovery of the `125' target. The white text at

the top left corner of each panel shows the OCR result on that image.

`?' indicates no text found. See Fig. 6-6 for panels description. . . . 166

6-17 Reading in dense fog � Recovery of the `Re0' target. The white text at

the top left corner of each panel shows the OCR result on that image.

`?' indicates no text found. See Fig. 6-6 for panels description. . . . 167

6-18 Reading in dense fog � Accuracy as a function of optical thickness. Our

approach allows the o�-the-shelf OCR to correctly classify text over a

wide range of fog conditions. Four di�erent targets are demonstrated,

the panels' titles indicate the text of the target and its distance from

the camera. The y-axis is the percentage of correctly classi�ed characters.168

28



List of Tables

1.1 Scattering conditions considered in this dissertation. Color indicates

the complexity of the considered scenario. The re�ection geometries

considered in the top two rows are easier compared to the bottom row,

since there is no back re�ectance due to the scattering. . . . . . . . . 32

2.1 Comparison of di�erent imaging through scattering techniques with

visible light. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 List of parameters and distributions for calibration and target param-

eters used in mannequin dataset. . . . . . . . . . . . . . . . . . . . . 97

4.2 The proposed approach outperforms other techniques on clean and

realistic datasets. The CNN outperforms all methods in the clean

dataset, and is the only method that achieves results that are better

than random accuracy on the realistic dataset. . . . . . . . . . . . . . 107

5.1 Comparison of API and DOT. . . . . . . . . . . . . . . . . . . . . . . 117

6.1 Depth recovery error for the four targets in Fig. 6-9. The top row con-

siders all captured data (up to OT= 2:7). The bottom row considers

data up to OT = 2:2 (the optical thickness in which we lose the farther

targets). All numbers are provided incm. . . . . . . . . . . . . . . . 157

29



30



Chapter 1

Introduction

In this dissertation we develop probabilistic and data-driven algorithms

that leverage statistics of scattered photons. These algorithms tackle, by

design, the dependency of computational imaging on highly calibrated and

accurate physical models as well as long acquisition times.

The main crutches of computational imaging are the dependency on an accurate

and calibrated physical model, and long acquisition times. This is a result of the

sensitivity of inverse problems to model mismatch and poor signal to noise ratio

(SNR). This prevents computational imaging through scattering with visible light

from scaling to real-world applications.

Imaging through scattering media with visible light is a great challenge with many

potential applications. Fundamentally, the scattering invalidates basic imaging con-

ditions, and as a result, our eyes and cameras cannot focus light from objects that

are occluded by the scattering media. Some examples of materials that are mostly

scattering visible light include fog and tissue (Fig. 1-1). While simply seeing through

such highly scattering materials with our bare eyes is impossible, we show that it is

possible using computational imaging.

Here, we demonstrate, in four di�erent regimes of scattering, that probabilistic

and data-driven algorithms along with time-resolved sensing can alleviate these chal-

lenges. Table 1.1 provides a brief overview of the di�erent scattering conditions con-
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Table 1.1: Scattering conditions considered in this dissertation. Color indicates the
complexity of the considered scenario. The re�ection geometries considered in the top
two rows are easier compared to the bottom row, since there is no back re�ectance
due to the scattering.

sidered here, along with the main challenges and the contributions in these regimes.

Speci�cally, we consider (in increasing complexity) the following conditions:

1. Imaging with a single pixel and without a lens. We provide theoretical analysis

for the case of a single pixel that accumulates contributions from all scene

points, an equivalent to simple scattering. The presented framework enables

acquisition times that are as50� faster compared to prior techniques.

2. Imaging through paper. We demonstrate a data-driven solution for imaging

through simple scattering (a single scatter event). The technique provides the

ability to recover the pose of an object hidden behind the scattering layer with-

out needing precise calibration or an accurate model and works in real-time.

3. Imaging through tissue phantom. Here we introduce the concept of using the

entire optical signal (All Photons Imaging) to see through scattering. The

presented technique resolves a target through15 mmtissue phantom at5:9 mm

resolution with minimal assumptions about the scattering material.

4. Imaging through fog. We tackle the challenge of back re�ectance from scattering

media in optical re�ection mode. In this case, we need to separate between the
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Figure 1-1: Examples of scattering media in visible light: a) fog, b) tissue, and
c) optical di�user.

photons that back-re�ect from the fog, and those that hit the target. The

solution is based on a probabilistic imaging framework and is demonstrated in

realistic fog scenarios (dense, dynamic, and heterogeneous) with visibility as

low as30 cm.

1.1 Why Imaging Through Scattering With Visible

Light?

The ability to see through scattering media holds many applications:

� Seeing through fog enables driver augmentation and robust autonomous naviga-

tion in degraded weather conditions. It also improves the safety and robustness

of �ying platforms (airplanes, helicopters, and drones) in reduced visibility at

low-level �ight.

� Imaging through tissue with visible light allows for non-invasive sensing inside

the body with non-ionizing radiation, and potentially better functional imaging

when compared to other modalities such as ultrasound and MRI.

� Underwater imaging is commonly challenging due to water turbulence as well as

the presence of various particles in the water such as sand and plankton. The

ability to image underwater would improve the safety and monitoring of un-

derwater installations such as o�shore wind farms, gas, oil, and communication

infrastructure.
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� Many human�computer interaction systems require a camera that observes the

human, which brings up many privacy issues. It is bene�cial to capture the

essential information for the interaction while corrupting the input to preserve

user privacy. This is possible with scattering media such as a sheet of paper or

an optical di�user to obstruct the camera's �eld of view.

� Non-line of sight (NLOS) imaging is the general ability to capture information

that is not directly observable by the camera. Examples of this include lensless

imaging and seeing around corners. Lensless imaging has many important ap-

plications in general purpose sensing when the use of a high-quality lens with a

large aperture is not possible.

These capabilities extend the concept of a camera to a general purpose sensor coupled

with an algorithm to reconstruct the desired information.

Traditionally, overcoming optical scattering is achieved by moving away from the

visible part of the spectrum. Examples include radio frequency (RF) for imaging

through fog, and x-ray and ultrasound for seeing into the body. However, the use of

visible light for imaging holds many advantages:

� Optical contrast � the ability to distinguish among di�erent materials. With

visible light, a small change in wavelength results in a signi�cant change in

the interaction with di�erent atoms and molecules. Thus, imaging in visible

light enables many applications in medical imaging; for example, distinguishing

between di�erent types of tissue that is very hard or impossible to achieve with

other imaging modalities. Another application is the ability to read road signs

in fog since the color on road signs has signi�cant di�erent spectral signatures

in the visible spectrum.

� Resolution � the optical wavelengths (400 nm� 700 nm) are much smaller when

compared to RF (1 cm� 1 m), mm-wave (1 mm � 1 cm), and THz (100µm �

1 mm). As a result it is easier to capture higher resolution images with smaller

apertures.

34



� Non-ionizing radiation � this advantage is primarily important for medical ap-

plications. While there is always a tendency to avoid unneeded x-ray exposure,

some patients like pregnant women and children cannot be exposed to x-ray.

Medical imaging with visible light does not su�er from these limitations.

� Availability of �uorophores � these are commonly used in functional medical

imaging to improve the contrast with di�erent target tissues. Such �uorophores

are more commonly available and are easier to design in the visible spectrum,

as opposed to x-ray. Thus functional medical imaging is potentially more infor-

mative in the visible spectrum.

1.2 Why Computational Imaging Through Scatter-

ing Is Sensitive to Accurate Modeling and Cali-

bration?

Traditionally, computational imaging through scattering media requires solving an

inverse problem. In most cases, it is relatively easy to formalize a forward model

which is a mapping from scene to measurement. However, the required task is a

mapping from measurement to scene, hence the name �inverse problem�.

The challenge in solving the inverse problem is the assumption that the forward

model is accurate. An inaccurate forward model can be a result of:

� Model Mismatch: In that case the forward model does not properly account

for the physics of the problem; therefore it is impossible to explain the raw

measurement by the forward model, for example � assuming a speci�c physi-

cal model for the scattering, that does not capture the full complexity of the

scattering process.

� Calibration: The forward model usually includes many physical constants

that describe the imaging system and physics of the problem (for example,

the camera �eld-of-view or scattering media thickness). Calibrating a forward
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model usually requires extensive e�ort to accurately measure all parameters and

properties.

It is important to note that model mismatch and insu�cient calibration can hap-

pen simultaneously and to di�erent extents. Calibrating an imaging system also

assumes we have full control of the speci�c parameters that are measured. This

assumption may be extremely prohibitive in real-world scenarios.

1.3 Imaging through Scattering � Techniques and

Regimes Presented Here

We present techniques that aim to tackle fundamental issues with prior methods to

image through scattering. Fundamentally, our goal is to computationally maximize

the information extracted from the optical signal. This allows our techniques to

operate in a wide range of challenging scattering conditions without calibration. To

that end, we develop di�erent algorithms that are inspired by modern statistical

analysis, optimization, signal processing, compressive sensing, and machine learning.

A common thread among the techniques presented here is ultrafast time-resolved

sensing. By ultrafast we consider a sensor with picosecond time resolution. Since

light propagates0:299 mmin 1 ps, at picosecond time resolution the speed of light is

non-negligible. Throughout this dissertation, we show that time-resolved sensing is

essential for imaging through scattering.

The scattering regimes considered here can be broadly classi�ed as sparse and

volumetric scattering. In sparse scattering, the number of scattering events photons

undergo is relatively small. This includes the general problem of lensless imaging and

imaging through a sheet of paper. In volumetric scattering, the number of scattering

events photons undergo is very large. This includes tissue phantoms and fog.

36



Figure 1-2: FemtoPixel � Lensless single pixel imaging with compressive ultrafast
sensing. Two examples with the same acquisition time comparing traditional tech-
niques to FemtoPixel. To achieve similar reconstruction quality to FemtoPixel, the
traditional approach (not time-resolved) requires a50� longer acquisition time.

Lensless Imaging with a FemtoPixel 1

Chapter 3 presents a compressive sensing framework for time-resolved imaging with-

out a lens, an equivalent to a single scattering event. The presented framework pro-

vides design tools for imaging systems. These include analysis tools for the trade-o�

between system complexity, imaging quality, and acquisition time. Most importantly,

by leveraging the physics of time-resolved sensing, we develop an optimization frame-

work for the ideal sensors' position and imaging patterns with compressive sensing.

The suggested approach demonstrates50� faster acquisition time when compared to

traditional (not time-resolved) single-pixel cameras (see Fig. 1-2).

Data-Driven Calibration Invariant Imaging Through Paper 2

One of the biggest challenges in computational imaging is the need to solve an inverse

problem due to the sensitivity to accurate physical modeling and calibration. Chap-

ter 4 presents an alternative to solving an inverse problem by using a data-driven

approach. In this case, a data-driven algorithm is used to solve a computational

imaging problem without calibration. The neural network directly learns a mapping

1Abridged versions of this work appeared as [149] �Lensless Imaging with Compressive Ultrafast
Sensing,� G Satat, M Tancik, and R Raskar,IEEE Transactions on Computational Imaging, 2017.
And, [147] �Compressive Ultrafast Single Pixel Camera,� G Satat, G Musarra, A Lyons, B Heshmat,
R Raskar, and D Faccio,OSA Computational Optical Sensing and Imaging, 2018.

2An abridged version of this work appeared as [148] �Object Classi�cation through Scattering
Media with Deep Learning on Time-Resolved Measurement,� G Satat, M Tancik, O Gupta, B Hesh-
mat, and R Raskar, Optics express, 2017.
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Figure 1-3: Calibration invariant imaging through scattering. A CNN learns to es-
timate the pose of a mannequin that is occluded by a sheet of paper. Our training
technique results in a CNN that is invariant to variations in the system calibration.
The network was trained before the experiments took place, and the optical system
was built without calibration.

from the measurement to the hidden scene. Thus, there is no need to model the

physics of the problem and then inverting the mathematical model. Furthermore, the

presented technique is based on a neural network training strategy, which results in

a model that is invariant to variations in calibration parameters. We demonstrate

this approach on the problem of classifying the pose of a mannequin hidden behind

a sheet of paper. In lab experiments, the measurement from a time-resolved single

photon avalanche diode (SPAD) camera is fed into a trained convolutional neural net-

work (CNN) which correctly classi�es the mannequin poses without any calibration

(Fig. 1-3).

Imaging Through Thick Tissue Phantom 3

Chapter 5 introduces �All Photons Imaging� (API) � a computational technique

for imaging through a thick tissue phantom (Fig. 1-4). We introduce a probabilistic

interpretation for the imaging system point spread function (PSF). This simpli�es the

PSF estimation from the measurement itself, and avoids the need to solve an ill-posed

blind deconvolution problem. The technique utilizes time-resolved measurements for

imaging through volumetric scattering. By using all of the optical signal, including

3Abridged versions of this work appeared as [145] �All Photons Imaging Through Volumetric
Scattering,� G Satat, B Heshmat, D Raviv, and R Raskar, Nature Scienti�c Reports , 2016.
And, [144] �All Photons Imaging through Layered Scattering Materials,� G Satat, B Heshmat, and
R Raskar, OSA Computational Optical Sensing and Imaging, 2017.

38



Figure 1-4: All photons imaging through15 mm thick tissue. API leverages time-
resolved measurement to invert the scattering and recover the hidden target.

early arrived (non-scattered) and di�used photons, it achieves better spatial resolution

at greater depths. Compared to conventional early photon measurements for imaging

through a 15 mm tissue phantom, our method shows a2� improvement in spatial

resolution (4 dB increase in PSNR). Unlike other methods, which aim to lock at a

speci�c part of the optical signal (coherent, ballistic, acoustically modulated, etc.),

our framework aims to use all of the optical signal. This results in an all optical,

calibration-free imaging system that enables wide �eld imaging through volumetric

scattering at poor SNR and does not require to raster-scan the scene.

Imaging Through Realistic Fog 4

The technique presented in Chapter 5 was limited to optical transmission mode and

to materials that are homogeneous in thex � y plane (perpendicular to the optical

axis). Thus it is primarily applicable to medical imaging applications. Chapter 6

introduces a technique that alleviates these constraints and allows imaging through

dense, dynamic and heterogeneous fog in optical re�ection mode (Fig. 1-5). The

technique is demonstrated in a wide range of realistic fog conditions at up to30 cm

visibility. The main challenge that arises in optical re�ection mode is the need to

separate between the photons that back-re�ect from the fog (background) and the

photons that hit the target and are then detected by the camera. This is unlike

optical transmission mode, in which all of the measured photons interact with the

4An abridged version of this work appeared as [151] �Towards Photography Through Realistic
Fog,� G Satat, M Tancik, and R Raskar, IEEE International Conference on Computational Photog-
raphy (ICCP) , 2018.
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Figure 1-5: Imaging through realistic fog. With a time-resolved single photon detector
we separate background photons that back-re�ect due to the fog from the signal of
the occluded target. We recover the target re�ectance and depth in a wide range of
realistic, dense, heterogeneous, and dynamic fog conditions.

target. The solution is based on a probabilistic framework that separates, in real time,

between background and signal photons, without any assumption about the fog. The

extracted signal photons are used to reconstruct the occluded scene re�ectance and

depth map.

1.4 Main Contributions

This thesis's contributions to the computational imaging literature include:

� Probabilistic modeling of scattering:

� A probabilistic interpretation of the scattering PSF which extends to both

modeling and estimation. This interpretation demonstrates, for the �rst

time, probabilistic imaging through thick tissue phantom.

� A probabilistic model and algorithm for imaging through extremely dense,

dynamic, and heterogeneous fog conditions, and recovering both target

re�ectance and depth.

� Data-driven computational imaging:

� The �rst data-driven calibration-invariant computational imaging tech-

nique. Demonstrated in imaging through sparse scattering.
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� A method for training deep learning algorithms with synthetic data for

NLOS imaging. Experimentally demonstrated on real data.

� Time-resolved and single photon sensing for imaging through scat-

tering:

� The �rst framework for lensless imaging with compressive ultrafast sensing.

Includes an optimization procedure for computing the optimal sensors'

positions and compressive masks.

Our contributions extend beyond the above algorithms and theoretical frameworks

to the design, implementation, andpractical evaluation of imaging through various

scattering media including sheet of paper, thick tissue phantoms, and fog, with streak

and SPAD cameras.
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Chapter 2

Background and Related Works

Imaging through scattering media and occlusions is a long lasting problem. Tradition-

ally it is accomplished in non-visible light modalities such as RF, x-ray, ultrasound,

etc. As mentioned in Chapter 1, the advantages of visible light have energized an

e�ort towards imaging through scattering media with visible light. In this chapter,

we introduce the basic physics of scattering, including widely accepted models and

notations, and introduce di�erent modalities for imaging through scattering media.

2.1 Light-Matter Interaction

All the advantages of imaging with visible light described in the Introduction are due

to the interaction between light and matter. This interaction can be classi�ed as a

combination of:

� Absorption: the photons are absorbed in the material and the energy is con-

verted to heat or photons of lower energy (�uorescence).

� Scattering: the photons change their propagation direction as a result of the

interaction, but maintain their energy (wavelength).

The case of imaging through highly absorbing materials (for example imaging through

a wooden wall with visible light) is somewhat hopeless. This is because the sensor

would not capture many, or any, photons. Imaging through scattering media, on the
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